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ABSTRACT

Full-waveform inversion (FWI) promises high-resolution estimates of subsurface model
parameters by iteratively minimizing the difference between the modelled data and ob-
served data. While FWI also suffers from a lot of difficulties, one of which is the cycle-
skipping problem resulting from lack of low-frequency and inaccurate initial model. CREWES
acquired Hussar low-frequency data set for inversion methods tests. In this paper, we carry
out full-waveform inversion tests using the Hussar low-frequency data set.

INTRODUCTION

In September of 2011, CREWES acquired seismic data using different sources (dyna-
mite and vibroseis) and receiver types (10 Hz 3C and 4.5 Hz geophones) for recording
low-frequency seismic data down to 2Hz (Margrave et al., 2012). The work was finished
with the cooperation of Husky Energy, Geokinetics and INOVA to conduct a unique seismic
experiment near Hussar Alberta. A major driver for this research is the understanding that
seismic inversion methods, both poststack impedance inversion and full-waveform inver-
sion, require low-frequency information about the desired earth model. A specially modi-
fied low-frequency vibrator, the INOVA AHV-IV (model 364), was brought to the experi-
ment by INOVA and a more conventional Failing (Y2400) was rented. The receiver used
were Vectorseis 3C(MEMS) accelerometers, 10 Hz SM-7 (ION-sensor) 3C geophones, 4.5
Hz Sunfull 1C geophones, 10 Hz SM-24 high-sensitivity geophones and Nanometrics Tril-
lium seismometers.

Full-waveform inversion (FWI) has emerged as a promising technique for inversing the
subsurface parameters by iteratively minimizing a l-2 norm misfit function, which mea-
sures the difference between the modelled data and observed data. However, real data
application of FWI is impeded by many difficulties including high computation burden,
slow convergence rate, cycle-skipping and etc. The cycle-skipping problem results from
lack of low-frequency and inaccurate initial model. Hence, the low-frequency information
is essential for recovering the long wavelength components of the model and is very impor-
tant for overcoming the cycle-skipping difficulty. Hussar dataset contains low-frequency
information, which is very appropriate for full-waveform inversion tests.

In this paper, we first give a brief description about the Hussar low-frequency data
acquisition experiment. Then, we introduce the basic principle of FWI. In the numerical
modelling section, we give the inversion result using FWI with the Hussar dataset.

THE EXPERIMENT DESCRIPTION

This experiment was designed by researchers at CREWES in consultation with geo-
physicists at Husky Energy, Geokinetics, and INOVA. A site near Hussar, Alberta (Figure
1) was chosen primarily because of easy access from Calgary and excellent nearby well
control (Margrave et al., 2012). The line location directly ties 3 wells (12-17, 14-27 and
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14-35) while two more are nearby. All wells have p-wave sonics, density and gamma ray
logs while 12-27 has an shear-wave sonic.

FIG. 1. The 4.5 km Hussar seismic line is shown together with the locations of 5 wells with good
logging suites, shotpoint locations, and the location of the recorders (Margrave et al., 2012).

BASIC PRINCIPLE OF FULL-WAVEFORM INVERSION

As a non-linear least-squares optimization problem, the misfit function Φ of FWI is
formulated in a least-squares form:

Φ (m) =
1

2

∑
xs

∑
xg

∑
ω

‖∆d (xg, xs, ω) ‖2, (1)

where dobs and dsyn are the recorded data and synthetic data respectively. ∆d = dobs−dsyn

is the data residual vector, and ‖ · ‖ means the l-2 norm. Here, the synthetic data dsyn is
related to the seismic wavefield u by a detection operator P , which samples the wavefield
at the receiver locations: dsyn = Pu. The Newton optimization approach is developed
based on the second-order Taylor-Lagrange expansion of the misfit function Φ:

Φ (m + ∆m) ≈ Φ (m) + g†∆m +
1

2
∆m†H∆m, (2)

where the symbol "†" means transpose, ∆m is the search direction, g = ∇mΦ (m) and
H = ∇m∇mΦ (m) indicate gradient and Hessian respectively.

To minimize the quadratic approximation of the misfit function, the updated model at
the (k + 1)th iteration can be written as the sum of the model at the kth iteration and the
search direction ∆mk:

mk+1 = mk + µk∆mk, (3)

where µk is the step length, a scalar constant calculated through a line search method sat-
isfying the weak Wolfe condition (Gauthier et al., 1986; Pica et al., 1990; Nocedal and
Wright, 2006). Within a Newton optimization framework, the search direction ∆mk is the
solution of the Newton linear system:

Hk∆mk = −gk. (4)
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The gradient is the first-order partial derivative of the misfit function with respect to the
model parameter and it indicates the direction in which the misfit function is increasing
most rapidly (Pratt et al., 1998). It can be constructed by zero-lag correlation between the
Fréchet derivative wavefield with complex conjugate of the data residuals ∆d:

g (x) = ∇m(x)Φ (m) = −
∑

xg

∑
xs

∑
ω

<

(
∂d†syn (xg, xs, ω)

∂m (x)
∆d∗ (xg, xs, ω)

)
, (5)

where the symbol "∗" means complex conjugate, ∂dsyn(xg ,xs,ω)
∂m(x) indicates the Fréchet deriva-

tive wavefield (or Jacobian matrix) recorded at the receiver xg due to model perturbation
at position x and < (·) denotes the real part. Within the adjoint-state formalism (Plessix,
2006), the gradient can be expressed as (Sirgue and Pratt, 2004; Plessix and Mulder, 2004;
Tao and Sen, 2013; Pan et al., 2015a):

g (x) =
∑

xg

∑
xs

∑
ω

<
(
ω2fs (ω)G (x, xs, ω)G (xg, x, ω) ∆d∗ (xg, xs, ω)

)
, (6)

where G (x, xs, ω) and G (xg, x, ω) indicate source-side and receiver-side Green’s func-
tions respectively. Following equation (6), the gradient can be constructed efficiently by
cross-correlating the forward modelled wavefield with the back-propagated data residual
wavefield (Virieux and Operto, 2009; Pan et al., 2015b,c). The gradient is poorly-scaled
due to geometrical spreading, and it is also contaminated by spurious correlations because
of finite-frequency effects and doubly-scattered energy (Pratt et al., 1998). The Hessian op-
erator is the second-order partial derivative of the misfit function with respect to the model
parameter (Pratt et al., 1998; Plessix and Mulder, 2004):

H (x, x′) = ∇m(x)∇m(x′)Φ (m)

=
∑

xg

∑
xs

∑
ω

<

(
∂d†syn (xg, xs, ω)

∂m (x)

∂d∗syn (xg, xs, ω)

∂m (x′)
+
∂2d†syn (xg, xs, ω)

∂m (x) ∂m (x′)
∆d∗ (xg, xs, ω)

)
,

(7)

where x′ is the neighboring position around the position x (Valenciano, 2008; Pan et al.,
2015a) and ∂2dsyn(xg ,xs,ω)

∂m(x)∂m(x′) means the second-order partial derivative wavefield due to model
perturbations at positions x and x′. Multiplying the gradient with the inverse Hessian can
greatly enhance the model update, which provides a quadratic convergence rate.

NUMERICAL EXPERIMENT

The shot gathers are generated by Saeed et al. (2014). Figures 2a and 2b show the
shot gathers after pre-processing. Figure 3a shows the initial velocity model used for FWI,
which is actually obtained by traditional velocity analysis. Figure 3a shows the gradient
update with the frequency band of (1-3) Hz. Figure 3 shows the inverted model at the first
iteration. Figures 4a, 4b and 4c show the inverted models at the 4th, 6th and 10th iteration
respectively. As we can see, the resolution of the velocity model is enhanced as the iteration
proceeds. Figures 4d, 4e and 4f show the corresponding reverse time migration imaging
results. It is noticed that inverted models give better imaging results.
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FIG. 2. Shots after pre-processing. (a) shot 18; (b) shot 100.
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FIG. 3. (a) Initial model; (b) Gradient update; (c) Updated model at the 1st iteration.

CONCLUSION

In this paper, we perform the full-waveform inversion test using the Hussar low-frequency
dataset. We demonstrate that with the inverted velocity model, the reverse time migration
imaging result is improved.
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FIG. 4. (a), (b) and (c) show the inversion results at 4th, 6th and 10th iterations. (d), (e) and (f)
show the reverse time migration images using the corresponding inverted models.
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