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ABSTRACT

A method for adaptive subtraction in conjunction with internal multiple prediction by
inverse scattering series is investigated. An L1, nonstationary adaptive subtraction is found
to minimize mistaken matching to primaries while still allowing for a large degree of mul-
tiple removal. This adaptive subtraction is tested on both synthetic and physical modeling
data. The method proves to be effective, and avoids unwanted matching to primaries.

INTRODUCTION

Multiple reflections are an inevitability in seismic data, and in many cases they are of
significant amplitude compared to the primaries in the data. While certain seismic tech-
niques have been devised to gain meaningful information from multiple reflections, the
vast majority of seismic methods are designed to work on primary only data, and for these
methods multiples are undesirable. Consequently, multiple removal is an important process
that is critical to the processing and interpretation of many data sets. Most classical multi-
ple removal methods assume some difference between primaries and multiples and exploit
this difference to separate and remove the multiples. For example, predictive deconvolu-
tion relies on the assumption that multiples, and not primaries, display periodicity (Peacock
and Treitel (1969)), while tau-p filtering methods depend on moveout differences between
primaries and multiples at any given arrival time (Foster and Mosher (1992)). While these
methods are computationally cheap and often very effective, they struggle to remove multi-
ples which badly violate their assumptions. Alternate methods of multiple removal involve
wavefield prediction and subtraction. These methods include surface related multiple elim-
ination (SRME) and inverse scattering series prediction (Weglein et al. (1997)). These
methods are usually more robust, as they often make fewer assumptions than the discrim-
ination based removal methods. While these methods can be very robust, approximations
such as series truncation or the use of lower dimensional algorithms, together with the com-
plicating factors in real data such as noise, residual ghosts and incompletely deconvolved
source wavelets mean that the predicted multiple wavefields will not match the measured
multiples exactly. This introduces the need for adaptive subtraction, which performs some
kind of matching between the predicted and measured fields prior to subtraction.

For internal multiple removal, which is a particular problem in land seismic data, the
inverse scattering series is an attractive method of prediction. Inverse sacttering multiple
removal methods are being developed in a variety of domains, such as the wavenumber-
pseudodepth domain (Pan (2015)), the tau-p domain (Sun and Innanen (2014)), and the
space-time domain (Innanen (2014)). In this report, we aim to focus on adaptive subtraction
techniques which work well for these internal multiple predictions.
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ENERGY MINIMIZING ADAPTIVE SUBTRACTION

Before the multiples generated by wavefield prediction methods can be subtracted from
the data, it is often necessary to correct the prediction such that it more accurately represents
the multiples in the data. This correction is often applied by convolving the prediction with
a filter, as this can allow for amplitude and phase differences between the prediction and
measured data to be corrected (Abma et al. (2005), Wang (2003), Verschuur et al. (2005)).
The result of adaptive subtraction, a, in one dimension is then obtained by

a = d−m ∗ f = d−Mf , (1)

where d is the vector of measured data, m is the vector of multiple predictions, M is the
convolution matrix of the predicted multiples, and f is the filter used.

The important problem in adaptive subtraction then becomes how to design this filter
such that the ideal matching between the predicted and measured multiples is achieved.
Perhaps the simplest measure of this matching is the energy removed by the adaptive sub-
traction (Verschuur et al. (2005)). If the multiples and primaries do not overlap at any
point in the data, then the result of subtraction where the multiples are completely removed
has less energy than any subtraction where the multiples are not completely removed (Ver-
schuur et al. (2005)). Provided that the multiples and primaries do not overlap, the filter
which minimizes the energy of our result should then be ideal. Minimizing the energy
of our result is achieved by minimizing the L2 norm of a, so to determine our filter, we
minimize

||a||2 = ||d−Mf||2 =
N∑
n=1

a2n , (2)

where an is the nth element of A, and N is the total number of samples in d. We can do
this by solving the least squares equation

f = (MTM)−1MTd . (3)

Once this filter has been determined, the result of the adaptive subtraction can be obtained
using Equation 1. Figures 1 and 2 demonstrate the matching effects of an energy minimiz-
ing filter in a simple two interface model.

When solving for f, we first have to choose how long the filter will be. This parameter
directly affects the capacity of the adaptive subtraction to match the predicted multiple to
the measured data. If, for example, we restrict ourselves to a one point filter, the filter will
only have the capacity to perform amplitude scaling on our prediction. On the other hand,
if we choose a sufficiently long filter, our filter will be able to match any signal exactly.
We must then compromise between choosing a filter that is too short, and incapable of
matching well enough to remove multiples, and choosing a filter too long, and able to do
unwanted matching to primaries.
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FIG. 1. Trace from a simulated shot record with a two interface model in blue, and multiple prediction
after scaling in green.

FIG. 2. Trace from a simulated shot record with a two interface model in blue, and multiple prediction
after convolution with energy minimizing filter in green. In this case, the energy minimizing filter has
successfully matched our prediction to the observed multiples.
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FIG. 3. Trace from a simulated shot record with a three interface model in blue, and multiple
prediction after amplitude scaling in green. The third primary arrives at the same time as a multiple,
causing significant overlap.

One significant problem with the energy minimizing adaptive subtraction is that we
cannot in general safely make the assumption that multiples and primaries do not overlap.
This means that when we minimize the energy of our result a, we are minimizing the
energy of primaries and multiples together. Of course, this is potentially problematic if the
energy minimizing subtraction causes primary energy to be removed, which in general will
be the case in the event that multiples and primaries overlap. This problem is significantly
compounded by the fact that primaries are typically greater in amplitude than multiples,
and thus much greater in energy, which is proportional to the square of amplitude. It is not
only possible then that primaries can have energy removed in an L2 subtraction, they will
actually be prioritized over removal of multiples. Not only can this cause the removal of
primary energy, it can also result in the removal of multiple energy to be done poorly. In
Figures 3 and 4, an energy minimizing adaptive subtraction is applied to a three interface
model, where the arrival times of one of the primaries and a multiple roughly coincide.
Here, the energy minimizing filter adversely affects the prediction; the adapted prediction
does not match the observed multiples, and furthermore it will remove primary energy
when subtracted.

While the non-orthogonality of primaries and multiples seems a major obstacle to en-
ergy minimizing adaptive subtraction, there are factors which help to lessen its importance.
Overlap between primaries and predicted multiples is random; the primaries at a given
time can alter the prediction of multiples at later times, but have no effect whatsoever on
the multiples predicted at the same time. On the other hand, the similarities between the
multiple prediction and the actual multiples should be highly systematic. The filter required
to match the prediction to the multiples should then be very similar between different mul-
tiple events, whereas a filter which matches a multiple prediction to a primary in one region
of overlap will not in general share any similarity with one in another region of overlap.
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FIG. 4. Trace from a simulated shot record with a three interface model in blue, and multiple predic-
tion after convolution with energy minimizing filter in green. Subtraction of this adapted prediction
will not remove multiples, and will remove primary energy.

This means that a filter which matches the prediction to one multiple should work well at
all multiples, whereas a filter which matches the prediction to a primary will not match
the prediction to other primaries, and may actually increase mismatch in these areas. So,
if there are many multiples and many regions of primary-multiple overlap, the problems
associated with energy minimizing filters should be reduced.

In Figure 6, the effect of an energy minimizing filter is shown on a many multiple trace,
with several times where primary-multiple overlap occurs. As compared with the initial
prediction in Figure 5, the energy minimizing filter does a fairly good job of matching the
prediction to the multiples. It is clear, however, that the matching could be better. We may
expect that the quality of the matching could be improved by increasing the filter length.
The result of a longer filter is shown in Figure 7. If anything, this filter does a worse job
of matching the multiples than the short filter. Also evident is that there is slightly more
unwanted matching to the third primary. Increasing the filter length increases the matching
capability of the filter, but the energy minimizing solution here was to match the primary
more closely, not the multiples. This limits the level of multiple subtraction we can hope
to achieve in this case. Clearly, interfering primaries harm the energy minimizing adaptive
subtraction even in this case.

ALTERNATIVES TO THE ENERGY MINIMIZING FILTER

While the energy minimizing adaptive subtraction works to some extent, it clearly puts
significant restrictions on how well we are able to match multiples before matching to
primaries becomes problematic. These problems arise due to the tendency of the energy
minimizing subtraction to match predicted multiples to measured primaries. This suggests
that an ideal filter would be designed based on the measured multiples alone, or some pri-
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FIG. 5. Trace from a simulated shot record in blue, and multiple prediction after scaling in green.
Significant overlap between primary and multiple occurs at two primary arrival times.

FIG. 6. Trace from a simulated shot record in blue, and multiple prediction after convolution with
short energy minimizing filter in green. Arrival times are approximately corrected, but significant
errors remain.
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FIG. 7. Trace from a simulated shot record in blue, and multiple prediction after convolution with
long energy minimizing filter in green. Matching to multiples is not noticeably improved over the
short filter case, while slightly more primary matching is evident.

mary free portion of the data. Such a filter requires, however, that we are able to somehow
discriminate between primaries and multiples. As discussed in the introduction, wavefield
prediction and adaptive subtraction are typically used in situations where it is very difficult
to distinguish between multiples and primaries based on some simple difference. Conse-
quently, a more realistic criterion for a good adaptive subtraction might be that primaries
are considered, but at an equal or reduced weighting as compared to multiples, and factors
such as the random overlap between primaries and the prediction are relied on to further
reduce the impact of primaries on the adaptive subtraction. A good candidate for this crite-
rion is an L1 minimizing adaptive subtraction.

L1 NORM

As mentioned previously, the energy minimizing adaptive subtraction is that which
minimizes the L2 norm of the result. As this minimizes the square of the amplitude of
the subtracted result a, this causes the higher amplitude primaries to be evaluated at much
greater weighting than the multiples, and prioritized in the minimization. Guitton and
Verschuur (2004) suggest that we instead minimize the L1 norm, as it is then the absolute
value of the result which is minimized, as described by

||a||1 = ||d−Mf||1 =
N∑
n=1

|an| . (4)

By minimizing the L1 norm, the weighting of high amplitude primaries is dramatically re-
duced as compared to the L2 norm, which should help to mitigate the problems we observe
in the energy minimizing adaptive subtraction. To find the filter which minimizes the L1
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norm, we solve the nonlinear normal equations (Bube and Langan (1997)) given by

MTWMf = MTWd , (5)

where W is the diagonal matrix whose elements Wii are related to the residual at time i by

Wii = |ri|−1 , (6)

and where the residual r is given by

r = Mf− d . (7)

So, the expression for the L1 minimizing filter is

f = (MTWM)−1MTWd . (8)

Unfortunately, the elements ofW are singular wherever the residual is zero. This makes
the minimization of the L1 norm problematic to compute, and impractical for our purposes.
It is then desirable for the filter to minimize some other function that maintains the reduced
weighting of high amplitude signals like the L1 norm, but is better behaved as the residual
approaches zero.

L1/L2 HYBRID NORM

While there are several approaches to creating better behaved functions that emulate the
L1 norm, the approach pursued here is the L1/L2 hybrid norm of Bube and Langan (1997).
The idea is to create a function which behaves like the L1 norm for large residuals, where
the L1 behaviour is useful, and smoothly transitions to L2 behaviour for small residuals,
where the L1 behaviour is problematic. Specifically, the L1/L2 norm minimizes

J =
N∑
n=1

jn =
N∑
n=1

√
1 +

(rn
σ

)2
− 1 , (9)

where σ is a parameter chosen to control the transition from L1 to L2 behaviour. It can be
easily seen that in the limit of very large or very small residuals, this expression becomes

jn =

{
1
2

(
rn
σ

)2
, for rn � σ

| rn
σ
| , for rn � σ .

(10)

So, for very large residuals, we minimize the same L1 expression as in Equation 4, and for
very small residuals, we minimize the L2 expression in Equation 2. As in the L1 case, the
filter which minimizes this expression can be found by solving

f = (MTWM)−1MTWd , (11)

but with the weighting matrix W altered, so that

Wii =

(
1

1 +
(
ri
σ

)2
) 1

2

. (12)
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FIG. 8. Trace from a simulated shot record in blue, and multiple prediction after convolution with
a short, hybrid norm minimizing filter in green. Notable improvements in matching to observed
multiples can be seen as compared to the energy minimizing norm in Figure 6.

Equation 11 is nonlinear, as the weighting matrix W is a function of the filter used, f,
due to its dependence on the residual (Equation 7). Consequently, we are not able to solve
Equation 11 directly. Instead, we have to solve Equation 11 iteratively. To begin, we solve
Equation 11 for f, using an identity matrix for W. Using the filter obtained in this way,
we can determine the residuals through Equation 7. This in turn allows us to determine W
through Equation 12.This updated W allows us to calculate a more accurate filter, by again
using equation 11. As we iterate this procedure, we obtain more and more accurate values
for f, until eventually we converge to the filter which minimizes the hybrid norm.

Figure 8 demonstrates the effect of using a hybrid norm minimizing filter. The initial
prediction used was that from Figure 5. Clearly, the hybrid norm minimizing filter offers
substantial improvements over the energy minimizing filter in Figure 6. Additionally, the
reduced weighting of the primaries mean that we can now safely increase the length of the
filter used to improve the matching to multiples without matching primaries. An example
of a longer filter using the hybrid norm is shown in Figure 9.

EXTENSION TO TWO DIMENSIONS

Equation 1 is applicable on a trace-by-trace basis, but it is often desirable to design
and apply the correction to groups of traces. This can offer several benefits, and makes
the prediction more robust and reliable. Perhaps the greatest benefit of designing the filter
considering all dimensions of the data is the reduced matching of the multiple prediction
to primary data. This effect is due to the fact that while multiples and primaries may
overlap in one particular trace, they will not in general overlay one another in exactly the
same way at all source and receiver offsets. A filter which matches the predicted multiple
to a primary on one trace then will not, in general, match the prediction to the primary
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FIG. 9. Trace from a simulated shot record in blue, and multiple prediction after convolution with
a long, hybrid norm minimizing filter in green. The longer filter allows for an improved level of
matching to the observed multiples over the short filter case (Figure 8) without noticeably increasing
the amount of primary energy removed.

on another, provided that the multiple and primary have some difference in their spatial
behaviour, even if there is still some overlap between them.

In order to solve for the filter in two dimensions (e.g. offset and time), we must extend
Equations 1 and 11 from one dimension. In two dimensions, the adaptive subtraction result
becomes

Axt = Dxt −Mxtpfp , (13)

where Axt is the result of the adaptive subtraction, Dxt is the measured data, Mxtp is a
tensor such that for fixed x, Mxtp is the convolution matrix for the prediction at offset x, fp
is a filter of length p, and summation occurs over the repeated indices in each term. The
energy minimizing expression for the filter is then

fp = (MabpMabq)
−1MxtqDxt . (14)

Similarly, the expression for the L1, or hybrid norm minimizing filter is given by

fp = (MabpWabABMABq)
−1MxtqWxtXTDXT , (15)

where WxtXT is nonzero only where x = X and t = T , and the elements Wxtxt are the
same as elements Wii in equation 6 or 12 as appropriate, with residuals ri replaced with the
residuals in two dimensions rxt.

NONSTATIONARITY

When wavefield prediction methods make assumptions about the subsurface, the valid-
ity of these assumptions may vary with depth, offset, or both. Furthermore, seismic data
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can often be inherently nonstationary. These factors mean that a single filter may not be
adequate to match the predicted multiples to the multiples actually measured in a seismic
experiment. It can be desirable to instead have a filter which varies with the offset and time
of the recordings. This can be achieved by calculating a different filter for every point in
the measured data. The filter at each point is created by choosing some window about the
point, and solving for the filter which minimizes the hybrid norm on that window. The win-
dow used here was Gaussian in shape to minimize edge effects, and give greater weighting
to data near the point for which the filter was calculated. The rate at which this filter is
allowed to vary is controlled by the size of the window; if the window covers the entire
data set the filter will be stationary, while if it covers only a few points it will vary quickly.

Like the filter length, the window size for the nonstationary filter controls how well the
prediction is matched to the data. If the window chosen is too large, the filter may not be
able to adequately match the nonstationary changes in the data or prediction. If instead the
window is too small, the filter will be able to closely match any prediction to the signal,
and will consequently remove primary energy.

An example is shown in Figures 10-14. In Figure 11, a shot record is shown, generated
from a model with a series of layers dipping at 0.5◦ (Figure 10). The multiple prediction
used for this example was created using a 1.5D algorithm, that is, the internal multiple
prediction assumes two dimensional propagation through flat layers. Our slightly dipping
case is a reasonably mild violation of the 1.5 D assumption, and we might expect for the 1.5
D prediction algorithm to produce a fairly accurate result. Indeed, the prediction generated
in Figure 12 is quite similar to the multiples observed in the data. If we apply a stationary
adaptive subtraction, however, the result obtained is worse than we might expect (Figure
13). Multiple attenuation is limited in some areas in this case, and is significantly variable
with offset. This is because, while the prediction is very similar to the observed multiples
throughout, the filter required to match the one to the other is not constant, especially with
varying offset. Adaptive subtraction is repeated with a nonstationary filter in Figure 14. It
is easy to perceive that this allows for substantial improvement in the subtraction.

PHYSICAL MODELING EXAMPLE

To demonstrate the effect of the adaptive subtraction described thus far, some an appli-
cation to physical modeling data is shown in this section. The physical modeling was done
on a scale model made of layers of water, polyvinyl chloride, Plexiglas and aluminum (Pan
(2015)). For source and receiver, piezoelectric transducers were used. To create the physi-
cal modeling data, a receiver is simulated at each of 120 locations, with a single, constant
location source used for each. This simulates a two dimensional shot gather. This physical
modeling shot gather is shown in Figure 15. The corresponding prediction obtained by an
inverse scattering series method is shown in Figure 16. The result of applying adaptive
subtraction given the data and prediction is shown in Figure 17. While most of the multi-
ples in the data are near or below the noise level of the data even before the subtraction, the
prominent multiple just after 2 s is significantly attenuated by the adaptive subtraction. This
occurs despite the strong overlap of one of the predicted internal multiples and the high am-
plitude free surface multiple just before 2.5 s, which has the potential to significantly impair
an energy minimizing adaptive subtraction, just as interference with a primary would.
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FIG. 10. Velocity model with slightly dipping layers.

FIG. 11. Shot gather with small dip reflectors. The zero offset primary arrival times are marked in
red, some notable multiples in green.
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FIG. 12. 1.5D internal multiple prediction. Multiples predicted are very similar to those observed.

FIG. 13. Shot gather with small dip reflectors after stationary adaptive subtraction. The zero offset
arrival times are marked in red, some notable multiples in green. The quality of the subtraction
varies with offset. Arrows highlight major differences between the stationary and nonstationary
cases.
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FIG. 14. Shot gather with small dip reflectors after nonstationary adaptive subtraction. The zero
offset arrival times are marked in red, some notable multiples in green. Significant improvements
can be seen in comparison to the stationary case. Arrows highlight major differences between the
stationary and nonstationary cases.

FIG. 15. Physical modeling shot gather. Arrows highlight visible multiples.
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FIG. 16. Physical modeling multiple prediction. Arrows highlight multiples visible in the measured
data.

FIG. 17. Physical modeling shot gather after adaptive subtraction of the predicted multiples. Arrows
highlight multiples visible in the measured data.

CREWES Research Report — Volume 27 (2015) 15



Keating, Sun, Pan and Innanen

CONCLUSION

Inverse scattering multiple prediction is a powerful method for predicting multiples,
but the predictions it generates require some correction before they can be successfully
removed from the data. One means of applying such a correction is by convolution with a
filter. While in general matching schemes will choose filters that increase matching to both
primaries and multiples, we can improve matching to multiples without unwanted matching
to primaries by applying a nonstationary, two dimensional hybrid norm minimizing filter in
our adaptive subtraction. This was shown to be an effective adaptive subtraction technique,
both when applied to synthetic data and when applied to physical modeling data.

FUTURE WORK

Future work for this project will include more specifically designing adaptive subtrac-
tions for each of the different prediction domain implementations of the inverse scattering
prediction algorithm. Adaptive subtraction on fully two or even three dimensional predic-
tions is also a point of interest. Lastly, prediction and subtraction of multiples in real land
seismic data is another priority.
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