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Finite difference methods for orthorhombic media: perfectly 
reflecting and absorbing boundaries  

P.F. Daley 

ABSTRACT 
An approach for the numerical solution of the forward problem for elastic wave 

propagation in a plane layered anisotropic (orthorhombic) elastic media is revisited. The 
introduction of an absorbing boundary at the model bottom is considered in this report. 
These boundary conditions are similar to those derived in Clayton and Engquist (1977). 
The stiffness coefficients (in Voigt notation), ijC and the density, ρ , may vary arbitrarily 
with depth. The method discussed here employs finite Fourier transforms to temporarily 
remove the x  and y coordinates resulting in a coupled system of three finite difference 
equations in the 3 Cartesian coordinate particle displacements in terms of depth ( )z   and 

time ( )t . The return to the ( ), , ,x y z t domain is done using a double inverse summation 

over the two horizontal wave numbers ( ),x yk k .  The absorbing boundary conditions are 
only considered for the model bottom as there are alternate methods for the free surface 
and side boundaries. The full elastic equations are not used at the model bottom, but 
rather their scalar approximations. This may appear highly suspect, but reasonable results 
have been obtained for less complex media types and it was thought that it should at least 
be investigated for this case. 

INTRODUCTION 
In both theory and in numerical methods of solution of the forward problem 

difficulties arising are not to a large extent connected with a type of the given equations 
but to a larger extent with media dimension and the complexity of the properties of 
coefficients defining the media. Different physical effects when simulating elastic wave 
fields in seismology and seismic prospecting, which are not described by the acoustic 
wave equation, are obtained in this modeling procedure. Such effects should in reality be 
taken into account. 

The finite difference method is a popular approach for solving elastic wave equations. 
However, in seismic problems where very large computation domains are considered, the 
use of the conventional numerical methods is limited by high computer costs and 
insufficient accuracy of these methods. This situation makes us focus on the development 
of an efficient numerical process which allows for the solution of 3D  seismic problems. 

This work describes a numerical algorithm for the forward seismic problem and has 
been presented in more detail in earlier reports. The main concept underlying the 
algorithm is the splitting of 3D problems to a series of coupled 1D  problems in the 
( ), , ,x yk k z t  domain and their solution is then obtained sequentially using the finite 
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difference technique followed by  finite inverse summations in the wave number domain, 
( ),x yk k  

Depending on the behavior of coefficient variation, the algorithm may take on 
numerous forms. The version of the algorithm used here is based on a combination of 
finite Fourier integral transforms over the ( ),x y  spatial coordinates with the finite 

difference techniques for solving the resulting 1D  problems in the ( ),z t domain. The 
algorithm was suggested and developed in Mikhailenko (1985). Due to some typographic 
errors in that work, the relevant formulae required are once more given here. 

In what follows, Lamb's problem for the anisotropic (orthorhombic) vertically 
inhomogeneous half-space with no dependence of the stiffness coefficients, ijC , and 

density, ρ , on the horizontal ( ),x y  coordinates. They may vary arbitrarily with depth 

( )z . Elastic wave propagation in such a medium is described by equations given in the 
next section. 

THEORY 
In a plane layered orthorhombic medium with no lateral inhomogeneities the particle 

displacement may be specified in a Cartesian coordinate system, ( ), ,x y z , as ( ), ,u v w=u , 

where the vector components of displacement ( ), ,u v w  are the solutions of the coupled 
equations 

 

( )

( )

2 2 2 2 2

11 13 66 12 662 2 2

55 55 , , ,x

u u w u vC C C C C
t x x z y x y

u wC C F x y z t
z z z x

ρ ∂ ∂ ∂ ∂ ∂
= + + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂   + +   ∂ ∂ ∂ ∂     (1) 

 
( )

2 2 2 2 2 2

66 66 12 22 232 2 2

44 44 , , ,y

v u v u v wC C C C C
t x y x x y y y z

v wC C F x y z t
z z z y

ρ
 ∂ ∂ ∂ ∂ ∂ ∂

= + + + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂  + +  ∂ ∂ ∂ ∂     (2) 
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( )

2 2 2 2 2

55 55 44 442 2 2

13 23 33 , , ,z

w u w v wC C C C
t x z x y z y

u v wC C C F x y z t
z x z y z z

ρ ∂ ∂ ∂ ∂ ∂
= + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂

 ∂ ∂ ∂ ∂ ∂ ∂   + + +    ∂ ∂ ∂ ∂ ∂ ∂      (3) 

In the above equations, the ijC are the 9 stiffness coefficients which define an 
orthorhombic medium (Schoenberg and Helbig 1997). The related quantities ij ijA C ρ=
have the dimensions of velocity squared.  The volume density is ρ  and 
( ) ( ), , , , ,x y zx y z t F F F=F  is some source term. 

The (stress free) boundary conditions at the free surface are specified by 

 13 23 330
0zz z

u v wC C C
x y z

τ
=

∂ ∂ ∂
= + + =

∂ ∂ ∂
 (4) 

 550
0xz z

w uC
x z

τ
=

∂ ∂ = + = ∂ ∂ 
 (5) 

 440
0yz z

v wC
z y

τ
=

 ∂ ∂
= + = ∂ ∂ 

 (6) 

and the problem is solved with zero initial data: 

 
0 0 0

0 0 0

0
t t t

t t t

u v wu v w
t t t= = =

= = =

∂ ∂ ∂
= = = = = =
∂ ∂ ∂

 (7) 

As previously mentioned, the medium has been chosen such that it is composed of  
plane parallel layers where the elastic parameters, stiffnesses and density ( )andijC ρ , do 
not vary in the horizontal directions but as previously mentioned may vary in an arbitrary 
manner with depth ( )z .  As a consequence the ( )andx y  coordinates may be temporarily 
removed using finite Fourier transforms. The two dimensional finite Fourier transforms 
and inverses for the three components of displacement are defined as (Sneddon, 1995) 

 ( ) ( )
0 0

, , , , , , cos sin
a b m y n xS z n m t dx dy u z x y t

b a
π π   =    

   ∫ ∫  (8) 

 ( ) ( )
0 0

4, , , , , , cos sin
n m

m y n xu z x y t S z n m t
ab b a

π π∞ ∞

= =

   =    
   

∑ ∑  (9) 
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 ( ) ( )
0 0

, , , , , , sin cos
a b m y n xH z n m t dx dy v z x y t

b a
π π   =    

   ∫ ∫  (10) 

 ( ) ( )
0 0

4, , , , , , sin cos
n m

m y n xv z x y t H z n m t
ab b a

π π∞ ∞

= =

   =    
   

∑ ∑  (11) 

 ( ) ( )
0 0

, , , , , , cos cos
a b m y n xR z n m t dx dy w z x y t

b a
π π   =    

   ∫ ∫  (12) 

 ( ) ( )
0 0

4, , , , , , cos cos
n m

m y n xw z x y t R z n m t
ab b a

π π∞ ∞

= =

   =    
   

∑ ∑  (13) 

After applying the finite forward transforms given above to equations (1) – (3) the 
following result 

 
( )

( ) ( )

2
2 2

11 13 66 12 662

55 55 , , ,

x x y x y

x x x y

S Rk C S k C k C S k k C C H
t z

SC k C R F k k z t
z z z

ρ ∂ ∂
= − − − − + +

∂ ∂
∂ ∂ ∂  − + ∂ ∂ ∂ 

 (14) 

 
( )

( ) ( )

2
2 2

66 66 12 22 232

44 44 , , ,

x y x x y y y

y y x y

H Rk k C S k C H k k C S k C H k C
t z

HC k C R F k k z t
z z z

ρ ∂ ∂
= − − − − − +

∂ ∂
∂ ∂ ∂  − + ∂ ∂ ∂ 

 (15) 

 
( )

( ) ( ) ( )

2
2 2

55 44 44 552

13 23 33 , , ,

x y y x

x y z x y

R S Hk C k C k C k C R
t z z

Rk C S k C H C F k k z t
z z z z

ρ ∂ ∂ ∂
= + − + +

∂ ∂ ∂
∂ ∂ ∂ ∂ + + + ∂ ∂ ∂ ∂ 

 (16) 

where it is to be remembered that it has been assumed that the stiffnesses do not depend 
on the horizontal ( )andx y  coordinates. It will initially be assumed that the pseudo – 

boundaries introduced at ( ),x a y b= = are perfectly reflecting. 

The transformed boundary conditions at the free surface are: 

1. Normal Stress: 

 13 23 330
0zz x yz

Rk C S k C H C
z

τ
=

∂
= + + =

∂
 (17) 

2. Shear Stress, xzτ : 
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 ( )550
, , , 0xz xz

SC k R z n m t
z

τ
=

∂ = − = ∂ 
 (18) 

3. Shear Stress, yzτ : 

 440
0yz yz

HC k R
z

τ
=

∂ = − = ∂ 
 (19) 

The grid spacing in depth is z∆ . The problem is solved with zero initial data so that 

 
0 0 0

0 0 0

0
t t t

t t t

S H RS H R
t t t= = =

= = =

∂ ∂ ∂
= = = = = =
∂ ∂ ∂

 (20) 

 
It will be assumed that at the first 3 grid points at the free surface the ij ijA C ρ= and 

volume density ( )ρ  are independent of the z  spatial coordinate. Thus equations (14) – 
(16) may be written in this region as 

 
( ) ( ) ( )

2
2 2

12 66 11 66 13 552

2

55 2

x y y y x
S Rk k A A H k A k A S k A A

t z
SA

z

∂ ∂
= − + − + − + +

∂ ∂
∂
∂

 (21) 

 

 

( ) ( ) ( )
2

2 2
12 66 22 66 23 442

2

44 2

x y y x y
H Rk k A A S k A k A H k A A
t z

HA
z

∂ ∂
= − + − + − + +

∂ ∂
∂
∂  (22) 

 

 
( ) ( ) ( )

2
2 2

13 55 23 44 55 442

2

33 2

x y x y
R S Hk A A k A A k A k A R

t z z
RA

z

∂ ∂ ∂
= + + + − + +

∂ ∂ ∂
∂

+
∂

 (23) 

 
Employing equations (19), (22) and (25) the finite difference analogues of the above 
equations have the form, with z∆ the spatial depth step and t∆ the time step, 

At an interior point, where the stiffnesses and density may depend on the spatial 
coordinate z  the finite difference analogues have a more complex form These may be 
found in an earlier report on this topic. The source term has not been included, however, 
once a source type has been decided upon the vector components of it may be added. 

 



Daley   

6  CREWES Research Report — Volume 27 (2015)   
 

ABSORBING BOUNDARY AT MODEL BOTTOM 
 

Paraxial approximations for the elastic wave equation analogous to those of the scalar 
wave equation can also be found. We cannot, however, perform the analysis by 
considering expansions of the dispersion relation because the differential equations for 
vector fields are not uniquely specified from their dispersion relations. Instead, we use 
the scalar case to provide a hint as to the general form of the paraxial approximation and 
fit the coefficients by matching to the full elastic wave equation. Or as a reasonable 
alternative, use the 3 scalar wave equations that result from requiring that all off terms in 
the 3 vector coupled wave equations are set equal to zero.  These three resulting scalar 
equations may be written as 

    ( )
2 2

2 2
11 66 552 2x y

S Sk A k A S A
t z

∂ ∂
= − + +

∂ ∂
   (24) 

    ( )
2 2

2 2
22 66 442 2y x

H Hk A k A H A
t z

∂ ∂
= − + +

∂ ∂
  (25) 

    ( )
2 2

2 2
44 55 332 2y x

R Rk A k A R A
t z

∂ ∂
= − + +

∂ ∂
   (26) 

Assume a plane wave solution of the form: 

    ( ) ( )exp , ,zQ i t ik z Q S H Rω= − + =  .  (27) 

The pseudo-differential operators required will be defined as 

 ( ) ( )and zi ik
t z

ω ∂ ∂
− → →

∂ ∂
. (28) 

Consider equation (24) as an example and introduce the plane wave solution, equation 

(27) to obtain 

    ( ) ( )2 22 2
11 66 55x y zi S k A S k A S A ik Sω− = − − + .  (29) 

Under the assumption that 0S ≠ , the requirement that 

    ( )
( ) ( ) ( )

2 22
6611

2 2 2
55

1 1 yz x k Aik k A
Ai i iω ω ω

 
= + + 

 − − − 
   (30) 
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must be valid, so that a paraxial approximation to the scalar type wave equation has the 

form 

    ( )
( ) ( ) ( )

1 2
22

6611
2 2

55

1 1 yz x k Aik k A
i A i iω ω ω

 
= ± + + 

 − − − 
.  (31) 

where the " "± refer to down going and up going waves, respectively. If the combined 

absolute values of the non-unity parts of the radicals on the RHS of equation (31) can be 

shown to be much less than one, the following paraxial approximation is obtained 

 

    ( )
( ) ( ) ( )

22
6611

2 2
55

1 1
2 2

yz x k Aik k A
i A i iω ω ω

 
≈ ± + + 

 − − − 
.  (32) 

From this equation it follows that 

    ( )( ) ( )
22

2 6611

55 55 55

1
2 2

yx
z

k Ak Aik i i
A A A

ω ω
 

− ≈ ± − + +  
 

. (33) 

Reintroducing the pseudo-differential operators leads to 

    
222 2

6611
2

55 55 55

1 0
2 2

yx k Ak AS S S S
z t tA A A
∂ ∂

+ + + =
∂ ∂ ∂

  (34) 

In a similar manner the parabolic approximations for the scalar type wave equations in 

and H S may be written as 

    
2 22 2

22 66
2

44 44 44

1 0
2 2

y xk A k AH H H H
z t tA A A
∂ ∂

+ + + =
∂ ∂ ∂

 (35) 

and 

    
2 22 2

44 55
2

33 33 33

1 0
2 2

y xk A k AR R R R
z t tA A A
∂ ∂

+ + + =
∂ ∂ ∂

  (36) 
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Finite difference analogues for upward propagating waves at Kz z=  (model bottom), 
which requires that the grid point at 1Kz z −=  be included, and are consistent with those 
presented in Clayton and Engquist (1977) will now be given. In the following equations, 
the superscripts refer to the time point and the subscripts to the z grid point n

KS . The 
superscripts 1, and 1n n n+ − refer to the current time point and the two previous time 
points ( ) ( )( ), 1n t n t∆ − ∆ . 

 

( ) ( )

( )

1 1 1 1
1 1

55

1 1 1 1 111
1 1 1 1

55 55

1 166
1

55

1

2 2

n n n n
K K K K

n n n n n n n
K K K K K K K

n n
K K

z S S S S
A t

z tAz S S S S S S S
A t A

z tA S S
A

+ + − −
− −

− + − − +
− − − −

− +
−

  ∆ + = + − +   ∆  
   ∆ ∆∆

− − + − − + −      ∆   
 ∆ ∆

+  
   (37) 

 ( ) ( )

( )

1 1 1 1
1 1

44

1 1 1 1 166
1 1 1 1

44 44

1 122
1

44

1

2 2

n n n n
K K K K

n n n n n n n
K K K K K K K

n n
K K

z H H H H
A t

z tAz H H H H H H H
A t A

z tA H H
A

+ + − −
− −

− + − − +
− − − −

− +
−

  ∆
 + = + − +   ∆  
   ∆ ∆∆

− − + − − + −      ∆   
 ∆ ∆

+  
 

(38) 

 ( ) ( )

( )

1 1 1 1
1 1

33

1 1 1 1 155
1 1 1 1

33 33

1 122
1

33

1

2 2

n n n n
K K K K

n n n n n n n
K K K K K K K

n n
K K

z R R R R
A t

z tAz R R R R R R R
A t A

z tA R R
A

+ + − −
− −

− + − − +
− − − −

− +
−

  ∆ + = + − +   ∆  
   ∆ ∆∆

− − + − − + −      ∆   
 ∆ ∆

+  
 

 (39) 

NUMERICAL RESULTS 
Before addressing the problem of spurious arrivals at the model bottom, those which 

may occur from the improper specifications of the perfectly reflecting boundaries in the 

lateral ( ),x y  plane should be investigated. These can cause numerical accuracy problems 
at least as bad as those from the finite depth boundary. The model used for this numerical 
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experiment is given in Table 1, two layers over a halfspace. The layer thickness of the 
isotropic surface layer is 0.25km and the second, orthorhombic layer, is 0.5km .The 
halfspace has the same medium parameters as the surface layer. A vertical point force 
source is located at the surface, as are the receivers. The receivers are placed in a circle, 
every 2degrees around the source at an offset of 0.5km.Vertical, inline and crossline 
(xline) components of displacement are computed.  Synthetics are first computed for a 
case where the two perfectly reflecting boundaries are placed at a lateral distance where it 
assured that they will introduce unwanted arrivals. The numerical experiment is then 

repeated with the pseudo boundaries at ( ),x b y c= = placed at distances where unwanted 
reflected arrivals from them should not appear in the synthetics. In both cases, the 
equations derived in the previous section were implemented, so it is assumed 
(euphemistically) that spurious reflections from the model bottom are not present in 
these. The results from this numerical experiment are shown in Figures (1) through (3) 
for the model defined in Table 1 and earlier in this paragraph. 

In the second set of numerical experiments surface source and receivers placed along a 
line at 30 degrees with respect to the x axis. The same model as was used in the first 
modeling experiment and given in Table 1 was used. Fifty receivers were placed at the 
surface with a spacing of 0.01km .The perfectly reflecting boundaries in the lateral 
directions have been placed such that cannot contribute unwanted arrivals. This is 
enhanced by using only half the normal offset range that should be able to be 
accommodated by the geometry of this model. The vertical, inline and xline components 
of particle displacement are shown before and after model boundary corrections in 
Figures (4) through (6).  

DISCUSSION AND CONCLUSIONS 
Finite difference analogues, accurate to second order in space and time, for a plane 

parallel orthorhombic ( )3D  media in which dependence on the horizontal Cartesian 
coordinates have been removed by finite Fourier transforms have been presented. For the 
type of elastic medium discussed here, the simplest source type to incorporate is a 
vertical point source located the origin of the Cartesian system so that 
( ) ( ) ( ), , , zF z x y t z f tδ= e  where ze is a unit vector in the z  direction and ( )f t  is the 

time dependence of the source wavelet. This wavelet is most often assumed to be band 
limited, as the range of its power spectrum in the frequency domain is linearly related to 
the number of terms required to approximate the two infinite Fourier series summations. 
The particle displacement may be recovered by applying inverse series summations, also 
specified above. Absorbing boundary conditions where introduced at the model bottom 
and appear to properly correct for spurious reflections when compared to a method of 
computation that is known to remove these unwanted arrivals. This consists of setting the 
model bottom so far out of range that reflections from it could not be recorded withinin 
the time window specified. This approach is computationally intensive and not 
recommended for use in practice. All computations were carried out on a “vintage” 
Lenovo laptop with 24G of memory.  
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Layer A11 A22 A33 A44 A55 A66 A12 A13 A23 
1 8.0 8.0 8.0 2.5 2.5 2.5 3.0 3.0 3.0 
2 9.9 6.023 7.093 1.964 2.448 2.438 1.926 2.074 2.225 
Hspace 8.0 8.0 8.0 2.5 2.5 2.5 3.0 3.0 3.0 

 
Table 1. The model used in the computation of synthetics in this report. The Aij have the dimensions of 

(velocity)2. The surface layer and halfspace are assumed to be isotropic while the layer between 
them is orthorhombic. 
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Fig.1. Vertical component of displacement. In the top panel the perfectly reflecting pseudo-
boundaries have been placed at distances where they will definitely produce unwanted arrivals 
during the time length of the synthetic. In the bottom panel these boundaries have been moved to 
distances where they cannot introduced unwanted reflected arrivals. 
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Fig.2. Inline component of displacement. In the top panel the perfectly reflecting pseudo-
boundaries have been placed at distances where they will definitely produce unwanted arrivals 
during the time length of the synthetic. In the bottom panel these boundaries have been moved to 
distances where they cannot introduced unwanted reflected arrivals. 
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Fig.3. Xline component of displacement. Vertical component of displacement. In the top panel the 
perfectly reflecting pseudo-boundaries have been placed at distances where they will definitely 
produce unwanted arrivals during the time length of the synthetic. In the bottom panel these 
boundaries have been moved to distances where they cannot introduced unwanted reflected 
arrivals. 
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Fig. 4. Vertical component of displacement for the offset case. The top has no corrections made 
to remove spurious reflected arrivals from the model pseudo – bottom. In the lower panel these 
corrections have been made using the scalar wave approximations to the three components of 
particle displacement. 

Vertical Component 
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Fig. 5. Inline component of displacement for the offset case. The top has no corrections made to 
remove spurious reflected arrivals from the model pseudo – bottom. In the lower panel these 
corrections have been made using the scalar wave approximations to the three components of 
particle displacement. 

Inline Component 



Daley   

16  CREWES Research Report — Volume 27 (2015)   
 

 

 
Fig. 6. Xline component of displacement for the offset case. The top has no corrections made to 
remove spurious reflected arrivals from the model pseudo – bottom. In the lower panel these 
corrections have been made using the scalar wave approximations to the three components of 
particle displacement. 
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