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Predicting heavy oil viscosity from well logs - testing the idea 

Eric A. Rops and Laurence R. Lines 

ABSTRACT 
Viscosity is a critical parameter in selecting the best recovery method to exploit a heavy 

oil reservoir. While heavy oil viscosities can be measured in the lab from well samples, it 
would be very useful to have a method to reliably estimate heavy oil viscosity from well 
logs. In this study, data from thirteen wells were obtained from the Athabasca region of 
northern Alberta. Each well has laboratory oil viscosity measurements, as well as dipole 
sonic logs, and a full suite of the standard well log curves. 

Multi-attribute analysis enables a target attribute to be predicted using other known 
attributes. In this study, the available well log curves were used to predict viscosity. Five 
wells were used to train the relation to blindly predict the viscosity of the remaining wells. 
Four out of the seven remaining wells successfully predicted the viscosity comfortably 
below an error bound of 25%. The remaining three wells predicted the viscosity above the 
error bound of 25%. It was found that the shear sonic is the most important viscosity 
predictor. Further observations suggested that viscosity predictions are most accurate when 
there is separation between the deep, medium, and shallow resistivity curves. 

 

INTRODUCTION 
Most of the world’s oil resources are heavy, viscous hydrocarbons that are difficult and 

costly to produce and refine. With high oil prices and demand, and production of most 
conventional-oil reservoirs in decline, industry focus in many parts of the world is shifting 
to exploitation of heavy oil.  

The fluid property that most greatly affects productivity and recovery is viscosity 
(Batzle et al 2006). The more viscous the oil, more energy needs to be injected into the 
system to reduce the viscosity to allow it to flow. Conventional oil viscosity can range from 
1 centipoise (cP) [0.001 Pa*s] which is the viscosity of water, to about 10 cP [0.01 Pa*s]. 
Viscosity of heavy and extra-heavy oils can range from 10 cP [0.01 Pa*s] to 10,000 cP [10 
Pa*s]. The most viscous hydrocarbon, bitumen, is a solid at room temperature and softens 
readily when heated. Viscosity of bitumen can range from 10,000 cP [10 Pa*s] to more 
than 1,000,000 cP [1,000 Pa*s] (Alboudwarej et al 2006). Figure 1 shows the logarithmic 
scale of viscosity subdivided by the grade category of oil, and compares it to the viscosities 
of typical items found in our kitchen. Figure 1 also illustrates the temperature-dependence 
of viscosity. Clearly, increasing reservoir temperature decreases the viscosity. 
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FIG. 1. Oil viscosities by grade category, compared to typical kitchen items. Note that viscosity 
has a logarithmic scale (ConocoPhillips Oil Sands website). 

 Figure 2 shows core plug measurements from the oil sands about 50km south-
southwest of Fort McMurray, Alberta (Kato et al. 2008). The measurements show that both 
Vp and Vs decrease with increasing temperature (or decreasing viscosity).   

 

FIG. 2. P-wave and S-wave velocities of oil sands core plugs as a function of temperature at a 
constant pore pressure of 700 psi and confining pressure 900 psi (Kato et al. 2008). 
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Goal of this study 

In this study, data from 13 wells were obtained using AccuMap® from the Athabasca 
region of northern Alberta. Each well has laboratory oil viscosity measurements available, 
as well as dipole sonic logs, and a full suite of the standard well log curves. 

The goal was to establish a correlation between the measured viscosity values, and all 
of the available well log curves using multi-attribute analysis. In other words, we wanted 
to address the following question: Can multi-attribute analysis be used to train a 
relationship between viscosity and the well log data in only some of the wells, and then 
successfully predict the viscosity in the remaining wells?  

 

THEORY – MULTI ATTRIBUTE ANALYSIS 
Figure 3 illustrates the basic multi-attribute problem, showing the target log and, in this 

case, three attribute logs to be used to predict the target attribute (Hampson-Russell 2013). 

 

 

FIG. 3. The basic multi-attribute regression problem showing the target log and in this example, 
the 3 attributes to be used to predict the target (Hampson-Russell 2013).   

To lay out the theory of multi-attribute prediction, let us assume that the target log is P-
wave velocity, attribute 1 is bulk density, attribute 2 is gamma-ray, and attribute 3 is 
resistivity. The goal in this example is to predict P-wave velocity (in the depth domain) 
from the bulk density, gamma-ray, and resistivity curves.  

We can write the fundamental equation for linear prediction as: 

𝑉𝑉𝑉𝑉(𝑧𝑧) = 𝑤𝑤0 + 𝑤𝑤1𝐷𝐷(𝑧𝑧) + 𝑤𝑤2𝐺𝐺(𝑧𝑧) + 𝑤𝑤3𝑅𝑅(𝑧𝑧)                                     (1) 
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where Vp(z) is P-wave velocity in m/s, D(z) is bulk density in kg/m3, and R(z) is resistivity 
in ohm*m. This can be written as a series of linear equations: 
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where each row of equations represents a single depth sample. This can also be written 
in matrix form: 

               




































=



















3

2

1

0

NNN

222

111

N

2

1

w
w
w
w

RGD1

RGD1
RGD1

Vp

Vp
Vp



 

 

or more compactly as:  

𝑽𝑽𝒑𝒑 = 𝐴𝐴𝑾𝑾                                                              (4) 

We typically find that we have many more depth samples than number of input 
attributes. In other words, there are more rows in the A matrix than columns. This means 
that we have an over-determined problem (more observations than unknowns), and the 
least-squares solution is given by (Russell 2004): 

𝑾𝑾 = [𝐴𝐴𝑇𝑇𝐴𝐴]−1𝐴𝐴𝑇𝑇𝑽𝑽𝒑𝒑                                             (5) 

Applying these solved weights minimizes the squared error between Vp and AW: 

 �𝑽𝑽𝒑𝒑 − 𝐴𝐴𝑾𝑾�2                                                           (6)  

and by using Equation 2, we can now predict our target P-wave log. An example cross-plot 
of the result is shown in Figure 4.  

(3) 
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FIG.4. Cross-plot of the predicted Vp against the actual Vp. The red line is a line of perfect 
correlation, not a regression line (Hampson-Russell 2013). 

The prediction error is defined as the root-mean-squared difference between the true 
target log and the predicted log: 

𝑃𝑃𝑃𝑃 = �∑ (𝑉𝑉𝑝𝑝𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖 − (𝑤𝑤0 + 𝑤𝑤1𝐷𝐷𝑖𝑖 + 𝑤𝑤2𝐺𝐺𝑖𝑖 + 𝑤𝑤3𝑅𝑅𝑖𝑖))2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
                     (7) 

or more simply: 

𝑃𝑃𝑃𝑃 = �∑ (𝑉𝑉𝑝𝑝𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖 − 𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
                                    (8) 

where N is the number of depth samples in the well that we use to train our correlation. 

 
Step-wise Regression 

We showed that P-wave velocity could be predicted using three attributes (density, 
gamma-ray, and resistivity). However, these might not be the best attributes to use for the 
prediction.  Hampson-Russell’s Emerge™ software uses a process called step-wise 
regression to find the combination of attributes that are most useful for predicting the target 
log. Step-wise regression can be nicely explained in a series of steps (Russell 2004): 
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1.  Find the single best attribute by trial and error. In other words, calculate the 
prediction error for each individual attribute. The best attribute is the one with the 
lowest prediction error. Call this attribute A1. 

2. Find the best pair of attributes. In other words, form all pairs of attributes including 
A1: (A1, gamma-ray); (A1, resistivity); (A1, neutron porosity); and so on. The pair 
with the lowest prediction error is the best pair. Call this second attribute A2. 

3. Find the best triplet of attributes. In other words, form all triplets of attributes 
including A1 and A2: (A1, A2, resistivity); (A1, A2, neutron porosity); and so on. 
The triplet with the lowest prediction error is the best triplet. Call this third attribute 
A3. 

4. Carry on this process until all the available attributes are used. 

 An important point to note is that the prediction error will always decrease (or stay 
the same) as we increase the number of attributes (Russell 2004). However, the validation 
error does not always decrease as we add attributes, which is addressed in the following 
section. 

Cross-Validation 
Step-wise regression will give us a set of attributes that is guaranteed to reduce the total 

error as the number of attributes goes up. So when do we stop? This is determined using a 
technique called cross-validation, where we leave out a training well and predict it from 
the remaining wells (Russell 2004).  

Suppose we use five wells to train our correlation: Well1, Well2, Well3, Well4, Well5, 
and that we use the same three attributes as in our example from Section 2.1: bulk density 
(D), gamma-ray (G), and resistivity (R). Cross-validation works in the following steps 
(Hampson-Russell 2013): 

1. Leave out Well1, and solve for the regression coefficients using only data from 
(Well2, Well3, Well4, Well5). In other words, solve the system of equations from 
Equation 2 where the rows contain no data from Well1.  

2. With these coefficients, calculate the prediction error for Well1 (Equation 7 or 8), 
where now only data points from Well1 are uses. This gives us the validation error 
for Well1. Denote it as VE1. 

3. Repeat this process for Well2, Well3, Well4, and  Well5, each time leaving the 
selected well out in the calculation of regression coefficients, but using only that 
well for the error calculation. 

4. Calculate the average validation error for all wells: 

𝑉𝑉𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑉𝑉𝑃𝑃1 + 𝑉𝑉𝑃𝑃2 + 𝑉𝑉𝑃𝑃3 + 𝑉𝑉𝑃𝑃4 + 𝑉𝑉𝑃𝑃5

5
                                      (9) 
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In this example, the validation error computation was done using three attributes. 
However, it is routinely performed after each stage of the step-wise regression procedure, 
so that we have the average validation error as a function of the number of attributes. A 
validation plot for an Emerge™ analysis is shown in Figure 5. 

 

FIG. 5. Hampson-Russell Emerge™ prediction error plot. 

The horizontal axis shows the number of attributes used for the prediction, and the 
vertical axis shows the root-mean-square prediction error for that number of attributes 
(Equation 8). The lower black curve shows the error calculated using the training data (all 
of the wells). The upper red curve shows the error calculated using the validation data (by 
systematically leaving out wells and calculating the average validation error). This 
particular plot shows that when more than four attributes are used, the validation error starts 
to increase, which means that any additional attributes will over-fit the data (Russell 2004). 

Why would the validation error increase when we add more data? Adding attributes is 
similar to fitting a curve through a set of points, using a polynomial of increasing order 
(Hampson-Russell 2013). Figure 6 shows how a higher order polynomial (dashed curve) 
can fit the training data better (the black points), but can still fit the remaining test data 
poorly (the white points). A lower-order polynomial (solid curve) fits the training data 
slightly poorer, but better represents the overall behavior of the data (Hampson-Russell 
2013). 
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FIG. 6. Illustration of how data can be “over-trained” (Hampson-Russell 2013). 

 

DATA AND RESULTS 
The 13 wells used in this study are located in the Athabasca region of northern Alberta. 

Figure 7a shows a regional location map, and Figure 7b shows a zoomed-in view of the 
well locations. Note that since Well #13 is located 82km south of the main cluster, it was 
omitted from the analysis until the end. 

 

 

FIG. 7a. Location map of the study wells 
(Google Earth™) 

FIG. 7b. Zoomed-in view of the wells from 
AccuMap®. The wells are numbered 1 through 13, 

and all non-project wells are turned off. 
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The 13 project wells were found using the powerful search features of the IHS 
AccuMap® software. Table 1 summarizes some relevant information about the wells.  

Table 1. Summary of the 13 project wells. The bottom-hole temperature values are from the LAS 
files, and the rest of the information is from AccuMap®  

Figure 8 shows an example from Well 2 of what the well log curves typically look like 
through the producing intervals in the study area. The McMurray formation heavy oil 
reservoir in the area is a very clean sand as indicated by the low gamma-ray, and is very 
porous. From the porosity logs of all the wells, porosity ranges are between 30 to 35%. The 
high resistivity values indicate the presence of hydrocarbons, and the separation of the 
resistivity curves is a response to drilling mud invading the formation, which indicates a 
porous and permeable formation (Rider & Kennedy 2011). 

Viscosity Prediction Results 
In order to train a multi-attribute relation to predict viscosity from other logs, we need 

to have viscosity “logs” in the database as well. Viscosity “logs” were manually created 
for each well with a constant value (from Table 1) throughout the producing interval, and 
nulled everywhere else. Wells 1 to 5 were chosen to train the relationship, since they 
sample the entire viscosity range from 6685.20 to 18374.29 cP quite nicely. (Note that Well 
13 with a viscosity of 67332.10 cP is not yet being considered as part of the study since it 
is so far away.) 

We will now use the multivariate procedure to predict new pseudo-viscosity logs in each 
of the wells using only Wells 1 to 5 to train the relation. We will then see how close the 
predictions are to the true viscosity values of the remaining wells. Figure 9 shows the 
graphical training and validation errors of the multi-attribute analysis, and Table 2 shows 
the list of the best attributes as well as their errors (in cP). Note that for Table 2, each row 
corresponds to a particular multi-attribute transform and includes all the attributes above 
it. For example, the first row tells us that the best attribute to use is (1 / S-sonic [us/m]). 
The second row tells us that (1 / S-sonic [us/m]) and (1 / SP [mV]) together is the best pair 
of attributes to use. 

 
Well 

# 

 
UWID 

Producing 
Formation 

Total TVD 
(meters) 

Bottom-hole 
Temperature 

(deg C) 

Absolute 
Viscosity at 
20oC (cP) 

API 
Gravity at 

15oC (oAPI) 
01 102/01-09-087-23W4 Wabiskaw 346.00 14.00 6685.20 12.35 
02 102/10-29-086-23W4 McMurray 328.90 23.00 15831.08 11.08 
03 100/10-29-086-23W4 McMurray 330.50 20.00 17431.14 10.99 
04 100/15-29-086-23W4 McMurray 330.30 19.00 18374.29 10.67 
05 102/07-32-086-23W4 McMurray 328.40 25.00 11128.87 11.00 
06 100/02-32-086-23W4 McMurray 327.90 21.50 14289.35 10.70 
07 102-14-29-086-23W4 McMurray 330.30 25.00 15084.85 10.89 
08 103-14-29-086-23W4 McMurray 329.20 20.00 14360.26 11.06 
09 100-11-20-086-23W4 McMurray 328.00 33.00 11551.59 11.05 
10 100-03-32-086-23W4 McMurray 328.30 22.00 12771.49 11.32 
11 103-03-32-086-23W4 McMurray 327.80 28.00 14530.67 11.28 
12 102-02-32-086-23W4 McMurray 328.10 30.00 13290.69 11.61 
13 100-12-32-078-24W4 Wabiskaw 480.30 34.00 67332.10 9.23 
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FIG. 8. Type-curves from Well 2 for the study area, the scale is in measured depth. The porosity 
logs assume a sandstone matrix. Image generated using Matlab® 2014a. 

 

 Target (cP) Final Attribute Units Validation Error (cP) 

1 Viscosity 1 / (S-wave sonic) 1 / (μs/m) 2,860 

2 Viscosity 1 / (Spontaneous potential) 1 / mV 2,591 

3 Viscosity 1 / (Gamma Ray) 1 / API 3,424 

4 Viscosity 1 / (Shallow Resistivity) 1 / ohmm 2,793 

5 Viscosity Sqrt(Deep Resistivity) Sqrt(ohmm) 2,077 

6 Viscosity Sqrt(Medium Resistivity) Sqrt(ohmm) 2,520 

7 Viscosity 1 / (Neutron Porosity) 1 / decimal 1,699 

8 Viscosity 1 / (P-wave sonic) 1 / (μs/m) 1,687 

9 Viscosity 1 / (Density Porosity) 1 / decimal 1,681 

10 Viscosity 1 / (Bulk Density) 1 / (g/cc) 1,687 

 
Table 2. List of the best attributes for predicting the target viscosity logs for Wells 1 to 5, and their 

associated training and validation errors (in cP). Each row corresponds to a particular multi-
attribute transform and includes all the attributes above it. Credit: Emerge™ 
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FIG. 9. Emerge™ prediction error plot for viscosity using Wells 1 to 5, within their producing 
intervals. The training error (all wells) is shown by the black dots and the validation error is shown 

by the red dots. 

From Figure 9, the average validation error remains fairly flat at about 1690 cP after 
seven attributes, which is 14.5% of the total viscosity range of the study wells. This tells 
us that an optimum fit between viscosity and our well logs is found by using seven or eight 
attributes.  

However, the validation error curve from Figure 9 is not smooth like the training (all 
well) error curve is, which suggests that using the attributes in Table 2 to predict viscosity 
is “unstable.” Also, the results show that the SP (spontaneous potential) log is the second 
most important attribute to use. In my opinion, this does not make intuitive sense because 
SP does not have an absolute scale. Log analysts care about relative deflections of the SP 
curve (Rider & Kennedy 2011). Using an attribute without an absolute scale to predict 
absolute viscosity makes me nervous. 

The analysis was therefore modified to omit the SP log, and these updated results are 
displayed in Table 3 and Figure 10. In this case, the validation curve is smooth and reaches 
a minimum when seven attributes are used with an average validation error of 1777 cP. 
This is slightly higher than the initial analysis, but the smoothness of the validation curve 
suggests that omitting the SP log is more robust for predicting viscosity. These results show 
that the optimum fit between viscosity and our well logs (omitting the SP log) is found by 
using the first five to seven attributes from Table 3. This can be put in mathematical form 
with the same structure as Equation 1 as such: 
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 Target (cP) Final Attribute Units Validation Error (cP) 

1 Viscosity 1 / (S-wave sonic) 1 / (μs/m) 2,860 

2 Viscosity Deep Resistivity ohmm 3,002 

3 Viscosity Medium Resistivity ohmm 2,842 

4 Viscosity 1 / (Shallow Resistivity) 1 / ohmm 2,594 

5 Viscosity 1 / (Neutron Porosity) 1 / decimal 1,929 

6 Viscosity 1 / (Photoelectric factor) 1 / (barns/e) 1,799 

7 Viscosity 1 / (Density Porosity) 1 / decimal 1,777 

8 Viscosity 1 / (Gamma Ray) 1 / API 1,867 

9 Viscosity (P-wave sonic)2 (μs/m)2 2,080 

10 Viscosity 1 / (Bulk Density) 1 / (g/cc) 2,088 

Table 3. List of the best attributes (SP omitted) for predicting the target viscosity logs for Wells 1 
to 5, and their associated training and validation errors (in cP). Each row corresponds to a 

particular multi-attribute transform and includes all the attributes above it.  

FIG. 10. Emerge™ prediction error plot for viscosity using Wells 1 to 5, within their producing 
intervals. The training error (all wells) is shown by the black dots and the validation error is shown 
by the red dots. These results show that five to seven attributes should be used. (The SP log was 

omitted to produce this result.) 
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where η is absolute viscosity at a specific depth location in centipoise, S-sonic is S-wave 
slowness in μs/m, ResDeep is deep penetrating resistivity in ohm*m, ResMedium is 
medium penetrating resistivity in ohm*m, ResShallow is shallow penetrating resistivity in 
ohm*m, NPHI is neutron porosity (sandstone matrix) as a decimal, PEF is photoelectric 
factor in barns/electron, and DPHI is density porosity (sandstone matrix) as a decimal.  

Figure 11 shows the validation results for the training wells (Wells 1 to 5), where each 
of the wells were predicted from the remaining four. The average validation error is 1777 
cP, or 14.5% of the total viscosity range (6685.20 to 18374.29 cP), which is a promising 
result. It is also encouraging to note that Well 1, which has the lowest viscosity of all the 
study wells (6685.20 cP), was predicted fairly accurately using only wells 2 to 5. 

Figure 12 shows the blind viscosity prediction of the remaining wells (Wells 6 to 13) 
using Equation 10, where Wells 1 to 5 were used to train the relationship. The prediction 
accuracies range from very good with 384 cP error, to fairly poor with 8390 cP error. To 
determine an error cutoff (still ignoring Well 13), we know that the range of “true” lab 
measured viscosities is: [18374.29cP – 6685.20 cP] which equals 11690 cP. Using a cutoff 
error of 25%, the prediction error cutoff is therefore 2922 cP. Using this criteria, four out 
of the seven wells (6, 8, 11, and 12) have average prediction errors comfortably less than 
25%, and three out of the seven wells (7, 9, and 10) have average prediction errors greater 
than 25%.  

One thing immediately obvious is that the prediction error for Well 13 is incredibly far 
off (55697 cP!). This is probably because of two reasons: first, it is located 82 km south of 
the other wells which suggests that multi-attribute viscosity prediction is best used within 
a specific reservoir. Secondly, Well 13 has a lab measured viscosity of 67332 cP, which is 
much higher than the viscosities used to train the relationship.  
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FIG. 11. Cross-validation of the training wells using the first 7 attributes from Table 3, displayed on a logarithmic scale from 5,000 to 50,000 cP. The 
vertical black lines are the viscosity lab-measured values and the red curves are the predicted viscosities. Each training well is systematically left-out of 
the analysis and predicted from the remaining wells. For example, the viscosity curve in Well 1 was predicted only using Wells 2 to 5, and the error is 
called the validation error for Well 1. The horizontal blue lines outline the intervals used to train the relationship. Credit: Hampson-Russell Emerge™ 
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FIG. 12. Blind viscosity prediction of the remaining wells (Wells 6 to 13) using the first 7 attributes from Table 3, displayed on a logarithmic scale 
from 5,000 to 50,000 cP. Only the training wells (Wells 1 to 5) were used to come up with the relationship. The black lines are the viscosity lab-
measured values and the red curves are the predicted viscosities using Equation 10. Note that the black lines (true viscosities) only cover the 

producing depth intervals highlighted in yellow, which is the only interval we care about. Note also that the prediction for Well 13 (82km south of 
the other wells) had such high error that it had to be displayed on a different scale (1,000 to 100,000 cP). Credit: Hampson-Russell Emerge™ 
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To gain insight as to why some wells have more accurate predictions than others, Figure 
13a and Figure 13b show the relevant well log curves for the best predictor well (Well 11), 
and the worst predictor well (Well 9), respectively. One of the basic differences is that the 
best predictor well has consistent separation between the resistivity curves, as well as a 
relatively thick reservoir interval (greater than 10m). In the worst predictor well, the 
resistivity curves basically overlap, and the reservoir thickness is considerably thinner (less 
than 5m).  

 

 

 

The three resistivity curves are also the most important attributes in predicting viscosity 
following the shear sonic log. These observations suggest that we get better viscosity 
predictions when there is separation between the resistivity curves (ie. a porous and 
permeable reservoir, Rider & Kennedy 2011). This also suggests that viscosity could be 
related to the separation of the resistivity curves rather than the curves themselves.

FIG. 13a. The resistivity curves from 
Well 11 (the best predictor well). 
The scale is in measured depth, not 
true vertical depth. Image generated 
in Matlab® 2014a. 

FIG. 13b. The resistivity curves 
from Well 9 (the worst predictor 
well). The scale is in measured 
depth, not true vertical depth. 
Image generated in Matlab® 
2014  
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CONCLUSIONS AND FUTURE WORK 
Multi-attribute analysis revealed that the shear sonic log is the most important attribute 

in predicting the viscosity of this reservoir (Table 3). This was a welcome result, because 
it supports the theory that the shear modulus of a heavy oil-rock system is sensitive to 
variations in viscosity.  

The next most important attributes in order of decreasing importance were: the three 
resistivity logs, neutron porosity, photoelectric factor, and density porosity. Any additional 
attributes increased the validation error. 

It was demonstrated that training a multi-attribute relationship between viscosity and 
well logs can be done successfully if lab viscosity measurements of the reservoir are 
available. In this study, five wells were used to train the relation to blindly predict the 
viscosity of the remaining wells. Four out of the seven remaining wells (6, 8, 11, and 12) 
had average prediction errors less than 25%, and three of the seven remaining wells (7, 9, 
and 10) had average prediction errors greater than 25%. The wells having high prediction 
error showed little to no separation in the resistivity curves, and the wells with low 
prediction error showed obvious separation between the resistivity curves. This suggests 
that multi-attribute analysis of well logs can predict viscosity most accurately in a porous 
and permeable heavy oil reservoir, and that viscosity might be related to the separation of 
the resistivity curves. 

Finally, these results highlight the importance of acquiring S-wave data in addition to      
P-wave data, because as demonstrated here, the shear information is critical for estimating 
viscosity. Estimating viscosity ultimately adds value to the exploration company, because 
it is used as a main criterion to select the optimum recovery method (water/polymer 
flooding, vertical well cold production, horizontal well cold production, or steam 
injection). Viscosity is also used to refine production forecasts of heavy oil reservoirs once 
a recovery process has been selected (Miller et al 2006). 

Future Work 
The viscosity data available in AccuMap® is but a small portion of all the acquired data 

in western Canada. There is a multitude of viscosity information out there where 
exploration companies have contracted third party companies to perform the oil analysis. 
If one could get access to a large database of viscosity measurements in an area, plus a 3D 
volume of seismic data, and combining that with publicly available dipole sonic logs, there 
are multiple paths that could build off from this study in the quest for heavy oil viscosity. 

As an example, multi-attribute analysis could be extended from the well logs to the 
seismic data, and the accuracy of predicting viscosity from seismic versus from logs could 
be investigated, as well as the effects of velocity dispersion due to the different frequencies 
of measurement (laboratory, well logs, and seismic).  

In this study, the multi-attribute relation was trained with viscosities ranging from 6,685 
cP to 18,374 cP. Using a larger database would allow multi-attribute analysis to be tested 
against a much wider range of viscosities.  
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