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Inversion of quasi-compressional ray travel time data for anisotropic 
parameters in a TI Medium using phase velocities 

P.F. Daley 

ABSTRACT 

Problems are encountered during the course of one’s research on related topics. These are put 
on a list with promises made that one day, they will be revisited. The one discussed here was put 
on such a list four decades ago. It was visited a number of times during that time. However, there 
was always the problem of being unable rederive the results presented in the paper. The specific 
work dealt with in this report is: [Section (4.3) Computation of the Coefficients of Elasticity, 
Using the w Surface (Gassmann, 1964)]. As noted in the title, using ray travel times (the w 
surface) the phase velocity is used to invert for the anisotropic parameters in a transversely 
isotropic (TI) medium. The exact phase velocities may be used to this end, given that the 
measured ray travel times have been acquired with reasonable accuracy. Apart from the exact 
phase velocities, the problem is set up so that approximate and linearized forms of the phase 
velocity may also be used. It should be further mentioned that the author is now able to derive 
the equations in the abovementioned section of the paper. As this is a fairly complex and 
lengthily undertaking, it will not be included here. A proper resolution with the formulae in the 
above paper was achieved. Consequently the equations given in that paper will be used in a 
moderately modified form. Only P-wave travel times are considered, as the qP and qSV wave 
fronts are coupled so that the anisotropic medium parameters for both may be obtained using 
only P-wave data. 

INTRODUCTION 

The medium of interest will initially be assumed to be a transversely isotropic (TI) 
homogeneous halfspace with the axis of anisotropy aligned with the model coordinates      
(Figure 1). A medium where the axis of anisotropy ( )zη  is rotated with respect to the model 
axes, as shown in Figure (2) is often easier to deal with as both 11A and 33A may be obtained from 
ray travel times at the receiver locations. The medium is homogeneous so that the rays are 
straight line paths from the source(s) to the receiver(s). The receivers are located at the surface of 
the halfspace in the meridional ( )1 3,x x plane. The source(s) are also situated in the meridional 

( )1 3,x x plane in a vertical borehole so that the source and receivers are in the same plane. It will 
be further assumed that there are a “sufficient” number of rays from the source(s) to the receivers 
to satisfy requirements to obtain a solution for the inversion of travel time data for the 
anisotropic parameters of the medium within the context of the method employed.  

The inverse problem for the above described medium type and geometry, the problem may be 
stated in the following manner. Given the group velocities (ray travel times), both magnitude and 
direction, from a “sufficient” set of sources and receivers, invert the data for the anisotropic  
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Fig. 1. Schematic of a situation where only the parameter 33A may be obtained from ray travel time 
measurements at the surface receivers. 

parameters of the medium. The exact expression for the anisotropic phase velocity is employed 
in the inversion. Using a moderate anisotropic approximation or the linearized form of the phase 
velocity reduces the complexity; however, use of the exact expression is not overly cumbersome. 
It is required to solve for the ijA that describe the medium from input data consisting of phase 
velocity travel times measured at specific angles, initially using the ray arrival times. It is 
assumed that the “coverage” of the input data is sufficient for this task. 

THEORY 

 The method derived for the determination of anisotropic parameters employs the phase or 
wave front normal velocity as its basis. In practice, given a buried source and receiver located at 
the surface plane in a homogeneous halfspace, what is measured is the travel time along the ray 
that transports energy from the source to the receiver. As the medium is assumed to be 
homogeneous the ray is a straight line path. Energy propagates along the ray with what is known 
as group or ray velocity. In general, the phase and group velocities are not the same for some 
given ray angles, rayφ . There is, however, a one to one mapping of the ray angle to some phase 
angle phaseθ .  

Before proceeding further some definitions of a number of quantities related to wave 
propagation in a general anisotropic media should be presented. (All presented in the Appendix 
together with other useful vector formulae). The ray or group velocity along which energy 
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propagates from one point to another in a medium is denoted in a Cartesian system as 
( ) ( )1 2 3, ,w w wϕ =w , with i iw dx dt=  being the group velocity component in the ( ), 1,2,3ie i =   

 

Fig. 2. Schematic of a geometry where the parameters 11A and 33A may be obtained from ray travel time 
measurements at the surface receivers. 

direction, ( )1 2 31, , ,e e e⋅ = =e e e , and φ  is the ray angle. The loci of points taken at some equal 
time interval from the time origin, 0 0t = , due to a disturbance at some point in the half space 
that causes a disturbance to propagate, is called the ray surface or wave front. In a 3D isotropic 
homogeneous medium, the wave front is a sphere. The same is not true in an anisotropic 
medium. The phase or wave front normal velocity associated with a particular ray is in the 
direction of the normal to the ray surface or wave front at the point where the ray comes in 
contact with the wave front (Figure 1). The magnitude of the phase velocity will be discussed 
after some other quantities are introduced and defined in the Appendix. 

The exact eikonal for quasi-compressional ( )qP  wave propagation in a (rotationally invariant 
about zη ) T.I. medium that is assumed to be homogeneous is (Gassmann, 1964) 

 ( ) ( )2 2 2 2
1 3 11 1 33 3

1 4 1
,

2
D

qP

A
G q q A q A q

α ε+ −
= + +  (1) 

where 1q  and 3q  are the radial (horizontal) and vertical components of the slowness vector,  
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 ( ) ( )1 3 1 3,0, ,q q q q= =q  (2) 

in a Cartesian system, defined relative to the unit vector, zη . The above quantities in (1) are 
specified by 

 
2 2
1 3
2

D
D

A q q
Aα

ε =  (3) 

 ( ) ( )2 2
11 55 1 33 55 3A A A q A A qα = − + −  (4) 

and 

 ( ) ( )( )2
13 55 11 55 33 55DA A A A A A A= + − − − . (5) 

 
 
 

 
Fig. 3. Phase and group velocity surfaces in the 13-plane for Olivine. 

 

The moderate anisotropic approximation (Schoenberg and Helbig, 1996) to the eikonal equation 
is obtained as 
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 ( ) ( ) ( )
2 2
1 3

1 4 1 1 2 1
1

2 2
D D D

D D

A A A q qA
A

α α
α

α

ε ε
ε ε

+ − + −
≈ = = <<  (6) 

 ( ) ( )
2 2

2 2 2 2 1 3
1 3 11 1 33 3,app D

qP
A q qG q q A q A q

Aα

≈ + + . (7) 

For completeness, the linearized form of (1) may be written as 

   

 ( ) ( ) ( )
2 2

2 2 2 2 13 1 3
1 3 11 1 33 3 2 2

1 3

,lin
P

E q qG q q A q A q
q q

≈ + +
+

. (8) 

where 

   
 ( ) ( )13 13 55 11 332 2E A A A A= + − + . (9) 

From the theory of characteristics, given some initial conditionals on the slowness vector, 
( )0 0t=q q  and the position vector ( )0 0t=x x , with t  being time, the following initial value 

problems for the characteristics (rays) are obtained (Courant and Hilbert, 1962; Červený, 1972) 

Exact: 

 

( )

( ) ( )( )( )

( ) ( )( )

1 1
11 55

1

2 2 2
11 55 1 33 55 3 11 55 3

1 222 2 2 2
11 55 1 33 55 3 1 3

1
2 2

2

4

P

D

D

dx G p A A
dt p

A A p A A p A A A p

A A p A A p A p p

∂
= = + +∂


 − + − − +  


  − + − +   

 (10) 

 

( )

( ) ( )( )( )

( ) ( )( )

3 3
33 55

3

2 2 2
11 55 1 33 55 3 33 55 1

1 222 2 2 2
11 55 1 33 55 3 1 3

1
2 2

2

4

P

D

D

dx pG A A
dt p

A A p A A p A A A p

A A p A A p A p p

∂
= = + +∂


 − + − − +  


  − + − +   

 (11) 

 1

1

1 0
2

Pdq G
dt x

∂
= − =

∂
 (12) 

 3

3

1 0
2

Pdq G
dt x

∂
= − =

∂
 (13) 

 
Moderate anisotropy: 
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( ) ( )4.

3 33 551
1 11 2

1

1
2

app
DP A q A Adx G q A

dt q Aα

 −∂
= = + ∂  

 (14) 

 
( ) ( )4.

1 11 553
3 33 2

3

1
2

app
DP A q A Adx G q A

dt q Aα

 −∂
= = + ∂  

 (15) 

 

 
( ).

1

1

1 0
2

app
Pdq G

dt x
∂

= − =
∂

 (16) 

 

 
( ).

3

3

1 0
2

app
Pdq G

dt x
∂

= − =
∂

 (17) 

 
Linearized: 

 
( )

( )
. 4

13 31
1 11 22 2

1 1 3

1
2

lin
P E qdx G q A

dt q q q

 ∂  = = +
 ∂ + 

 (18) 

 
( )

( )
. 4

3 13 1
3 33 22 2

3 1 3

1
2

lin
Pdx E qG q A

dt q q q

 ∂  = = +
 ∂ + 

 (19) 

 
( ).

1

1

1 0
2

lin
Pdq G

dt x
∂

= − =
∂

 (20) 

 
( ).

3

3

1 0
2

lin
Pdq G

dt x
∂

= − =
∂

 (21) 

The last two equations in each of the above three sets of equations both being equal to zero is a 
result of the assumption of homogeneity, so that along a straight ray both 1q  and 3q  are constant. 
The ray (group) velocity is given in all 3 cases by 

 ( )
1 222

31 dxdxw
dt dt

φ
   = +    
     

 (22) 

As previously stated, t  has been taken to be time. The angle that the ray makes with the vertical 
anisotropic axis, φ , is defined through the relation 
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( ) ( )1 1

1 3 1 3
3 3

tan , , tan , ,ij ij
dx dt q F A q q F A q q
dx dt q

φ θ
 

= = = 
   (23) 

From equations (10) and (11) (the exact case) 

 ( ) ( )
( )

1 1 3
1 3

2 1 3

, ,
, ,

, ,
ij

ij
ij

F A q q
F A q q

F A q q
=  (24)  

( )

( )
( ) ( )( )( )

( ) ( )( )

1 1 3

2 2 2
11 55 1 33 55 3 11 55 3

11 55 1 222 2 2 2
11 55 1 33 55 3 1 3

, ,

2

4

ij

D

D

F A q q

A A q A A q A A A q
A A

A A q A A q A q q

=

 − + − − + + +
 − + − +  

 (25)  

( )

( )
( ) ( )( )( )

( ) ( )( )

2 1 3

2 2 2
11 55 1 33 55 3 33 55 1

33 55 1 222 2 2 2
11 55 1 33 55 3 1 3

, ,

2

4

ij

D

D

F A q q

A A q A A q A A A q
A A

A A q A A q A q q

=

 − + − − + + +
 − + − +  

 (26) 

where θ  is the wave front normal or phase angle and the formulae for the vertical and horizontal 
components of the slowness vector, ( )1 sinq cθ θ=  and ( )2 cosq cθ θ= , ( )c θ  being the phase 
velocity which will be discussed next.  

The exact expression for the phase (wave front normal) velocity for the quasi-compressional, 
qP , case of wave propagation in a transversely isotropic medium follows from the eikonal 
equations with the substitutions for 1q  and 3q , defined above, as 

 ( ) ( )
( )

( )2 2
1 4 1

2
D

e

A
c c

α ε
θ θ

+ −
= + exact  (27) 

 ( ) ( ) ( )
2 2

2 2 sin cosD
e

Ac c
Aα

θ θθ θ≈ + approximate  (28) 

 ( ) ( ) ( )2 2 2 2
13 sin cosec c E zθ θ θ θ≈ + lineari ed  (29) 

Quantities requiring definition are the phase velocity for the degenerate ellipsoidal (elliptical) 
case 

 ( )2 2 2
11 33sin cosec A Aθ θ θ= +  (30) 

together with the marginally redefined values of Aα  and Dε  
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( ) ( )

( )

2 2
11 55 33 55

2 2
11 33 55
2

55

sin cos

sin cos

e

A A A A A

A A A
c A

α θ θ

θ θ

θ

= − + −

= + −

= −

 (31) 

 
2 2

2

sin cosD
D

A
Aα

θ θε =  (32) 

and as before 

 ( ) ( )( )2
13 55 11 55 33 55DA A A A A A A= + − − −  (33) 

and 

 ( ) ( )13 13 55 11 332 2E A A A A= + − + . (34) 

 

Values of 11A  and 33A  are known: 

Assume that the profile gradients, p  and p  have been obtained from the two ray velocities, 

( )( )w φ θ  and ( )( )w φ θ  . Using the relationships between the profile gradients, p  and p , and the 

slownesses, q  and q , and their relation to the phase velocities ( )c θ  and ( )c θ  the following 

equations in the two unknowns, 55A  and DA (actually ( )2
13 55A A+  from which DA may be 

obtained) may be obtained using the values of the known  quantities 33A , 11A and 55A  . 

Defining 

 2 2tan , tanξ θ ξ θ= =   (35) 

the value of 55A may be obtained employing two of the measured phase angles and velocities. 
After a fairly substantial exercise in algebra it may be determined that 

 1 11 2 33 3
55

11 33 1 2

U A U A UA
A A U Uξξ

+ +
=

− − −

 (36) 

given that  
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( )( ) ( )( )2 2

1

1 1c c
U

ξξ θ ξ θ ξ

ξ ξ

 + − + =
−

  



 (37)  

 
( )( ) ( )( )2 2

2

1 1c c
U

θ ξ ξ θ ξ ξ

ξ ξ

+ − +
=

−

  



 (38)  

 
( )( ) ( )( )224 4

3

1 1c c
U

θ ξ ξ θ ξ ξ

ξ ξ

+ − +
=

−

  



 (39)  

The results are shown in Figure 4, where all possible combinations of 2 angles have been used. 
The second term to be solved for is ( )2

13 55A A+ . In this case the phase angle and velocity 
related to only one ray is required. Using the exact eikonal equation, after a less substantial 
algebraic manipulation than for 55A , the following expression is obtained 

 
( ) ( )( ) ( )( )( )

( )( )( )

24
2 2

13 55 11 55

2
33 55 2

11 55 11 33 55

1
1

1

c
A A c A A

c A A
A A A A A

θ ξ
θ ξ

ξ
θ ξ

ξ
ξ

+
+ = − + + −

+ +
+ + +

 (40) 

All of the recorded ray angles are used in this process, with the results shown in Figure 5. 
DA may now determined, as it has been assumed that 11A and 33A are known and 55A has been 

determined previously. 

Value of 11A  is unknown with 33A  known: 

Assume that the phase velocity ( )ˆĉ θ  is known at some third angle, θ̂ . Rearrange the 

expression for the phase velocity for qP  wave propagation in a transversely isotropic medium, 
with the object of isolating the variable 11A , which has been assumed unknown, and the following 
quadratic equation in 11A  is obtained. All possible combinations of the determined phase angles 
and velocities are use here. 

Let 2ˆ ˆtanζ θ=  so that the following quadratic equation for 11A  is obtained. 



Daley 

10  CREWES Research Report — Volume 27 (2015)  
 
 

 1 1 1
ˆS U Vξξ ξξ= −   (41) 

 2 2 1 2 1
ˆS U U V Vξξ ξξ= − − +  (42) 

 3 2 2S V U= −  (43) 

 ( ) ( )4 3 1 2 1 3 1 2 1
ˆS U V V U V U U Vξξ ξξ= − + − + +  (44) 

 ( ) ( )5 3 1 2 2 3 1 2 2S U V V U V U U V= − − + + + +  (45) 

 ( ) ( )6 1 2 3 1 2 3S U U V V V U= + − +  (46) 

where 

 
( )( ) ( )( )2 2

1

ˆ ˆ ˆ1 1
ˆ

c c
V

ξξ θ ξ θ ξ

ξ ξ

 + − + =
−

 (47) 

 
( )( ) ( )( )2 2

2

ˆ ˆ ˆ1 1
ˆ

c c
V

θ ξ ξ θ ξ ξ

ξ ξ

+ − +
=

−
 (48) 

 
( )( ) ( )( )224 4

3

ˆ ˆ ˆ1 1
ˆ

c c
V

θ ξ ξ θ ξ ξ

ξ ξ

+ − +
=

−
 (49) 

leading to 

 ( ) ( )2 2
1 11 2 33 4 11 3 33 5 33 6 0S A S A S A S A S A S+ + + + + =  (50) 

The numerically computed results for 11A are shown in Figure 6. 
To check the inverted values of the quantities 55A , DA  and 11A  obtained a check may be made 

by selecting another angle to obtain a quadratic equation for 33A  in terms of the computed values 
of 55A , DA  and 11A  which were all computed under the assumption that 33A  was known.  Again, 
all combinations of phase angles and velocities are used. 

 ( ) ( )2 2
3 33 2 11 5 33 1 11 4 33 6 0S A S A S A S A S A S+ + + + + = . (51) 

The equation in the unknown 11A  is a function of the two secondary unknowns 55A  and DA .as 
well as 33A . Using an iterative process in which an initial estimates of 11A  and 33A  are used to 
solve for 55A  and DA , updated estimates of 11A  and 33A  are obtained and the process repeated 
until convergence is obtained. The values for 33A  appear in Figure 6. 
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NUMERICAL RESULTS 

In a homogeneous TI medium the anisotropic parameters may be obtained from the group 
velocity travel times using the exact formula for the phase velocity. In any inversion process, at 
least one quantity is assumed to be known, or a good estimate. Here it is the square of the 
vertical velocity in a TI medium 2

0 33Aα = . As the qP and qSv wave (ray) fronts are coupled in 
this case it is also possible to obtain all anisotropic parameters related to the shear (qSv) 
wavefront. AAss  aa  ccoonnsseeqquueennccee,,  tthhee  ffiirrsstt  ppaarraammeetteerr  tthhaatt  wwiillll  bbee  ssoouugghhtt  iiss  tthhee  iissoottooppiicc  sshheeaarr  wwaavvee  
vveelloocciittyy 2

0 55Aβ =   .. TThhiiss  pprroocceessss  rreeqquuiirreess  tthhaatt  ttwwoo  ((rraayy))  ddaattaa  ppooiinnttss  oonn  tthhee  rraayy  ssuurrffaaccee  bbee  
eemmppllooyyeedd  ttoo  ssoollvvee  ffoorr 55A ..  DDeetteerrmmiinniinngg  11A oorr  33A aallssoo  rreeqquuiirreess  ttwwoo  ((rraayy))  ddaattaa  ppooiinnttss,,  wwhhiillee  

( )2
13 55A A+  requires only one (ray) data point. The model parameters used are given in Table 1. 

The derivations are moderately algebraically complex and, as a consequence, are not included 
here. There are numerous ways to compute the values of mnA or combinations thereof. The better 
the coverage (number of data points) the better. This method may be extended to 3D. However, 
the trade – off between analytic derivation and accuracy might be questionable.  

 

CONCLUSIONS 

A method for recovering anisotropic parameters in a TI medium using ray travel times as 
input and exact expressions for phase velocities in the inversion process. There a number of other 
manners for accomplishing the same result. However, as mentioned earlier in the report this 
method has been left without attention for several decades and it was only investigated to 
determine if it actually works. Exact ray travel times with some random noise introduced were 
used. The resulting data was then smoothed. It is clear that more noise should have been 
included. However, the object of this experiment was to determine if this method actually 
worked. Sensitivity studies are the next matters which could be addressed. 

 

Table 1. Anisotropic parameters for TI wave propagation in the 13-plane of Olivine. 
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Anisotropic       
Parameters 

 A11       
km2/s2 

 A33 

km2/s2 

A55 

km2/s2 

    AD km4/s4 

     20.00  10.25   2.34   2.073  
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APPENDIX A 

Formulae required for converting ray directions (angles) and velocities to phase angles and 
velocities. It required that a nonlinear type of equation be solve for this and that it is required that 
it be done numerically. Newton’s or Brent’s Methods are both equally accurate. 

1. For some vectorξ , define 2ξ⋅ =ξ ξ  and ξ=ξ . 

2. Ray (group) velocity - ( )φw , where φ  is the ray angle. 

3. Profile gradient - ( )φp , 2w
=

wp , 2p
=

pw , 1⋅ =w p  

4. Normal (phase) velocity - ( )θc  where θ  is the phase angle. 

5. Slowness vector - 2c
=

cq , 2q
=

qc , 1⋅ =c q . 

6. Relationships between group and phase quantities: 2p⋅ =p q , 2c⋅ =c w . 
7. Let zη be a unit vector along the axis about which the transversely isotropic medium is 

rotationally invariant. ( z±η may be used. However, apart from very special cases, it is 
best to be consistent and choose only one.) 

8. Plot , and zw c η  from a common point, usually the origin of the ray surface. Then, it may 

be seen that ( ) ( )
( )cos

c
w

θ
φ

θ φ
= =

−
w , 1 2 zg g= −w c η or 2

1 1

zg
g g

= +
ηwc , ( )c θ=c . From 

this it may be inferred that the orientation of zη has no effect on the relation between the 
phase and group velocities or the difference between the phase and group propagation 
angles. 

9.  The above point is equivalent to 1
sin
sin

wg
c

φ
θ

=  and 
( )

2

sin
sin

w
g

φ θ
θ
−

= .  

10. Given the above relations, together with the source and receiver locations and the ray 
travel times, the ray angles and velocities and hence the phase angles and velocities may 
be determined. 

 



TI Inversion 

 CREWES Research Report — Volume 27 (2015) 13 
 

 

 

Fig. 4. A55 in the 13-plane for Olivine. Two data points are required to be used concurrently to obtain this 
value. The error is approximately 1.0e-07. 

 

 

 
Fig. 5. (A13+A55)2 in the 13-plane for Olivine. One point is required for the determination. The error is 
again about 1.0e-07. Once this quantity has been determined, the deviation from the elliptical, AD may be 
computed. (AD =(A13+A55)2-(A11-A55)(A33-A55)) 
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Fig. 6. A11 in the 13-plane for Olivine. Two points are required for the determination. The error is about 
1.0e-07. 

 

 

 
Fig.7. Check on A33 in the 13-plane for Olivine. Two points are required for the determination.  
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