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ABSTRACT

An explicit analytical form of the scattering matrix for Homogeneous Isotropic Linear
Viscoelastic (HILV) continuum is obtained. The reflection and transmission coefficients are
the complex function related to the P- and S-velocities and corresponding quality factors
QP and QS . The real part is the elastic scattering potential and the imaginary part is the
term induced by the anelasticity of the medium. Linearized reflection coefficients can be
used for viscoelastic AVO/AVA and full waveform inversion.

INTRODUCTION

Borcherdt (2009) has presented a complete theory for seismic waves propagating in
layered anelastic media, assuming a viscoelastic model to hold. Borcherdt’s formulation is
particularly powerful in that it predicts a range of transverse, inhomogeneous wave types
unique to viscoelastic media (Type I and II S waves), and develops rules for conversion
of one type to another during interactions with planar boundaries. Problem of reflection
and transmission coefficients at an interface between viscoelastic media in the context of
inhomogeneous waves has studied by (Cooper, 1967; Schoenberg, 1971). (Krebes, 1983,
1984) has investigated the reflection coefficients of viscoelastic SII waves for some spe-
cial cases. In this brief research we considered to the problem of reflection transmission
in a viscoelastic layered media. We calculate the complete form of the viscoelastic scat-
tering potential whose elements refers to the various types of reflection and transmission
coefficients related to P- and SI-waves.

PRELIMINARIES

Inhomogeneous waves play an important role in viscoelastic wave theory. Such waves,
which decrease in amplitude with propagation distance, are described with the use of com-
plex vectors or bivectors (Morro, 1992). In the case of inhomogeneous waves, the attenu-
ation and propagation vectors are not in the same direction. This makes the displacement
vectors different from homogenous case. In what follows, we show that the particle motion
for P waves is elliptical in the plane constructed by attenuation and propagation vectors.
This elliptical motion reduces to a linear motion in the limit of homogenous case. Also, we
have the two types of shear waves SI and SII. The first one, which is the generalization
of SV wave, has an elliptical displacement vector in the propagation-attenuation plane.
Finally SII type wave which is a generalization of SH wave types has a linear motion
perpendicular to the propagation-attenuation plane. The wavenumber vector of inhomoge-
neous waves is represented by

K = P− iA. (1)

Here P is the propagation vector perpendicular to the constant phase plane P·r = constant,
and A is the attenuation vector perpendicular to the amplitude constant plane A · r =
constant. Attenuation vector A is in the direction of maximum decay of amplitude. In the
case that attenuation and propagation vectors are in the same direction, wave is homoge-

CREWES Research Report — Volume 26 (2014) 1



neous. Elastic media is represented by A = 0. If we represent the angle between P and A
by δ, for inhomogeneous waves δ 6= 0 we have

|P| = 2−
1
2

[
<K ·K +

√
(<K ·K)2 + (=K ·K)2 sec2 δ

] 1
2
, (2)

and

|A| = 2−
1
2

[
−<K ·K +

√
(<K ·K)2 + (=K ·K)2 sec2 δ

] 1
2

(3)

where

K ·K = |P|2 − |A|2 − 2i|P||A| cos δ =
(ω
α

)2

=
ω2ρ

K + 4
3
M

(4)

Here K and M are the viscoelastic Lamé parameters. Attenuation angle δ for isotropic
viscoelastic medium always varies between zero and π/2. In anisotropic medium however
it can exceed π/2. From this general framework we may now follow Borcherdt (2009) in
analyzing three types of independently propagating wave. According to (4)

=(K ·K) = −1

2
|P||A| cos δ (5)

In a viscoelastic medium =(K ·K) 6= 0, this implies that the maximum attenuation |A|
is not zero and also the direction of maximum attenuation can not be perpendicular to the
direction of phase propagation. As a result the attenuation angle varies 0 ≤ δ < 90◦.

VISCOELASTIC WAVES

According to Helmholtz decomposition every vector field U can be written as a com-
bination of an irrotational (curl-free) and a divergenceless vector as follows

U = ∇Φ + ∇×Ψ (6)

with
∇ ·Ψ = 0. (7)

Constitutive equation that relates the stress and strain tensors imply that the wave equation
for P- and S-wave are given by

∇2Φ− α−2∂2
t Φ = 0 (8)

∇2Ψ− β−2∂2
t Ψ = 0 (9)

Where √
Kp ·Kp = Kp =

ω

α
, (10)

√
Ks ·Ks = Ks =

ω

β
. (11)

As we have seen, in presence of attenuation the wavenumber vector is complex which
it’s real part displays the propagation direction and imaginary part refers to the maximum

2 CREWES Research Report — Volume 26 (2014)



Some exact forms for viscoelastic reflection coefficients

direction of the wave attenuation. As a consequence P- and S-velocities in eqs.(10) and
(11) are the complex velocities related to the elastic P- and S-velocities αe and βs as

α = αe

(
1 + i

Q−1
p

2

)
, (12)

β = βe

(
1 + i

Q−1
s

2

)
, (13)

where Qp and Qs are the quality factors for P- and S waves respectively. In above we used
the low-loss viscoelastic medium approximation where Q−1 � 1. It is clear that even for
complex velocity, the solutions of equations (8) and (9) have the plane wave form, namely

Φ = αΦ0 exp [−i(Kp · r− ωt)] , (14)

Ψ = βΨ0 exp [−i(Ks · r− ωt)] , (15)

where Φ0 and Ψ0 are the complex scalar and vector constants. Now the displacement
vectors for P- and S-waves are given by

Up = ∇Φ = −iαKpΦ0 exp [−i(Kp · r− ωt)] , (16)

Us = ∇×Ψ = −iβKs ×Ψ0 exp [−i(Ks · r− ωt)] . (17)

In the case that US = USn, where n is a unit vector orthogonal to the plane of PS −AS ,
the corresponding wave is named S type-I(SI) wave. From study of complex vectors we
know that they display the elliptical motion for a dynamic problem. Therefore we expect
that displacement vectors for P- and S-waves with complex polarization vectors, describe
an elliptical motion for particles. To understand the nature of the motion characterized by
(16) and (17), let us consider to a general complex vector V = VR + iVI . Multiplication of
V with the complex wavenumber vector K leads to

VK = (VR + iVI)(P− iA) = (VRP + VIA) + i(VIP− VRA), (18)

using the relationship between velocity and wavenumber vector namely KV = ω, we can
calculate the the real and imaginary parts of velocity V as

VR =
ωKR

(KR)2 + (KI)2
, (19)

VI = − ωKI

(KR)2 + (KI)2
. (20)

Th polarization vector can be defined by a complex vector ξ as

ξ = ξR − iξI =
V

ω
K, (21)

where the real and imaginary parts of the polarization vectors are

ξR =
KRP−KIA

(KR)2 + (KI)2
, (22)
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ξI =
KIP +KRA

(KR)2 + (KI)2
. (23)

These two vectors are orthogonal, furthermore |ξR|2 − |ξI |2 = 1. A simple analysis in-
dicates that particle motion related to the displacement for P-wave in equation (16) is an
ellipse with major axes ξR and minor axes ξI . In a similar manner, we can show that the
polarization vector for SI wave can be written as

ζs = ζR − iζI = (ξsR − iξsI)× n (24)

For low-loss viscoelastic media the elliptical polarization takes the following form

ξ =
αe
ω

{
Kp + i

Q−1
p

2
Pp

}
(25)

ζs =
αe
ω

{
Ks + i

Q−1
s

2
Ps

}
× n (26)

Finally, we can redefine the the displacement vectors for P- and S-waves as

Up = ξpΦ0 exp [−i(Kp · r− ωt)] (27)

Us = ζsΨ0 exp [−i(Ks · r− ωt)] (28)

SCATTERING MATRIX

So far we considered to the viscoelastic plane wave propagate in an isotropic homo-
geneous medium. What happens if an inhomogeneous wave with a elliptical polarization
hits the boundary of two half-space? To answer this question we need to define two half
space medium with different physical properties separated by a boundary. To analyze the
complete form of the reflection-transmission from boundary we used the same method by
(Aki and Richards, 2002). Incident waves are defined in mediums V and V ′ by ↑Ui and
↓Ui. The downarrow index refers to the wave that propagate in medium V in z < 0 to the
boundary and uparrow index refers to the wave that propagate in medium V ′ in z > 0 to
the boundary. We identify the quantities releted to the V ′ by prim index and unprimed to
the medium V .

With this definitions and basics, we are now ready to write the incident P- and S-waves
in V and V ′ mediums

↑Ui
p = Φ′

↑
0(ξ′pxx− ξ′pzz) exp

[
iω

(
Kx−

ξ′pz
α′
z

)]
, (29)

↓Ui
p = Φ0

↓(ξpxx + ξpzz) exp

[
iω

(
Kx+

ξpz
α
z

)]
, (30)

↑Ui
s = Ψ′

↑
(ξ′szx + ξ′sxz) exp

[
iω

(
Kx− ξ′sz

β′
z

)]
, (31)

↓Ui
s = Ψ↓(ξszx− ξsxz) exp

[
iω

(
Kx+

ξsz
β
z

)]
, (32)
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where we have defined the x- and z-components of polarization vectors as

ξx = sin θ +
i

2
Q−1 tan δ cos θ, (33)

ξz = cos θ − i

2
Q−1 tan δ sin θ. (34)

In addition similar to the elastic case we define a complex ray parameter K that comes from
the generalized Snell’s law

ωK = |P| sin θ − i|A| sin(θ − δ), (35)

to having the complete form of reflection-transmission coefficients in addition to incident
waves propagate in two half-space we also need to define the reflected and transmitted
waves. With similar notations for incident waves, transmitted and reflected P- and S-waves
are given by

↓Ur
p = Φ′

↓
0(ξ′pxx + ξ′pzz) exp

[
iω

(
Kx+

ξ′pz
α′
z

)]
(36)

↑Ut
p = Φ0

↑(ξpxx− ξpzz) exp

[
iω

(
Kx− ξpz

α
z

)]
(37)

↓Ur
s = Ψ′0

↓
(ξ′szx− ξ′pxz) exp

[
iω

(
Kx+

ξ′sz
β′
z

)]
(38)

↑Ut
s = Ψ0

↑(ξszx + ξpxz) exp

[
iω

(
Kx− ξsz

β
z

)]
(39)

where index r indicates the reflected wave and index t refers to the transmitted wave. The
boundary condition implies that the displacements vectors in boundary should be continues.
Also the components of the stress tensor are given by

Pij = δij

(
K − 2

3

)
Ekk + 2MEij, (40)

with
Eij =

1

2
(Ui,j + Uj,i). (41)

Across the boundary should be continues. Namely the x-component and z-component of
stress tensor are gives by

P31 = M(U3,1 + U1,3), (42)

P33 =

(
K − 2

3
M

)
U1,1 +

(
K +

4

3
M

)
U3,3 (43)

have to be continued at z = 0. Implementation of boundary conditions as described to the
displacements and stress tensor at z = 0 leads to

X̂


Φ0
↑

Ψ↑

Φ′↓0
Ψ′↓

 = Ŷ


Φ↓0
Ψ↓

Φ′0
↑

Ψ′↑


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where

X̂ =


−αK −ξsz α′K ξ′sz
ξpz −βK ξ′pz −β′K

2ρβ2Kξpz ρβ(1− 2β2K2) 2ρ′β′2Kξ′pz 2ρ′β′(1− 2β′2K2)
−ρα(1− 2β2K2) 2ρβ2Kξsz ρ′α′(1− 2β′2K2) −2ρ′β′2Kξ′sz


(44)

Ŷ =


αK ξsz α′K ξ′sz
ξpz −βK ξ′pz −β′K

2ρβ2Kξpz ρβ(1− 2β2ξ2) 2ρ′β′2Kξ′pz 2ρ′β′(1− 2β′2K2)
ρα(1− 2β2K2) −2ρβ2Kξsz −ρ′α′(1− 2β′2K2) 2ρ′β′2Kξ′sz

 .

(45)
Accordingly the scattering matrix represents the all reflection-transmission coefficients is
given by

X−1Y =


↓PP ↑ ↓SIP ↑ ↑PP ↑ ↓SIP ↑
↓PSI↑ ↓SISI↑ ↓SISI↑ ↑SISI↑
↓PP ↓ ↓SIP ↓ ↑PP ↓ ↑SIP ↓
↓PSI↓ ↓SISI↓ ↑PSI↓ ↑SISI↓

 . (46)

The diagonal elements of the scattering matrix represents the reflections that preserve the
type of the waves. For example ↓PP ↑ refers to the reflected upgoing P-wave from down-
going incident P-wave and similar explanations for other diagonal elements. On the other
hand some off-diagonal elements indicates the converted waves. For instance, ↓SIP ↑ dis-
plays a reflected upgoing P from incident downgoing SI wave. Other off-diagonal el-
ements refers to the transmitted waves either converted modes or preserved modes. For
example ↓SISI↓ is related to the transmitted downgoing SI wave from a downgoing inci-
dent SI wave and ↓SIP ↓ is a downgoing transmitted P wave from a downgoing incident
SI wave. It has been shown that (Moradi and Innanen, 2013) the waves with elliptical
polarization can not converted to the waves with the linear polarizations. For example SII
wave that has a linear polarization does not converted to the P or SI waves. Some elements
of the scattering matrix (46) that might be interested are

↓PP ↑ =
E−F+ −G+H−K2

E+F+ +G−H−K2
, (47)

↓SISI↓ = −F−E+ −G−H+K2

E+F+ +G−H−K2
, (48)

where
A = ρ′(1− 2β′2K2)− ρ(1− 2β2K2), (49)

B = A+ ρ, (50)

C = ρ′ − A, (51)

D = ρ′ − ρ− A, (52)

E± = B
ξpz
α
± C

ξ′pz
α′
, (53)

F± = B
ξsz
β
± C ξ

′
sz

β′
, (54)
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G± = A±Dξpz
α

ξ′sz
β′
, (55)

H± = A±D
ξ′pz
α′
ξsz
β
. (56)

It is clear that all components of the scattering matrix are complex. To see what is the
relation between the reflectivity functions we obtained and ones for elastic case, we divide
the complex ray parameter K into the real and imaginary part

K = p+ iKI , (57)

where p is the real ray parameter in the elastic medium and KI is the term proportional
to the reciprocal factor, it means in the low-loss viscoelastic medium K2

I ≈ 0. By this
assumption the Taylor expansion series for (47) around KI

↓PP ↑ =
E−F+ −G+H−p

2

E+F+ +G−H−p2
−

{
G+H−

E+F+ +G−H−p2
+

E−F+ −G+H−p
2

(E+F+ +G−H−p2)2
G−H−

}
ipKI . (58)

This equation is pseudo-approximation for KI because in (58) still other coefficients are
functions of KI . Consequently, for the low-loss viscoelastic medium we can expand (58)
in terms of inverse quality factors Q−1

p and Q′−1
p to reach the following expression

↓PP ↑ = (↓PP ↑)elastic +Q−1
p M +Q′−1

p N +Q−1
s R +Q′−1

s S. (59)

Although the approximation that we mentioned for PP mode is complicated to derive but
we can examine that for a more simpler case. As we have mentioned earlier the SII-wave
with a linear polarization can not reflected or transmitted in any type of waves with the
elliptical polarization either inhomogeneous P-wave or SI waves. As a result the scattering
matrix for SII-wave can be written separately by a 2× 2 matrix as( ↓SIISII↑ ↑SIISII↑

↓SIISII↓ ↑SIISII↓

)
, (60)

with the elements

↓SIISII↑ = −↑SIISII↓ =
ρβξsz − ρ′β′ξ′sz
ρβξsz + ρ′β′ξ′sz

, (61)

↓SIISII↓ =
2ρβξsz

ρβξsz + ρ′β′ξ′sz
, (62)

↑SIISII↑ =
2ρ′β′ξ′sz

ρβξsz + ρ′β′ξ′sz
. (63)

The diagonal elements of this matrix represent the reflection coefficients and off-diagonal
terms refer to the transmitted waves. Now we examine the relation between reflectivity
function for SII to SII with that in the elastic case for SH to SH. Inserting the following
quantities
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ξsz = cos θs −
i

2
Q−1
s tan δs sin θs, (64)

ξ′sz = cos θ′s −
i

2
Q′−1
s tan δ′s sin θ′s, (65)

β = βe

(
1 +

iQ−1
s

2

)
, (66)

β′ = β′e

(
1 +

iQ′−1
s

2

)
, (67)

in (61) we arrive at
↓SIISII↑ =

X− + iQ−1
s Y − iQ′−1

s Y ′

X+ + iQ−1
s Y + iQ′−1

s Y ′
, (68)

where we defined
X± = ρβe cos θs ± ρ′β′h cos θ′s, (69)

2Y = ρβe(cos θs − tan δs sin θs), (70)

2Y ′ = ρ′β′e(cos θ′s − tan δ′s sin θ′s). (71)

Using the Taylor expansion with respect to the Q−1
s and Q′−1

s and keep the first order terms
(68) reduces to

↓SIISII↑ ≈ X−
X+

+ iQ−1
s

Y

X+

(
1− X−

X+

)
− iQ′−1

s

Y ′

X+

(
1 +

X−
X+

)
, (72)

where the reflectivity function for SH to SH mode is given by

↓SHSH↑ =
X−
X+

=
ρβe cos θs − ρ′β′e cos θ′s
ρβe cos θs + ρ′β′e cos θ′s

. (73)

Let us now discuss in what conditions the reflected or transmitted waves can be homo-
geneous or inhomogeneous. In the case that wavenumber vector is complex the snell’s
law leads to two relation. The first one, which related to the real part of the complex ray
parameter K is

sin θs
βe

=
sin θ′s
β′e

. (74)

This is the snell’s law for a elastic medium where we have real wavenumber vectors and
real velocities. The second part which comes from the imaginary part of the K is

sin(θs − δs)
βe cos δs

=
sin(θ′s − δ′s)
β′e cos δ′s

. (75)

The recent relation in the limit of elastic medium when attenuation angles goes to zero
reduces to the (74). Expanding the sin functions in (75) and then inserting (74) in it we
arrive at

sin θs
βe

(
Q−1
s −Q′−1

s

)
=

tan δs cos θs
βeQs

− tan δ′s cos θ′s
β′eQ

′
s

. (76)

For non-normal incident (θs 6= 0), and the incident homogeneous wave δs = 0 the trans-
mitted wave is homogeneous if and only if Qs = Q′s.
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LINEARIZED SCATTERING POTENTIAL

To perform the conventional AVO/AVA inversion and full waveform inversion method
of seismic date for a viscoelastic medium we need the linearized scattering matrix. The
linearized scattering potential for low-loss viscoelastic media has been obtained using the
scattering integral method based on the born approximation (Moradi and Innanen, 2013).
The scattering matrix we already obtained in this research directly from the continuity
of the displacement vectors and stress tensor in the boundary should be linearized and
compared with result obtained from green’s function approach. In the elastic case this
relationship is given by (Beylkin and Burridge, 1990)

R = −S
√

tan θi tan θr
2 sin(θi + θr)

. (77)

Here R denotes the linearized reflectivity functions and S is the scattering coefficients
(Born approximation).

If the two half-space medium are very similar we can define the linearized reflectivity
functions in previous section in terms of changes in density, velocities and quality factors
as follows

Aρ =
∆ρ

ρ̄
= 2

ρ′ − ρ
ρ′ + ρ

(78)

Aα =
∆α

ᾱ
= 2

α′ − α
α′ + α

(79)

Aβ =
∆β

β̄
= 2

β′ − β
β′ + β

(80)

AQS
=

∆QS

Q̄S

= 2
Q′S −QS

Q′S +QS

(81)

AQP
=

∆QP

Q̄P

= 2
Q′P −QP

Q′P +QP

(82)

where we defined
∆ρ = ρ′ − ρ (83)

and
ρ̄ =

ρ′ + ρ

2
(84)

One interesting results that come from the snell’s law is that we can write the perturbation
in quality factors in terms of velocities. Rewriting (75) as

tan θ̄s

(
1− Qs

Q′s

)
= tan δ̄s

(
1− Qs

Q′s

βe
β′e

cos θ′

cos θ

)
(85)

and using the definitions of perturbations in(85) and keep the first order terms in perturba-
tions we we arrive at

AQS
=

tan δ̄s cos2 θ̄s
tan θ̄s − tan δ̄s

Aβ (86)
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in a similar way we have

AQP
=

tan δ̄p cos2 θ̄p
tan θ̄p − tan δ̄p

Aα (87)

It means that the perturbations in quality factors can be written in terms of perturbations in
velocities.

SUMMARY AND CONCLUSION

In summary we obtained the complete form of the reflection transmission coefficients
for the isotropic viscoelastic layered medium. The most important feature of the wave prop-
agation in the viscoelastic medium is that the waves are inhomogeneous, in other words the
direction of attenuation and propagation are not in the same direction. In this case the po-
larization vectors for P- and SI waves are the complex functions of quality factors. For
inhomogeneous waves these polarizations display a elliptical motion in a plane of attenu-
ation and propagation vectors. The scattering potential we obtained has the same form as
the elastic case(Aki and Richards, 2002) but with the complex ray parameter and complex
z-components of the polarizations. For SII wave that has the linear polarization we obtain
the scattering potential, in this case we expand the reflection coefficients for SII reflected
to SII in terms of inverse quality factors. As a future direction along these lines we can lin-
earized the reflectivity functions to compare the result with those obtained using the Born
approximation based on the scattering integral (Moradi and Innanen, 2013).
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APPENDIX: LINEARIZED SH-TO-SH SCATTERING POTENTIAL

Snell’s law for incident and transmitted SH wave is given by

β

β′
=

sin θs
sin θ′s

. (88)

Using the definition of perturbation parameters the right hand side reduces to

sin θs
sin θ′s

=
sin
(
θs − ∆θs

2

)
sin
(
θs + ∆θs

2

) ≈ 1− 2
sin ∆θs

2

tan θ̄s
, (89)

also the left hand side reduces to
β

β′
≈ 1− ∆β

β̄
. (90)

equating (89) and (90) leads to

sin
∆θs

2
≈ ∆β

2β̄
tan θ̄s =

1

2
Aβ tan θ̄s. (91)
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In a similar manner

cos θs
cos θ′s

=
cos
(
θs − ∆θs

2

)
cos
(
θs + ∆θs

2

) ≈ 1 + 2 tan θ̄s sin
∆θs

2
= 1 + Aβ tan2 θ̄s (92)

Now the reflectivity function is written as

↓SHSH↑ =

ρ
ρ′
β
β′

cos θs
cos θ′s

− 1

ρ
ρ′
β
β′

cos θs
cos θ′s

+ 1
=

(1− Aρ)(1− Aβ)(1 + Aβ tan2 θ̄s)− 1

(1− Aρ)(1− Aβ)(1 + Aβ tan2 θ̄s) + 1
(93)

expanding and keep the first order of the perturbations we arrive at

↓SHSH↑ ≈ −1

2
(Aρ + Aβ) +

1

2
Aβ tan2 θ̄s (94)

REFERENCES

Aki, K., and Richards, P. G., 2002, Quantitative Seismology: University Science Books, 2nd edn.

Beylkin, G., and Burridge, R., 1990, Linearized inverse scattering problems in acoustics and elasticity: Wave
motion, 12, 15–52.

Borcherdt, R. D., 2009, Viscoelastic waves in layered media: Cambridge University Press.

Cooper, H. F., 1967, Reflection and transmission of oblique plane waves at a plane interface between vis-
coelastic media: J. Acoust. Soc. Am., 42, 1064–1069.

Krebes, E. S., 1983, The viscoelastic reflection/transmission problem: two special cases: Bull. Seis. Soc.
Am., 73, 1673–1683.

Krebes, E. S., 1984, The viscoelastic reflection/transmission problem: two special cases: Geophysics, 49,
1374–1380.

Moradi, S., and Innanen, K. A., 2013, Viscoelastic scattering potentials and inversion sensitivities: CREWES
Research Report, 26.

Morro, G. C. A., 1992, Inhomogeneous waves in solids and fluids: World Scientific.

Schoenberg, M., 1971, Reflection and transmission of oblique plane waves at a plane interface between
viscoelastic media: Geophys. J. R. astr., 25, 35–47.

CREWES Research Report — Volume 26 (2014) 11


