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ABSTRACT

Seismic data is always nonstationary due to ubiquitous anelastic attenuation modeled by
the constant-Q theory. The stationary spiking deconvolution of stationary traces is extended
to Gabor deconvolution of nonstationary traces, in which a seismic trace is decomposed into
a time-frequency spectrum by the windowed Fourier transform and a nonstationary wavelet
is estimated within each window. The amplitude spectrum of the nonstationary wavelet is
accurately estimated by a smoothing process while its phase spectrum is calculated by the
discrete Hilbert transform integrating within the seismic frequency band only. The Gabor
deconvolved seismic trace ties the well reflectivity in amplitude and spectral content, but
has phase being corrected respect to the seismic Nyquist frequency only. The phase error is
the phase difference of the nonstationary wavelet with respect to the well logging frequency
and the seismic Nyquist frequency. It can be calculated by knowing the Q values and
the well logging frequency, to serve as a phase correction operator in the Gabor domain,
which is equivalent to a time-variant residual drift time correction operator in the time
domain. Without knowledge of Q or the well logging frequency, the residual drift time can
be estimated by smooth dynamic time warping, which is more accurate than that estimated
by time-variant crosscorrelation. The Gabor deconvolved nonstationary trace with phase or
residual drift time correction ties the well reflectivity with little amplitude or phase errors.

GABOR TRANSFORM

Margrave and Lamoureux (2001) extends the stationary deconvolution theory to the
nonstationary case using the Gabor transform, which is essentially a windowed Fourier
transform. The forward Gabor transform decomposes a 1-D temporal signal s(t) onto a
2-D time-frequency spectrum by windowing the signal with a set of Gaussian functions
summing to unity and Fourier transforming:

ŝg(τ, f) =

∫ ∞
−∞

s(t)gσ(t− τ)e−2πift dt (1)

where gσ(t− τ) is a Gaussian function of standard width 2σ centered at time τ and ŝg(τ, f)
is the complex-valued Gabor spectrum of s(t). Given ŝg(τ, f), the inverse Gabor transform
recreates the signal via 2-D integration over the time-frequency plane:

s(t) =

∫ ∞
−∞

∫ ∞
−∞

ŝg(τ, f)e2πift dfdτ. (2)

Figure 1 shows the forward Gabor transform of the nonstationary trace using a set of
Gaussian windows with 100 ms half-width (σ) and 10 ms increment, every 10th of which
is plotted in the middle panel. The right panel is the magnitude of its Gabor spectrum,
showing that the nonstationary trace contains the greatest power at early times and low
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FIG. 1. The forward and inverse Gabor transform is demonstrated. The nonstationary trace after
forward and inverse Gabor transform is on top of the original trace (left). A set of selected Gaussian
windows used for the forward Gabor transform (middle). The Gabor magnitude spectrum of the
nonstationary trace (right).

frequencies and the rapid fluctuations are attributed to the reflectivity. The inverse Gabor
transform of the 2-D spectrum reconstructs the nonstationary trace, which is consistent
with the original one shown in the left panel.

Margrave and Lamoureux (2001) derived that the Gabor transform of the nonstationary
convolutional model (Margrave, 1998) can be approximated as

ŝg(τ, f) ≈ ŵ0(f)α(τ, f)r̂g(τ, f) (3)

where ŵ0(f) is the Fourier transform of the source wavelet w0(t) and r̂g(τ, f) is the Gabor
transform of the reflectivity r(t). The Fourier transform of the propagating wavelet is

ŵQ(τ, f) = ŵ0(f)α(τ, f). (4)

Therefore, Equation 3 can also be written as

ŝg(τ, f) ≈ ŵQ(f)r̂g(τ, f). (5)

Equation 5 shows that that within a single Gaussian window which is centered at time τ and
is narrow enough, the stationary convolutional model that the seismic trace can be modeled
by the stationary convolution of a seismic wavelet with the reflectivity (Sheriff and Geldart,
1995) is locally valid. Thus, in the frequency domain, the windowed trace is the product
of the nonstationary wavelet propagating to time τ and the windowed reflectivity. Figure
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FIG. 2. The magnitude of three components: the Fourier transform of the source wavelet duplicated
along the traveltime (left), the attenuation function represented on the time-frequency plane (middle)
and the Gabor spectrum of the reflectivity (right).

2 displays the magnitude of each component on the right hand side of Equation 3. The
source wavelet is a time-invariant function. The attenuation function consists of seamless
hyperbolic trajectories with the time and frequency axes as asymptotes. The reflectivity
varies rapidly in both time and frequency. Figure 3 left panel is the pointwise product of
those three components and it well approximates the Gabor magnitude spectrum of the
nonstationary trace shown in Figure 3 right panel, validating the nonstationary convolu-
tional model factorization in the Gabor domain. Figure 4 left panel shows the pointwise
product of the Gabor magnitude spectra of the source wavelet and the attenuation function
to form the Gabor magnitude spectrum of the propagating wavelet by Equation 4.

GABOR DECONVOLUTION

In analogy with the stationary deconvolution, estimating r̂g(τ, f) needs the spectral fac-
torization of ŝg(τ, f) into two unknown parts: the propagating wavelet and the reflectivity.
This can be solved based on the fact that |ŵQ(τ, f)| is relatively smooth compared to the
rapidly varying r̂g(τ, f). Thus, they can be estimated by a spectral smoothing process with-
out knowing or estimating Q values. Similar to the stationary deconvolution, the wavelet
design portion of Gabor deconvolution works on the amplitude spectra only and determines
the wavelet phase spectrum based on the minimum-phase assumption. Take the absolute
values of Equation 5:

|ŝg(τ, f)| ≈ |ŵQ(τ, f)||r̂g(τ, f)|. (6)

The simplest Gabor deconvolution algorithm estimates |ŵQ(τ, f)| by smoothing |ŝg(τ, f)|
via convolving it with a 2-D boxcar over τ and f
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FIG. 3. The pointwise product of the three magnitude spectra in Figure 2 (left) and the Gabor
magnitude spectrum of the nonstationary trace (right), which is the same as Figure 1 right panel.

FIG. 4. The Gabor magnitude spectra of the propagating wavelet (left), the estimated propagating
wavelet (middle) and the estimated reflectivity (right) by Gabor deconvolution.
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|ŵQ(τ, f)|est = |ŝg(τ, f)|. (7)

Since both the source wavelet and the attenuation function are assumed to be minimum-
phase, the phase of the nonstationary wavelet φwQ

(τ, f) at a constant time τ is also mini-
mum and is calculated by the Hilbert transform

φwQ
(τ, f) = − 1

π

∫ ∞
−∞

ln |ŵQ(τ, f̃)|est
f − f̃

df̃ . (8)

In the digital implementation, the integral must be calculated within the seismic frequency
band only

φwQ
(τ, f) = − 1

π

∫ fNY Q

−fNY Q

ln |ŵQ(τ, f̃)|est
f − f̃

df̃ . (9)

Next r̂g(τ, f) is estimated by dividing ŵQ(τ, f)est from ŝg(τ, f) and rest(t) is got by inverse
Gabor transforming r̂g(τ, f)est.

Figure 4 middle panel shows the Gabor magnitude spectrum of the estimated propa-
gating wavelet by convolving the Gabor magnitude spectrum of the nonstationary trace in
Figure 3 right panel with a 2-D boxcar of dimensions 0.2 s by 10 Hz. The estimate approx-
imates the known propagating wavelet in Figure 4 left panel. Figure 4 right panel shows
the Gabor magnitude spectrum of the estimated reflectivity by pointwise division of Figure
4 middle panel from Figure 3 right panel. It approximates the known reflectivity in Figure
2 right panel to achieve a strong broadband whitening.

After the inverse Gabor transform, the nonstationary trace after Gabor deconvolution
is shown in the time domain as the green curve in Figure 5. There is no such nonstation-
ary catastrophe (Margrave, 2013) as running stationary deconvolution on the nonstationary
trace and the reflectivity is well resolved. The amplitude spectra of its three sections are
plotted in Figure 6, showing the appropriate whitening of all the sections. Next, the am-
plitude of the Gabor deconvolved trace is balanced and its phase is rotated with respect to
the known reflectivity in the same time-variant way as the well tying procedure by the sta-
tionary deconvolution. In this case, the time-variant amplitude balancing changes little of
the deconvolved trace because the smoothing process does a kind of AGC (automatic gain
correction) and simultaneously gains the trace in time. Figure 5 shows the final estimate
in red on top of the known reflectivity in blue. It can be observed that they roughly tie in
amplitude and spectral content but not the phase and/or timing. The time-variant constant-
phase differences, crosscorrelation coefficient sequences and time shift sequences are also
shown in Figure 7 as a quality control. It can be seen that the results at every well-tying
step are similar to the case of running the stationary deconvolution. In conclusion, running
Gabor deconvolution on the nonstationary trace can get reflectivity estimate tying the well
reflectivity in amplitude and spectral content, but has phase errors which are more complex
than those can be solved by time-variant constant-phase rotation.
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FIG. 5. A procedure of tying the nonstationary trace to the known reflectivity (blue) by Gabor
deconvolution, time-variant amplitude balancing and time-variant constant-phase rotation.

FIG. 6. Amplitude spectra of the Gabor deconvolved seismic trace within different time ranges in
decibels.
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FIG. 7. The time-variant constant-phase differences between the known reflectivity and the Gabor
deconvolved trace before and after phase rotation (top). The time-variant crosscorrelation coef-
ficient sequences between the known reflectivity and the nonstationary trace, the Gabor decon-
volved trace after time-variant amplitude balancing, the Gabor deconvolved trace after time-variant
amplitude balancing and time-variant constant-phase rotation (middle). The time-variant time shift
sequences at which the coefficients are obtained (bottom).

PHASE CORRECTION OF GABOR DECONVOLUTION

To find out the reason for the residual phase after Gabor deconvolution, the propagating
wavelets estimated by Gabor deconvolution are investigated. Figure 8 shows the estimated
wavelets propagating to every 0.1 s in black, on top of which are the corresponding wavelets
embedded in the nonstationary trace in red. Since the spectral separation of the propagating
wavelets from the reflectivity is only determined to within a scale factor, the estimated
wavelets are overall scaled so that the maximum amplitude of the estimated wavelet at time
zero is equal to that of the known source wavelet for easy comparison. It can be observed
that the estimated wavelets have the correct relative amplitudes and waveforms (except for
those at early times suffering from the edge effects), but they appear progressively earlier
than the Q wavelets. Both the estimated and known wavelets propagating to four times: 0.3
s, 0.4 s, 0.5 s and 0.6 s are further studied in the frequency domain. Figure 9 compares their
normalized amplitude spectra, verifying that the smoothing process in Gabor deconvolution
estimates accurate amplitude spectra of the propagating wavelets. Figure 10 compares
their unwrapped phase spectra after their propagating times at the high frequency reference
velocity v0 being removed. It can be seen that the phase estimated by Gabor deconvolution
is insufficient compared to the Q wavelets.

The phase estimation errors result from the fact that the bandlimited Hilbert transform
must be used (Equation 9) instead of the analytic one (Equation 8). The calculated phase is
essentially with respect to the seismic Nyquist frequency fNY Q (Margrave et al., 2011)
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FIG. 8. Comparison of the propagating wavelets estimated by Gabor deconvolution and those
modeled by the Q matrix.

FIG. 9. Amplitude spectra of the wavelets propagating to four different times in Figure 8.
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FIG. 10. Phase spectra of the wavelets propagating to four different times in Figure 8.

φHwQ
(t, f) = φw0(f)− 2πft(1− 1

πQ
ln

f

fNY Q
) (10)

where φHwQ
(t, f) denotes the phase of the propagating wavelet at traveltime t estimated by

the digital Hilbert transform. Its phase delay is less than the actual phase at traveltime t
with respect to the well logging frequency fw

φwQ
(t, f) = φw0(f)− 2πft(1− 1

πQ
ln

f

fw
). (11)

The difference between φwQ
(t, f) and φHwQ

(t, f) is the residual phase remaining in the
Gabor deconvolved trace compared to the well reflectivity

∆φ(t, f) = φwQ
(t, f)− φHwQ

(t, f) =
2ft

Q
ln
fNY Q
fw

(12)

where ∆φ(t, f) denotes the residual phase and it varies with traveltime t. It can be no-
ticed from Equation 12 that the residual phase at a constant time t is a linear function of
frequency f , implying that ∆φ(t, f) essentially acts as a time shift operator in the time
domain, namely

∆φ(t, f) = −2πf∆drift(t). (13)

where ∆drift(t) is a time-variant time shift function and is called the residual drift time.
According to Equations 12 and 13
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FIG. 11. Comparison of the Q matrixes in gray built using the well logging frequency (left) and the
seismic Nyquist frequency (right) as the reference frequency respectively.

∆drift(t) =
t

πQ
ln

fw
fNY Q

. (14)

The residual drift time is the difference between the event time at the seismic Nyquist
frequency and at the sonic logging frequency after the difference between the dominant
seismic frequency and the Nyquist frequency being removed by Gabor deconvolution. In
the case of a time-invariant Q value, ∆drift(t) is a linear function of t. For a layered
medium where the average Q value varies with traveltime, ∆drift(t) takes on a more
complex form.

Figure 11 compares two Q matrixes, of which the only difference is the phases of their
Q wavelets. The Q wavelet phases in the left panel are constructed with respect to the
well logging frequency (Equation 11), while those in the right panel are with respect to the
seismic Nyquist frequency (Equation 10). Although both sets of the Q wavelets lag behind
the dashed blue diagonal by a progressively increasing amount, the right-hand set appears
less delayed than the left-hand set at the same traveltime. Four Q wavelets propagating
to 0.3 s, 0.4 s, 0.5 s and 0.6 s are taken from the Q matrix in Figure 11 right panel and
their phase spectra are plotted in dotted black on top of the corresponding panels in Figure
10 to generate Figure 12. The phase spectra of the propagating wavelets estimated by
Gabor deconvolution match those of the Q wavelets modeled with respect to the seismic
Nyquist frequency. These three sets of wavelets are plotted in the time domain in Figure
13, showing that the propagating wavelets estimated by Gabor deconvolution align those
of the Q wavelets modeled with respect to the seismic Nyquist frequency, but are earlier
than those modeled with respect to the well logging frequency. Their timing difference at
an individual propagating time is a residual drift time and is denoted by a blue brace.

The residual phase can be calculated by Equation 12 as long as the values of Q and fw
are known. Then the phase of the propagating wavelets estimated by Gabor deconvolution
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FIG. 12. Same as Figure 10 except that the phase spectra of the propagating wavelets modeled by
the Q matrix with respect to the seismic Nyquist frequency are plotted as well.

FIG. 13. The time-domain propagating wavelets at four different times estimated by Gabor decon-
volution, modeled by the Q matrixes with respect to the well logging frequency and the seismic
Nyquist frequency.
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FIG. 14. Same as Figure 12 except that the wavelets estimated by Gabor deconvolution are phase
corrected.

can be corrected by

φH,cwQ
(t, f) = φHwQ

(t, f) + ∆φ(t, f) (15)

where φH,cwQ
(t, f) is the corrected phase of the propagating wavelet at traveltime t. With the

known values of Q=50 and fw=12.5 kHz, the phase spectra after correction are calculated
and are plotted in bold gray in Figure 14. They are seen to match those of the Q wavelets
with respect to the well logging frequency. These three sets of wavelets in Figure 14 are
plotted in the time domain in Figure 15, showing that phase correction delays the estimated
wavelets by the amount of the corresponding residual drift time to align them with the
Q wavelets with respect to the well logging frequency. Similarly, Figure 16 shows the
estimated wavelets after phase correction propagating to every 0.1 s in black, the timing of
which is consistent with that of the corresponding wavelets embedded in the nonstationary
trace in red.

Deconvolving the estimated wavelets with the corrected phases from the nonstation-
ary seismic trace, the estimated reflectivity is shown to be much better tied to the well
reflectivity than that without phase correction in Figure 17. Next, the amplitude of the
phase corrected reflectivity estimate is balanced and its phase is rotated with respect to
the known reflectivity in the same time-variant way as before. It can be observed from
Figure 17 that time-variant amplitude balancing and time-variant constant-phase rotation
do little change to the phase corrected reflectivity estimate. As a quality control, Figure 18
shows that phase correction reduces both the time-variant constant-phase difference and the
time-variant time shift to zero, and enhances the time-variant crosscorrelation coefficient
between the estimated and known reflectivities. It can be concluded that running Gabor
deconvolution on the nonstationary trace removes the propagating wavelet phase delay to
the seismic Nyquist frequency only. By correcting the estimated wavelet phase to the well
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FIG. 15. Same as Figure 13 except that the wavelets estimated by Gabor deconvolution are phase
corrected.

FIG. 16. Comparison of the propagating wavelets estimated by Gabor deconvolution with phase
correction and those modeled by the Q matrix with respect to the well logging frequency.
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FIG. 17. A procedure of tying the nonstationary trace to the known reflectivity (blue) by Gabor
deconvolution, phase correction, time-variant amplitude balancing and time-variant constant-phase
rotation.

logging frequency, the Gabor deconvolved trace can be well tied to the known reflectivity
with very little amplitude and phase errors.

RESIDUAL DRIFT TIME ESTIMATION AFTER GABOR DECONVOLUTION

As can be seen from Equation 13 that applying phase correction in the Gabor domain
is equivalent to applying a time-variant residual drift time correction in the time domain.
Figure 19 displays that the Gabor deconvolved trace is precisely tied to the well reflectivity
after its timing is corrected by the residual drift time, which is calculated using the known
values of Q as well as the well logging frequency via Equation 14 and is plotted in solid
gray in Figure 20 top panel. With a time-invariant Q value, the theoretical residual drift
time in this case is a linear function of traveltime t.

Although Gabor deconvolution with either phase correction or residual drift time cor-
rection can tie the nonstationary seismic trace to the well reflectivity accurately, neither of
them works without knowledge of Q or the well logging frequency. Without this informa-
tion, time-variant crosscorrelation and smooth dynamic time warping (Cui and Margrave,
2014, 2015) are tested to estimate the residual time-variant drift time by matching the Gabor
deconvolved seismic trace to the well reflectivity statistically. Figure 20 top panel shows
the residual drift time estimated by TVCC in solid blue using a sliding Gaussian window
with 200 ms half-width and 10 ms increment, which approximates the known trend but
with major discontinuities. The residual drift time estimated by SDTW is plotted in dotted
red using a coarse sampling interval h equals 200 samples (namely 0.4 s) and it estimates
the known residual drift time perfectly. The timing of the Gabor deconvolved seismic trace
is corrected by the estimated residual drift time with each method and is compared to the
well reflectivity respectively in Figure 19. It can be observed that the Gabor deconvolved
trace corrected by TVCC has obvious misties (indicated by yellow boxes), where the es-
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FIG. 18. The time-variant constant-phase differences (top), the time-variant crosscorrelation co-
efficient sequences (middle) and the time-variant time shift sequences at which the coefficients
are obtained (bottom) between the known reflectivity and the Gabor deconvolved trace, the Ga-
bor deconvolved trace after phase correction, the Gabor deconvolved trace after phase correction,
time-variant amplitude balancing and time-variant constant-phase rotation.

timated residual drift time has discontinuities. In contrast, the Gabor deconvolved trace
corrected by SDTW is well tied to the known reflectivity. As a quality control, the time-
variant crosscorrelation coefficient sequences between the well reflectivity and the Gabor
deconvolved traces with different residual drift time corrections in Figure 19 are calculated
and are plotted in Figure 20 bottom panel, from which we see that the Gabor deconvolved
trace corrected by the SDTW estimated residual drift time ties to the well reflectivity as
well as that corrected by the known residual drift time and is better than that corrected by
the TVCC estimated residual drift time.

CONCLUSIONS

Running Gabor deconvolution on the nonstationary trace can get reflectivity estimate
tying the well reflectivity in amplitude and spectral content, but has phase errors which
are more complex than those can be solved by time-variant constant-phase rotation. Ga-
bor deconvolution accurately estimates the amplitude spectra of the propagating wavelets.
However, it calculates the phase spectra of the propagating wavelets by the digital Hilbert
transform, which integrates within the seismic frequency band and corrects the drift time
to the Nyquist frequency only.

By correcting the estimated wavelet phase to the well logging frequency, the Gabor
deconvolved trace can be well tied to the known reflectivity with very little amplitude and
phase errors. Gabor deconvolution with either phase correction or residual drift time cor-
rection can tie the nonstationary seismic trace to the well reflectivity accurately knowing
the Q values and the well logging frequency. Smooth dynamic time warping can estimate
the residual drift time without knowledge of Q or the well logging frequency, and the esti-
mation is more accurate than time-variant crosscorrelation.
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FIG. 19. The Gabor deconvolved trace corrected by the known residual drift time, the residual
drift time estimated by time-variant crosscorrelation and the residual drift time estimated by smooth
dynamic time warping compared to the well reflectivity (blue) separately.

FIG. 20. Residual drift time after Gabor deconvolution: the known function, time-variant crosscorre-
lation estimate and smooth dynamic time warping estimate (top). Time-variant time shift sequences
between the known reflectivity and the Gabor deconvolved trace corrected by the known residual
drift time, corrected by the residual drift time estimated by time-variant crosscorrelation and cor-
rected by the residual drift time estimated by smooth dynamic time warping (bottom).
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