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ABSTRACT

The objective of seismic exploration is obtaining structural subsurface information from
seismic data by recording seismic waves motion of the ground. The recorded data have
a non-linear relationship with the property changes across a reflector. In this work, the
multi-parameter multi-dimensional direct non- linear inversion is investigated based on the
inverse scattering task-specific sub-series. The result is direct and non-linear and has the
potential to provide more accurate and reliable earth property predictions for larger contrast
and more complex.The inverse scattering method has a direct response for imaging and
inversion problems for a large contrast and a multi-dimensional corrugated target. We are
derived the direct non-linear inversion equation for three parameter viscoacoustic cases.
Numerical tests show that non-linear inversion results provide improved estimates in com-
parison with the standard linear inversion. When the non-linear term add to linear term the
recovered value of parameters are much closer to the exact value..

INTRODUCTION

The objective of seismic exploration is obtaining structural subsurface information from
seismic data by recording seismic waves motion of the ground. In fact, the main reason is
to find hydrocarbon reservoirs in the earth. The wave motion is excitated by the seismic
source that is located in the land (onshore) or in the marine (offshore) environments. The
seismic source generates seismic waves, and the reflected wavefiled is measured by re-
ceivers that are located along lines (2D seismic) or on a grid (3D seismic). The seismic
measurement is dependent to the seismic source environment. In the land (onshore) survey,
there are strong noisy events, which are referred to surface waves that propagate along the
surface. The reflection events are hidden by this strong noises. In the marine (offshore)
survey shot record is more clean because of shear waves cannot propagate through water,
and are therefore not measured for marine data. However, the structural map of the earth
(imaging) and the mechanical properties of the target(inversion) are estimated by analysis
of recorded data.There are many methods for considering subsurface information from seis-
mic data that the data consist exclusively of primaries, means all other seismic events are
considered as noise and removed(Carvalho, 1992; Verschuur and Wapenaar, 1992; Weglein
et al., 1997; Matson, 1997; Weglein, 1999; Weglein and Dragoset, 2005). These methods
for processing primaries can give useful results while ,under some circumstances (location
structure beneath rapidly multi-D heterogeneity within layers(imaging) and the mechanical
property of large contrast changes at a 1D or multi-D(inversion)), may become ineffective.
The inverse scattering series is a direct multi-D inversion method that can perform the tasks
associated with multiple removal, imaging and inversion(Weglein and Dragoset, 2005; We-
glein, 2006). The inverse scattering method has a direct response for imaging and inversion
problems for a large contrast and a multi-D corrugated target. The advantages of this method
are involves explicit algorithms which directly provide improved estimates for medium
properties without recourse to highly non-linear optimization procedures and determines
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data requirements for non-linear direct parameter estimation. The inversion method is di-
rect and non-linear and has the potential to provide more accurate and reliable earth prop-
erty predictions for larger contrast and more complex(Weglein et al., 2003).

The inverse scattering series

This section follow the derivation of Weglain et al.(2003)(Jost and Kohn, 1952). The
basic wave equatins govering the wave propagation in the reference and actual medium
are(Matson, 1997)

Lu=f ey
Lou=f (2)
LG =96 3)
LoGo =6 “4)

where L and L are the actual and reference wave propagators, u is the displacement, f
is the source term and, G and (G corresponding Green’s operators for actual and reference
mediums.

The perturbation operator, V' (the difference between the reference and actual medium wave
operators) and the scattered filed operator, 1)s(the difference between the reference and
actual medium Green’soperators) are defined as

V=L—L (5)
Vs =G —Go (6)

The Lippmann-Schwinger equation is an operator identity:
Yy =G — Gy =G)VG (7

By using the Born series, the scattered field can be expanded in an infinite series through
self-substitution.

by = G — Gy = GoVG (8)
= GoV(Go + GoVG)
— GoVGy+ GoVGVG
= GoVGo + GoVGoV(Go + GoVG)
= GoVGo + GoVGoVGo + GoVGoVGoVG + ...

= (¢8)1 + <¢s)2 + (¢5)3 + ...
The measured values of the scattered wave filed is the data:
D= (ws)measu’/‘ement (9)

In the inverse scattering series, expanding V' as an infinite series of data(Razavy, 1975;
Stolt and Jacobs, 1981; Weglein et al., 1981; Innanen, 2004):

V=V+V,+ V.. (10)
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This form is substituted into the terms of the Born series, and terms of like order in the data
are equated. The inverse scattering series form is :

0 = (GoVaGo)m + (GoViGoViGo)m

This series is a multi-D inversion procedure that directly determines physical properties
using only reference medium information and reflection data. The perturbationV” can be
calculated order by order in the data when the Green’s operator for reference medium G|
and the measured scattered wavefield D are known.This process is called inverse problem.
Meanwhile, in the forward problem, Gy and V' are known and the forward series determin
the total 5. targets.

THREE PARAMETERS VISCOACOUSTIC INVERSION
Viscoacoustic Scattering Potentials

In this section, we will consider a 1D viscoacoustic three parameter earth model . We
start with the 3D viscoacoustic wave equations in the actual and reference medium (Jost
and Kohn, 1952; Razavy, 1975; Stolt and Jacobs, 1981)

1
K+ V.pO—(T)V]GO(T, re;w) =0(r —r;) (12)
[K?+ V.%V]G(r, re;w) = 0(r —r;) (13)

where G(r,7g;w) and Gy(r, 75; w) are respectively the free-space causal Green’s functions
that describe wave propagation in the actual and reference medium. We consider three
variants on the viscoacoustic case, each utilizing wavenumbers which permit attenuation
to be modelled in addition to acoustic behaviour. This requires moving away from the
acoustic Kg = w/ pcg, and adopting for the true medium(Jost and Kohn, 1952; Razavy,
1975; Stolt and Jacobs, 1981; Innanen and Lira, 2010):

w? i 1
K(2)*= —[1 + —

"= e e
where k, = w,/cy is a reference wavenumber, and k& = w/cy. This form is re-writeable
using an attenuation parameter ((z) = 1/Q(z) multiplied by a function F(k), of known
form:

In(-—))2. (14)

1 k

Flk) =L — ZIn(= 15

() = 5~ () 15)

which utilizes {(z) to correctly instill both the attenuation (4/2) and dispersion (— = In(%).

k.
Notice that F(k) is frequency-dependent because of the dispersion term. Then

K(z)? = ;"—;u (PP, (16)
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The linearized Born inversion is based on a choice for the form of the scattering potential V
(the difference between the reference and actual medium wave operators)), which is given

(17)

(18)

by
V - LO — L
For a homogeneous reference medium and 1D (Zhang and Weglein, 2009) case this amounts
to
V(e V) = K2 — K(2)2 + V.(—— — ——)V
po(r)  p(r)
w2
= —la(z) —2((2)F(k
- 210() = 2 () F (v
0? 1 0 0
+ ﬁ( ) 92 p—%ﬁ( )8_

V(z,V),a(z), B(z) and ((z) can be expanded respectively as

V(2,V)=V(2,V)1 +V(2,V)a+V(2, V)3 + ....

Q=01+ Qs+ a3+ ...
B=p014+ 0+ B3+ ...
C(=CG+mn+g+

Then we have

‘/1—,00—63[041(2)_26( ) ( )]
1 0? 10 0
+%51( )ﬁ ——51( )
and
V, = p‘:co [0 (2) — 2Ga(2) F (k)]
1 82 1 8 8

THE LINEAR TERM OF THE INVERSE SCATTERING SERIES

(19)
(20)
21
(22)

(23)

(24)

The estimation of the 1D contrast (i.e. in depth) of multiple parameters from seismic
reflection data is considered.From the first equation of the inverse scattering series, Eq.

(1.11), we have

D = GoV1iGo

(25)
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where V] is defined as

v = i[“’_g[al(z) 96, (2)F () 26)

Po €
0? 0 0
+51(2)@ + &51@)&]

- %Wm(z) — 2 FR)G()

o 0 0

HB1(2) g+ fa(2) ]

in space domain, for 1D media and 2D experiment, eq.25 can be written as

D (g, 245 x5, 255 w) = i/ dx// dz/Go(xg,zg;x/,z/;w) (27)
Po %) —00
X Fan(s) — R () + (e ) 2o+ -2 () 2

xGo(z', 2 7, 23 w)

where 74, z, and x, z, are respectively the positions of the receiver and source.The
function G, describes propagation in the acoustic reference medium, and can be written as
a 2D Green’s function in bilinear form:

, , zk o(Tg—2 )e'Lk (zg—= )

Go(xg, 24 T, Z ‘W) dk‘ dk R (28)
z (zr—x%) ik”(z/—zs)

Go(xr, 2, 2% 2% w) 27T / dk: / dk’ T (29)

After the Fourier transformation over z, and x; on both sides, the left side of equation
26 can be written as

1 0 oo ' '
D(ky, 2z —k*, 2% w) = W/ dxg/ dre %% D(3y, 2,5 4, 2 W) X €T

and the right side become

pi d;,;/ 42 Golky, 22 2 W) [P (2) — 22 F (k) (1 (2) (30)
0
KB B YOl sk 450)

Measurements over a range of x, will permit a Fourier transform to the coordinate k,
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in the scattered wavefield. So eq.1 can be written as

kg—k xge—zkxx ezkz(zg—zl)
G(kg,zg,atzw 27r / dk/ dk/ dmg [ER D (31)

T z

. exp(ig Z -z
= poexp(—ikyx ) ( éfiz'q )
g

and measurements over a range of x, will permit a Fourier transform to the coordinate &,
in the scattered wavefield. After the Fourier transformation eq.2 become

Golw 23—y 25 ) = poexplil’) UL = %) (32)
47iqs
where ¢ = k* — k2 and ¢2 = k* — k2.
Substitute eq. 31 and eq.32 into eq.30. We have
1 fz z sZs
D(ky, 2g; —kss, 25;w) = ~I¢ qs(27T )2e a2 ta / da’ / dz (33)
g
—z(k —ks )a: [k’ oy ( ) . 2]{}2F Z )] Z(Qg+QS)Z
Lo ( 1 2 —z(qug—i-qszs / d{L’ / dZ€ i(kg—ks )a:
dgyq. 27
8
74492 51( ) WSZ
After partial integration, where
o ;o0 0 o0
/ e ) e — g / (e (34)

then eq.33 can be written as

. . _ Po 1 2 —7, (qg2g+4aszs)
D(kg, zg; —kss, 25;w) = 4ngs(2 dx dz (35)

xe 0ok (K20, (21) — K2 P (k)G (2) — k2B (2 >+ngsm< ettt

Then, we have

2

, k
D(ky, 23 —hsy, 2iw) = =2 )0, (<2q,) (36)
g

NG

Ci(~2q,) — %Bl(—2qg)+ﬂl(—2qg)]

2
g
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Using the relation ¢, = g5 = kcos 6 and k; = k; = ksin 0, Eq. (2.12) becomes

D(ky, zg; —kSs, 25;w) = —@677:(19(294*23)[

4
2T (<20,) + (1 tan )5, (~24,)

cos20 ! (=24,) 7)

THE NONLINEAR TERM OF THE INVERSE SCATTERING SERIES
The second term of inversion is

GoVaGy = —GoV1GoV1Go (38)

this equation in space domain can be written as

/00 da’ /oo d2' Go(zg, 2g; 0, 2 w)[KPan(2)) — 22 F (k) Co(2) (39)
(92 8 0
+62( ) ﬁ ( )a ]Go(.’L’ Z $s>zsaw> =

/

- dx/ dz/ o[ Golag i )
x [[K*

)~ HF (W)L
+ﬁ2<z)%+%ﬁl<z)£ [Go(z', 22", 2" w)
[Fas(=") ~ 2K F )G

) gy () ol 1)

22"

After the Fourier transform over 4 and z,, this equation become
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/00 dz/[k—2a2(z/) — QF(k)kQ Cg(z/) (40)

X [k*(en )—2k2 )Cl()

’ 3 ’ a elqg‘z Z |
J— 2 — —_——_
kgﬁl (Z ) + aZ/ ﬁl (Z )82/ qg

X[k} (o (27) = 2K2F (k)¢ (2))

” 8 " 8 eiqu”
—kgﬂl (Z ) +

07" (=)

azll qg

The right hand of this equation can be written as

1

2 dz / d2"1Pan (2) = 22 F (k)G () — K23u(2)] (41)

[k2a1(z.)—2]{;2 ( )Cl( ) kﬁl( )] iqy(2 42 )eiqg|zl_zﬁ‘
"o dz/ dz" 0% 2oy () — 2k F (k)G (<)

2qg
R (e 1 ()
+% " / dz eW (2 )3 %IZ'*Z”\[MI(Z )—2k;2F(k)§1(z”)
—k2By (e
g [ [t Dy D12 ) 2

:CL1+CL2+CI3+CL4

and the left side become

1 2F (k
p—" 60(2(2) — COS(QH)CQ(Z) + (1 — tan? ) By (2) (42)

then, after Fourier transformation over 2¢, and divided by 7, a1, as, a3, and a4 become(see
appendix A)
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tan 0 2F (k)

cos?
—1

+(2 costf !

F(k) .
+(COS4 9041(2)
tal’lQ 9) /

a(z) =

2cos26 !

Bi(z) + ar(2)Gi(z) +

+(

1
a2

F(k)

1
as =

F(k)

—m(i(Z) /_OO dzlﬁl(z/) +

and

2 1

o= =38 — 346 [ dmE) 3R + 380 [

oy (2) +

2F (k)?
cost 0
F(k)tan?0)

cos2 0

— ma;(z)/_ dz B1(2) —
2 cos? QCKZ) /_OO dz,51(2l>

m@l(Z) /_OO dz ﬁ1<2 ) —

1 2
2 cos? 90[1(2) B
2F (k) tan? 6

cos2 6

2F (k)* ,
0 Gi(2)
a1 (2)B1(z) —

C1(2)B1(2)
tan’6 * -, /
sy @) [ da)
Pk} tan® o oy | aae)

cos2 0
tan? 9)

a; = —

tan 9

F(k:) /
mg (2) +

Gi(2) —

G(z) —

s [ Z 02 i (+)

1 !/ z ! !
R SIS /_Oo 4= an(2)

F(k) =,
seagfiC) [ G

1
4 cos? 0

B [ )
FY [ .
mﬁl(z) /_OO dz Ci(z)

z

dz (z/)

—00

2 2 Lo Sy Lo
5 = ) + 50) [ ) - 3B

Finally, we have

3B+ 550 [ )

(43)

(44)

(45)

(46)
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co; 0@2(2’) — M@(z) + (1 — tan?0)By(2)
1 2 2F (k)? tan* 0
_moﬁ(z) cost 0 Cl( ) — 51( )
W r100) + o)) - ”f(fs—‘;?%(z)ﬁl@
+(—2(;Sl49a1<z) 024)9@( ) 5o (tan® 6 — 1)5;@))/_00 dz a1 (%)
A ) = 2R ) - ) g~ 1ygie) [ a2
cos?* 0 cos* o cos? 0 _

o0

(tan?0 — 1)y (2) —

+(

2 cos? 0

—0o0

NUMERIC EXAMPLES: SINGLE INTERFACE

Similar to the acoustic case , for a single interface 1D viscoacousic medium case,the
analytic data is define(Stolt and Jacobs, 1981)

62iqga

D(qy,0) = poR(6) (48)

dimq,

where a is the depth of the interface. In this section, we numerically test the direct inver-
sion approach for a specific model, ¢y = 1500m/s, ¢; = 1700m/s, po = 1.0g/cm? and
p1 = 1.2g/cm3. When assuming the data(D) is available, first, we can compute the linear
solution for a, (1, and (; from Eq. (3.27) by choosing three different frequencies k1, ko
and k3. Then, substituting the solution into the Eq. (3.37)(nonlinear term) and computing
the non-linear solution for a», 35, and (5. For this model the first order and the first order
plus the second order are plotted. The actual values are defined by the green lines. Figure
3.1-3.2 show sets of recovered parameters («, § and (). For the sake of illustration, fre-
quency pairs k; = ko, for which the inversion equations are singular, are smoothed using
averages of adjacent (k; # k») results.The results show that all the second order solutions
provide improvements over the linear solutions. When the non-linear term is added to
linear order, the results become much closer to the corresponding exact values.

CONCLUSION

In this chapter, we consider three parameters direct non-linear inversion for viscoa-
coustic media. Both the linear and nonlinear processing and inversion are investigated.
The numerical results indicate that all the second order solutions provide improvements
over the linear solutions. When the second term is added to linear order, the results become
much closer to the corresponding exact values. The inversion method is direct and non-
linear and has the potential to provide more accurate and reliable earth property predictions
for larger contrast and more complex without knowing the specific properties of the target.
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FIG. 1. Recovered parameter from the normal incidence for (. The exact value of ¢ is 0.1. The
linear approximation ¢; (a) and the sum of linear and first non-linear {; + (2(b). The graphs on the
bottom are the corresponding contour plots of the graphs on the top.
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FIG. 2. Recovered parameter from the normal incidence for 8. The exact value of 3 is 0.17. The
linear approximation 3, (a) and the sum of linear and first non-linear 8, + 52(b). The graphs on the
bottom are the corresponding contour plots of the graphs on the top.
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FIG. 3. Recovered parameter from the normal incidence for a. The exact value of a is 0.22. The
linear approximation «; (a) and the sum of linear and first non-linear o + as(b).
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APPENDIX A

Viscoacoustic case

0 = 2%/ dz/ 02" Pon () — 22 F ()G (2) — K26 (=)
[K2a1(2") — 2K F(k) G (2") — K2B1(2 )]e ia (=42 gig ' ="
_qg/ dz/ 42 [0 (2) — 22 F (K)o () — K26 ()]

(2a1(2") — 262 F (k)G (=) — k21 (2 )] e2 o™ H (' — 2"

After the Fourier transformation over 2¢, and divided by 7, we have

o k2 k2 k2
:75@/ i [ a2 (on) 2B PG - ()

2 . " o ' r
Gl - 25 P - m( e 5 - Y ) =
10 () 2 : < o)
20z [cos29 cos29C1( 2) — tan” 651 (2)] [m dz [00829
20 ) 08 G - =)

This equation cab be written as

m = 2o (2) ~ 2 (2) — tan? 03, (2)

o) 2 )~ g ()] [ a

=)~ 258 ()~ tan? 08,2 )) = 5 () -
0520 + 2 a1 e) + (o)) - P ) e)

(@ai( )+ CFO;;@( )+ ;j;fgﬁl( ))/_ dz o (2)
HEW o) - PO o) - PO g o [~ )
(i) - T - g ) [ )

and as is
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'L’ o0 ’ o "o ! 4 !
as = ﬁ/ dz / dz €% [KPon(z ) — 2k°F (k)i (2)
qg — 00 -

Bl =10 g (1) e =

22g/ dz/ dz" % [Pay (=) - 2K F(R)C(2)

26 e~ V(i1 (e gy (2 Yeinn | = 1 / i [ a
an() (e B =) = T [ [

Q)b )[ R (G )+€2"1"Z H(z' —2)]

z tan? 0) /
s / dz/ dz" Bz ) (=) ¥ H(Z — 2 2c0520/ dz/ =
+00520_/_de /_Oodz

’ ’ " 2 zl ’ " 2% Z” 7" / tan29 b ’ o 7"
G(2)B1(z )[e*99* H(z —z )+€e*9* H(z —z)]+ 5 dz dz

B1(2 )8y (2 ¥ H(z —2") + 2907 H(z" — 2]

al(z )Bl(z )[eQtiz H(z —z )+62iqu H(z” —

Then, after the Fourier transformation over 2g, and divided by 7, we have

1 ’ z , . ) ,
4= mal(z)/ dz 51(2’) 40052951( )/ dz ay(z)

F k ’ o 4 ’
—ﬁ{l(z) [m dz pu(z) + 200529 / 4z Gi(z

a3 can be written as

az = % dz / dz e‘qﬂ (2 )iemglz -2 ‘[k 011(2//)—2/62F(k)§1(z”)
_kQﬁl( )] iqer _ 273 dz / ds el‘]q 5 [ﬁ1(zl)(iqg)8ign(z/ _Z”)eiqg|z,—z”\}
[Far(2) = 262 F (k)G (2)

—K2B( e = 2;9 T / 4" 18,(2 ) igg)sign(z — 2" )eidsl =]

+B1(2)(2ig)3(2 — =) + B2 )(igg) 201 == K2y (=) — 262 F (k)G (=)
—kﬁﬁl (z” )]eiqg(z,ﬂ”)

This equation can be written as
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1 o 0 o , 1 ’ " 2F k "
R H<z' - H< — )] - / ) dz’m(z’)[@ 1) = tan? 061 (=)
F / " 1" 2F k 1"

Afther the fourier transformation over 2¢, and divided by 7, we have

/ ’

1 ’ z / ’ 1 z ’
0= g @) [ EBE) - i) [ )

— 0 —oo

T ae [ ane)+misie) [ aae)

 2cos26 2cos? 6 e

Finally, a4 is
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Then, afther the Fourier transformation over 2g,, we have

eiqglz/fz (igg)?B1 (=" e 2" + gy (2" )e' 2]
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