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AVO inversion with a combination of series reversion and 
Gauss-Newton iteration 

Jian Sun, Kristopher A.H. Innanen 

ABSTACT 

Fluid-property discrimination is always an important goal we desired in seismic 

exploration, and one of interested ways to achieve that is related to AVO/AVA analysis. 

Several non-linear AVO/AVA approximations were derived directly from Zoeppritz 

equation with the comparison discussed. Non-linear AVO inversion with a combination 

of series reversion and Gauss-Newton iteration is introduced at the end of the paper, and 

one of those approximations we derived is applied into non-linear AVO inversion on 

synthetic data using well-log. Ultimately, the comparison between non-linear inversion 

method and linear inversion was discussed. 

INTRODUCTION 

AVO/AVA analysis is a useful pre-stack tool and widely applied to estimate elastic 

subsurface parameters according to the amplitude varies versus offset or angle incidence. 

Poroelastic theory delineated by Biot (1941) and Gassmann (1951) present a great tool 

for understanding fluid-interacted rock, and there is a great literature summary published 

by Krief (1990). Russell (2003) described how to connect the fluid discrimination with 

AVO inversion, and starting with AVO approximations with bulk modulus, shear 

modulus and density  proposed by Gray (1999), derived a new linear approximation in 

terms of fluid term, shear modulus and density variation. Zong (2012) presented a new 

linear AVO approximation using P- and S- wave moduli in Bayesian framework.  

It’s well known that the relationship of the elastic parameters and observed seismic 

data is a non-linear inverse problem. Commonly speaking, the least square method is a 

great way to solve the non-linear equation, and one of the least square methods is famous 

as the Gauss-Newton iterative method by calculating the gradient and the Hessian matrix. 

Furthermore, Innanen (2011) introduced the AVO approximation in velocity perturbation 

form and delineated the AVO formula in form of series expansion.  

In this paper, starting with Zoeppritz (1919) equation, we derived a non-linear AVO 

approximation with P- and S- waves moduli both in perturbation form and in reflectivity 

(ratio) form. The accuracy comparison will be discussed and one of those approximations 

will be applied into the non-linear AVO algorithm. In addition to that, the AVO 

approximation formula is expanded as series reversion and delineated how each term in 

series related to AVO approximation. The Gauss-Newton iterative algorithm will be 

applied to achieve non-linear AVO inversion and the input initial value can be obtained 

by evaluating the first order equation in series reversion. At last, a synthetic data using 

well 12-27, collected by CREWES at Hussar, Alberta in September 2011, will be 

considered to examine the capability of the non-linear AVO inversion with a combination 

of series reversion and Gauss-Newton iteration based on the new AVO formula we 

derived in terms of P- and S- waves moduli. 
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BIOT-GASSMANN THEORY WITH P- AND S- MODULI 

Many theories have been published concerning the relationship between 

compressional (P), shear (S) waves and the lithology, the petro-physical parameters. In 

isotropic, elastic non-porous media, a basic equation can connect P- and S- wave velocity 

with density and different kinds of modulus, which is well known and can be written as 

 𝑉𝑝 = √
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where 𝜌 is the density,  𝜆 is the Lame coefficient, 𝜇 is the 2
nd

 Lame coefficient or shear 

modulus defined as the ratio of the shear stress to shear strain, K is the bulk modulus, M 

is the P-wave modulus defined as the ratio of axial stress to axial strain in a uniaxial state 

(Mavko et al. 1993). 

The poroelasticity theory of Biot (1941) and Gassmann (1951) are most frequently 

way to express the P- and S- wave velocity in terms of elastic moduli in porous saturated 

rocks. The Biot-Gassmann theory indicated that a porous rock in Figure 1 can be 

recognized by four major components: the rock matrix, the pore/fluid system, the dry-

rock skeleton, and the saturated rock itself (Russell et al. 2003). 

For a porous saturated rock, Biot (1941) and Gassmann (1951) derived the parameters 

relationship between saturated and dry rock, in terms of Lame parameter and bulk 

modulus, respectively. Those equations are knows as 

 𝜆𝑠𝑎𝑡 = 𝜆𝑑𝑟𝑦 + 𝛽2𝑀𝑉 (4) 

 𝐾𝑠𝑎𝑡 = 𝐾𝑑𝑟𝑦 + 𝛽2𝑀𝑉 (5) 

where 𝐾𝑠𝑎𝑡 is the bulk modulus of the saturated rock, 𝐾𝑑𝑟𝑦 is the bulk modulus of the dry 

rock, 𝛽 is the Biot coefficient, 𝑀𝑉 is the modulus, or hydraulic pressure needed to force 

an amount of water into the formation without any change in formation volume.  

As the fluid has no viscosity and equating equations (3), (4) and (5), in other words, it 

means that 

 𝜇𝑠𝑎𝑡 = 𝜇𝑑𝑟𝑦 (6) 

where 𝜇𝑠𝑎𝑡 and 𝜇𝑑𝑟𝑦 are the shear moduli of saturated rock and dry rock, respectively. 

Also, we can rewrite equations (4) and (5) in terms of P- and S- wave moduli, 

 𝑀𝑠𝑎𝑡 = 𝑀𝑑𝑟𝑦 + 𝛽2𝑀𝑉 (7) 

where 𝑀𝑠𝑎𝑡  is the P-wave modulus of the saturated rock, and 𝑀𝑑𝑟𝑦  is the P-wave 

modulus of dry rock. The term 𝛽2𝑀𝑉 represents the interaction of the fluid filling the 
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porosity with solid dry-rock in the formation (Krief et al. 1990). Same as Russell et al. 

(2003) delineated, we can rewrite the fluid term 𝑓 in terms of  𝑀𝑠𝑎𝑡 and 𝑀𝑑𝑟𝑦, 

 𝑓 = 𝛽2𝑀𝑉 = 𝑀𝑠𝑎𝑡 − 𝑀𝑑𝑟𝑦 (8) 

Then, in porous saturated rock, following equations (1) and (2), P- and S- wave velocities 

can be calculated by  

 (𝑉𝑝)𝑠𝑎𝑡 = √
𝑀𝑠𝑎𝑡

𝜌𝑠𝑎𝑡
 = √

𝑀𝑑𝑟𝑦+𝑓

𝜌𝑠𝑎𝑡
 (9) 

  (𝑉𝑠)𝑠𝑎𝑡 = √
𝜇𝑠𝑎𝑡

𝜌𝑠𝑎𝑡
 = √

𝜇𝑑𝑟𝑦

𝜌𝑠𝑎𝑡
 (10) 

And the fluid term can be rewritten as 

 𝑓 = 𝑀𝑠𝑎𝑡 − 𝜌𝑑𝑟𝑦(𝑉𝑝)
𝑑𝑟𝑦

2
= 𝑀𝑠𝑎𝑡 − 𝛾𝑑𝑟𝑦

2 𝑢𝑑𝑟𝑦 = 𝑀𝑠𝑎𝑡 − 𝛾𝑑𝑟𝑦
2 𝑢𝑠𝑎𝑡 (11) 

where 𝛾𝑑𝑟𝑦=(
𝑉𝑝

𝑉𝑠
)𝑑𝑟𝑦 is the velocity ratio between P- and S- wave in dry-rock, which can 

be estimated and has been discussed by Russell (2003), (𝑉𝑝)𝑠𝑎𝑡 is the P-wave velocity in 

porous saturated rock, (𝑉𝑠)𝑠𝑎𝑡 is the S-wave velocity in porous saturated rock. 

 

FIG.1. Four major components in a cube of rock with poroelasticity theory: the rock matrix, the 
pore/fluid system, the dry rock frame, and the saturated frame (Russell et al. 2003).  

Consider those theories we reviewed above, the fluid term in porous saturated rock 

can be discriminated using P-, S- wave moduli and 𝛾𝑑𝑟𝑦. In next section, we will discuss 

how to connect AVO with P-, S- wave moduli start from Zoeppritz equation. 
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POROELASTICITY AVO/AVA APPROXIMATION IN MODULI 

The response of an incidence P-wave between two elastic media (when angle 

incidence is greater than zero) can be delineated in Figure 2. And exact solutions for 

reflected (  𝑅𝑝𝑝  and  𝑅𝑝𝑠 ) and transmitted (  𝑇𝑝𝑝  and  𝑇𝑝𝑠 ) waves can be achieved by 

applying Zoeppritz (1919) equation. In poroelastic theory, AVO can also be calculated 

except the fluid term included.  

 

FIG.2. Reflections and transmissions between two elastic media for an incident P-wave  
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If we assume perturbation term between two poroelastic media can be calculated by 
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We start from equation (12), redraw each item of coefficient matrix in terms of ( Ma ,

a , a , sat , 0sin ) or (
M

M


,






,






, sat , 0sin ), and then applying Cramer’s rule to 

generate series expression for  𝑅𝑝𝑝 and  𝑅𝑝𝑠 with Maple, then AVO/AVA approximation 

with P- and S- wave moduli both in perturbation  form and ratio form can be derived. 

Perturbation form for  𝑅𝑝𝑝 and  𝑅𝑝𝑠 (details of 2
nd

 order and 3
rd

 order for  𝑅𝑝𝑝 and  𝑅𝑝𝑠 

can be found in Appendix I), (state: for writing convenience, all 𝛾𝑑𝑟𝑦=(
𝑉𝑝0

𝑉𝑠0
)𝑑𝑟𝑦  in the 

following sections represent that the P- and S- wave velocity ratio in the upper layer): 
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 Ratio form for  𝑅𝑝𝑝  and  𝑅𝑝𝑠  (details of 2
nd

 order and 3
rd

 order can be found in 

Appendix II): 
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where 
(1) (2) (3), ,pp pp ppR R R  of equations (15)-(26) are the 1

st
, 2

nd
 ,3

rd
 orders in  𝑅𝑝𝑝 , 

respectively, both for perturbation form and ratio form. 

To take a glance at the influence of high order term of  𝑅𝑝𝑝, 𝑅𝑝𝑠 and the accuracy of 

the new AVO approximation both in perturbation form and in ratio form, we compared 

each truncated term with the exact solution of  𝑅𝑝𝑝 obtained from Zoeppritz equation on a 

slight change fluid-saturated rock with angle incidence start from 0 to 90 degrees. The 

parameters P-wave velocity, S-wave velocity and density [ 𝑉𝑝,  𝑉𝑠, 𝜌] in upper media are 

[2857m/s, 1666m/s, 2275kg/m3], for lower media, parameters of saturated rock are 

[2898m/s, 1290m/s, 2425kg/m3].  In Figure 3, we focus on the high order effect of  𝑅𝑝𝑝, 

in perturbation form. After comparison of each truncated term to exact solution, we can 

observe that, the accuracy increase when high order included in  𝑅𝑝𝑝 especially for small 

incidence angle, but 3
rd

 truncated order might disperse at large angle, around 70 to 75 

degree, compared to 2
nd

 order. However, overall 3
rd

 truncated term of 𝑅𝑝𝑝, has a better 

accuracy than 1
st
 and 2

nd
 truncated order. Figure 4 shows the comparison of 𝑅𝑝𝑠 , in 

perturbation form, after analysis, 2
nd

 truncated order would be a sensible choice to do the 

converted AVO analysis of this media.  

In Figure 5, the comparison of  𝑅𝑝𝑝,  in ratio form was discussed, 2
nd

 truncated and 3
rd

 

truncated  𝑅𝑝𝑝 have a better resolution than linear approximation, but there is not too 

much improvement of 3
rd

 truncated order compared to 2
nd

 truncated order. We believe 2
nd

 

truncated  𝑅𝑝𝑝 will be a wise choice after the computational burden considered. Figure 6 

indicates the comparison of  𝑅𝑝𝑠 in ratio form with angle incidence, and 2
nd

 truncated 

order was also the result with the highest resolution. 

Figure 7 also indicates that the comparison of  𝑅𝑝𝑝 , in ratio form, but the angle 

incidence of the formula is replaced by the average angle which is defined as the average 

value of incident and refracted plane wave angles at the boundary. and it can be observed 

that 2
nd

 and 3
rd

 truncated order also have a better solution than 1
st
 linear approximation, 
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improvement of 3
rd

 truncated order is inconspicuous,  2
nd

 truncated order is a advisable 

choice for AVO analysis. We do the same substitution between angle incidence and 

average angle in Figure 8 for 𝑅𝑝𝑠, 2
nd

 truncated  𝑅𝑝𝑠 has the best precision compared to 

1
st
 and 3

rd
 truncated order. 

 

FIG.3. Comparison of 𝑅𝑝𝑝,   with 1
st
, 2

nd
, 3

rd
, orders in perturbation form. The exact solution for 

 𝑅𝑝𝑝 calculated using Zoeppritz equation is indicated in red, the 1st order (linear approximation) 

solution is indicated in black, the 2
nd

 truncated order of  𝑅𝑝𝑝,  (includes 1
st
 + 2

nd
 order terms) is 

indicated in blue, the 3
rd

 truncated order  𝑅𝑝𝑝,  (1
st
 +2

nd
 +3

rd
 order terms) is indicated in green. 

Critical angle is delineated in dashed red line. 

 

FIG.4. Comparison of  𝑅𝑝𝑠with 1
st
, 2

nd
, 3

rd
, orders in perturbation form. The exact solution for  𝑅𝑝𝑠 

calculated using Zoeppritz equation is indicated in red, the 1
st
 order (linear approximation) 
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solution is indicated in black, the 2
nd

 truncated order of  𝑅𝑝𝑠, (includes 1
st
 + 2

nd
 order terms) is 

indicated in blue, the 3rd truncated order  𝑅𝑝𝑠 (1
st
 +2

nd
 +3

rd
 order terms) is indicated in green. And 

the critical angle labelled is for reflected PP-wave. 

 

FIG.5. Comparison of  𝑅𝑝𝑝  with 1
st
, 2

nd
, 3

rd
, orders in ratio form. The exact solution for 

 𝑅𝑝𝑝 calculated using Zoeppritz equation is indicated in red, the 1st order (linear approximation) 

solution is indicated in black, the 2
nd

 truncated order of  𝑅𝑝𝑝 (includes 1
st
 + 2

nd
 order terms) is 

indicated in blue, the 3
rd

 truncated order  𝑅𝑝𝑝 (1
st
 +2

nd
 +3

rd
 order terms) is indicated in green. 

Critical angle is delineated in dashed red line. 

 

FIG.6. Comparison of  𝑅𝑝𝑠  with 1
st
, 2

nd
, 3

rd
, orders in ratio form. The exact solution for  𝑅𝑝𝑠 

calculated using Zoeppritz equation is indicated in red, the 1
st
 order (linear approximation) 

solution is indicated in black, the 2
nd

 truncated order of  𝑅𝑝𝑠 (includes 1
st
 + 2

nd
 order terms) is 
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indicated in blue, the 3
rd

 truncated order  𝑅𝑝𝑠 (1
st
 +2

nd
 +3

rd
 order terms) is indicated in green. And 

the critical angle labelled is for reflected PP-wave. 

 

FIG.7. Comparison of  𝑅𝑝𝑝 with 1
st
, 2

nd
, 3

rd
, orders in ratio form, but angle represent the average 

of the incident and the refracted angles. The exact solution for  𝑅𝑝𝑝  calculated using Zoeppritz 

equation is indicated in red, the 1
st
 order (linear approximation) solution is indicated in black, the 

2
nd

 truncated order of  𝑅𝑝𝑝 (includes 1
st
 + 2

nd
 order terms) is indicated in blue, the 3

rd
 truncated 

order  𝑅𝑝𝑝 (1
st
 +2

nd
 +3

rd
 order terms) is indicated in green. Critical angle is delineated in dashed 

red line. 

 

FIG.8. Comparison of  𝑅𝑝𝑠 with 1
st
, 2

nd
, 3

rd
, orders in ratio form, but angle represent the average 

of the incident and the refracted angles. The exact solution for  𝑅𝑝𝑠 calculated using Zoeppritz 

equation is indicated in red, the 1
st
 order (linear approximation) solution is indicated in black, the 

2
nd

 truncated order of  𝑅𝑝𝑠 (includes 1
st
 + 2

nd
 order terms) is indicated in blue, the 3

rd
 truncated 
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order  𝑅𝑝𝑠 (1
st
 +2

nd
 +3

rd
 order terms) is indicated in green. And the critical angle labelled is for 

reflected PP-wave. 

 

FIG.9. Comparison of  𝑅𝑝𝑝 both in perturbation and ratio form and with average angle. The exact 

solution for  𝑅𝑝𝑝  calculated using Zoeppritz equation is indicated in red, the truncated 3
rd

 order 

 𝑅𝑝𝑝 in perturbation form is indicated in blue, the 2
nd

 truncated order of  𝑅𝑝𝑝 with indigence angle 

in ratio form is indicated in green, and the 2
nd

 truncated order of  𝑅𝑝𝑝  with average angle is 

indicated in black. Critical angle is delineated in dashed red line. 

 

FIG.10. Comparison of  𝑅𝑝𝑠 both in perturbation and ratio form and with average angle. The exact 

solution for  𝑅𝑝𝑠 calculated using Zoeppritz equation is indicated in red, the truncated 3
rd

 order 

 𝑅𝑝𝑠 in perturbation form is indicated in blue, the 2
nd

 truncated order of  𝑅𝑝𝑠 with indigence angle in 

ratio form is indicated in green, and the 2
nd

 truncated order of  𝑅𝑝𝑠 with average angle is indicated 

in black. Critical angle for reflected PP wave is delineated in dashed red line. 
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The discussions of the high order effect of R indicate that, 3
rd

 truncated  𝑅𝑝𝑝  in 

perturbation form, 2
nd

 truncated  𝑅𝑝𝑝 in ratio form, 2
nd

 truncated  𝑅𝑝𝑝 with average angle 

in ratio form have a relative better resolution. And we compared them in Figure 9, all of 

them have a great resolution when angle incidence is less than 50 degree, and 2
nd

 

truncated  𝑅𝑝𝑝  in ratio form has a better resolution with incidence angle increasing after 

50 degree. In Figure 10, a similar comparison was done among the related  𝑅𝑝𝑠 

corresponding to  𝑅𝑝𝑝  of Figure 9, two approximations in ratio form have a better 

resolution than 3
rd

 truncated  𝑅𝑝𝑠  in perturbation form, and there are not too much 

difference between two approximations in ratio form. 

In the end of this section, with consideration of the accuracy of 𝑅𝑝𝑝, the 2
nd

 truncated 

 𝑅𝑝𝑝 with incidence angle in ratio form will be considered as the AVO approximation 

formula to achieve non-linear AVO/AVA inversion with a combination of series 

reversion and Gauss-Newton iteration in the experiment. 

NON-LINEAR AVO/AVA INVERSION  

Based on the precious discussions, non-linear AVO approximation is prepared for 

inversion. The next step is how to connect those approximations with series reversion and 

Gauss-Newton iteration. From this moment on, only approximation of PP-wave  𝑅𝑝𝑝 will 

be considered as an example to show the connections. 

AVO/AVA series reversion 

Consider the connection of series reversion and AVO/AVA, the reflection coefficient 

is the function of petrophysical parameters, in here,  𝑅𝑝𝑝 can be expressed as the function 

of /M M , /   and /  . Therefore,  𝑅𝑝𝑝 can also be expanded as a series, written as 

 
(1) (2) (3)

pp pp pp ppR R R R   …；
 (27) 

where, 
(1)

ppR ,
(2)

ppR , 
(3)

ppR  are 1
st
 , 2

nd
 , 3

rd
 orders in series expansion of  𝑅𝑝𝑝, and they can be 

expressed as 

 
(1)

1 1 1 ;pp MR Ad B d C d     (28) 

 
(2) 2 2 2

2 2 2 ;pp M M M M MR A d B d C d D d d D d d D d d             
 (29) 

 

(3) 3 3 3 2 2 2

3 3 3 2 2 2

2 2 2

2 2 2 ;

pp M M M M M M M

M M M M

R A d B d C d D d d D d d D d d

D d d D d d D d d D d d d

       

           

     

   
 (30) 

while M
Md

M
 , d




 , d




 . 

In this paper, only first two orders will be considered to non-linear AVO/AVA 

analysis depending on the discussion above about the accuracy of  𝑅𝑝𝑝 and  𝑅𝑝𝑠 in last 

section. Therefore,  𝑅𝑝𝑝 can be written as  
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(1) (2) 2 2 2

1 1 1 2 2 2

;

pp pp pp M M

M M M M

R R R A d B d C d A d B d C d

D d d D d d D d d

   

      

       

  
 (31) 

Equation (31) is considered as the definitive formula to non-linear AVO/AVA inversion 

related to the next sub chapter. 

AVO/AVA iteration with Gauss-Newton 

The Gauss-Newton algorithm is a classic way to solve non-linear least square problem, 

typically expressed mathematically as: 

 2

1

N

i

i

F r


  (32) 

where F is the objective function, namely, it’s the sum of the square of the residuals for 

all angles. The residual, ir  is the difference between the observed value and the valued 

estimated by the method, 

 i i ir s   (33) 

while is  is the actual value we observed, i  is the value we predicted using the following 

formula, 

 

2 2 2

1 1 1 2 2 2

;

i M M

M M M M

A d B d C d A d B d C d

D d d D d d D d d

   

      

      

  
 (34) 

Then the i-th iterative step can be expressed as  

 1

1i i i ix x H g

    (35) 

In here, 1ix   is the parameter vector we yearn for, ix  is the input for i-th iterative step, 

1

iH   is the Hessian matrix of the objective function in i-th step, 
ig  is the gradient of the 

objective function in i-th step, they can be calculated by 

 

T

i

i i i

M
x

M

 

 

       
       

      

    (36) 

 

M

F

d

F
g

d

F

d





 
 
 
 
 
 

 
 

  

;    (37) 
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2 22

2

2 2 2

2

2 2 2

2

M MM

M

M

F FF

d d d dd

F F F
H

d d d d d

F F F

d d d d d

 

   

   

  
 

    
 

  
 
     
 

   
      

 (38) 

One of the problems of the Gauss-Newton iteration is local convergence, the key point 

of that is how to choose a proper initial value for iteration. To solve that, or to find an 

advisable initial value, we back to the series reversion. 

 
(1) (2) (3)

pp pp pp ppR R R R   …；
 (39) 

The idea of solving series reversion is equating both sides of equation (39) like orders 

after series expansion, and then we have, 

 

(1)

(2)

(3)

0

0

...

pp pp

pp

pp

R R

R

R

 









 (40) 

The first equation in equations (40) is a linear equation, also can be written as  

 

       

       

       

1 1 1 1 1 1 1

1 2 1 2 1 2 2

1 1 1

...

M pp

M pp

N M N N pp N

A d B d C d R

A d B d C d R

A d B d C d R

 

 

 

   

   

   

  


  


   

 (41) 

Linear solution can be easily obtained by solving equation (41), and we will consider this 

linear solution as the initial value for non-linear Gauss-Newton iterative AVO/AVA 

inversion. 

EXPERIMENT WITH WELL-LOG SYNTHETIC 

Synthetic with well-log 

Well 12-27 is the log data collected by CREWES at Hussar, Alberta in September, 

2011 for low-frequency seismic study, which includes P-wave sonic log, S-wave sonic 

log, and density log (Figure 11). And VP/VS ratio at the well location can be acquired. As 

indicated, the interested time zone starts from 0.69s to 0.73s. Beyond that, P-wave 

modulus and S-wave modulus were also calculated at the well location, which is shown 

in the Figure 12. Then, the variation of P-wave modulus, S-wave modulus, and density 

can be obtained as well by implemented Eq. (14) (shown in Figure 13), and these will be 

considered as the exact value and compared to the inversed solution after AVO inversion 

applied. 



Sun and Innanen 

14 CREWES Research Report Volume 27 (2015)  

 

 

FIG.11. Well 12-27 collected by CREWES in September 2011 at Hussar, Alberta. And P-wave 
velocity, S-wave velocity, density log, and Vp/Vs ratio are shown from left to right, respectively. 

 

FIG.12. The obtained P-wave modulus, S-wave modulus, and density log at well location. 
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FIG.13. The variation of P-wave modulus, S-wave modulus, and density at well location. 

Consider those parameters from well 12-27 as the input of Zoeppritz equation, AVO 

modelling for PP-wave and PS-wave were achieved by convolving with a min-phase 

wavelet. Both PP-wave modelling and PS-wave modelling datasets are arranged in 

incidence angle from 0 to 50 degrees, and are shown in Figure 14 and 15 respectively. 

These will be applied to examine the accuracy of the non-linear AVO/AVA inversion 

with a combination of series reversion and Gauss-Newton iteration. 

 

FIG. 14. The angle gather of PP-wave modeling using Zoeppritz equation from 0 to 50 degrees. 
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FIG. 15. The angle gather of PS-wave modeling using Zoeppritz equation from 0 to 50 degrees. 

AVO inversion with PP-wave modelling 

AVO synthetic modeling with well-log for PP-wave (Figure 14) will be applied to the 

non-linear AVO inversion we stated in precious section. To examine how well the 

nonlinear AVO inversion algorithm does, we also implemented a linear AVO inversion 

and compared the results from non-linear AVO inversion with the linear inversed results.  

Figure 16 and Figure 17 show us the linear inversed results and the results using non-

linear inversion for density, P- and S- wave modulus, respectively, and both of them are 

compared with well-log data.  Figure 18 shows the comparison between linear and non-

linear approach in a zoomed in scale. As we can see, linear results matched with well-log 

data to some extent, but we still have some mismatched points. Compared to that, non-

linear results shows a great agreement with well log data, even extremely perfect results 

in P-wave modulus and density. And to inspect the accuracy of this non-linear 

AVO/AVA method and get a better review of those comparisons, estimated errors of all 

inversed results are calculated, both for linear inversion and non-linear inversion.  

Figure 19 and 20 indicated the inversed errors of P-, S-wave modulus, and density in 

the same scale, using linear inversion and nonlinear inversion we proposed, respectively. 

Both of linear and non-linear inversion acquired quite matched results for P-wave 

modulus and density, and nonlinear inversed results are still better than linear inversed 

results. For S-wave modulus, the errors using linear method are not even acceptable 

while the nonlinear algorithm achieved much better results with no more than 7 iterations. 

Therefore, in this case, the nonlinear AVO inversion with a combination of series 

reversion and Gauss-Newton using PP-wave data is an efficient and better choice 

compared with linear inversion. 
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FIG. 16. The comparison between linear AVO results (using PP-wave modelling data) and well-
log for the variation of P-wave modulus, S-wave modulus, and density, from left to right. 

 

FIG. 17. The comparison between non-linear AVO results (using PP-wave modelling data) and 
well-log for the variation of P-wave modulus, S-wave modulus, and density, from left to right. 
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FIG. 18. The comparison between linear inversed results and non-linear AVO inversions for the 
variation of P-wave modulus, S-wave modulus, and density, using PP-wave modelling data. The 
upper and lower panel show Figure 16 and 17 in a zoomed in scale, respectively.  
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FIG. 19. Errors of inversed P-, S-wave modus, and density using linear inversion with PP-wave 
modelling data. 

 

FIG. 20. Errors of inversed P-, S-wave modus, and density using non-linear AVO inversion with a 
combination of series reversion and Gauss-Newton with PP-wave modelling data. 
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AVO inversion with PS-wave modelling 

In this section, PS-wave synthetic data we generated using Zoeppritz equation will be 

considered as an input of converted wave AVO inversion by implementing the PS-wave 

version of equation (31). Similarly, the linear inversion is also applied to compare with 

the nonlinear AVO algorithm.  

 

FIG. 21. The comparison between linear AVO results (using PS-wave modelling data) and well-
log for the variation of P-wave modulus, S-wave modulus, and density, from left to right. 

 

FIG. 22. The comparison between non-linear AVO results (using PS-wave modelling data) and 
well-log for the variation of P-wave modulus, S-wave modulus, and density, from left to right. 
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The linear inversion results are indicated in Figure 21, and the estimates of P-wave 

modulus is zero because of no P-wave modulus term included in the first order terms 

of 𝑅𝑝𝑠. And Figure 22 shows the inversed results using non-linear AVO. Instead of zero-

estimated in P-wave modulus using linear algorithm, P-wave modulus can be estimated 

by the non-linear AVO using PS-wave data. And the variations in the results of P-wave 

modulus shows an agreement with well-log data to some extent which might still bring 

some benefits only with PS-wave data. 

 

FIG. 23. Errors of inversed P-, S-wave modus, and density using linear inversion with PS-wave 
modelling data. 

 

FIG. 24. Errors of inversed P-, S-wave modus, and density using non-linear AVO inversion with a 
combination of series reversion and Gauss-Newton with PS-wave modelling data.  
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Similarly, we calculated errors of estimated P-, S- wave modulus and density for both 

algorithms, which are shown in Figure 23 and 24 respectively. And the inversion of S-

wave modulus using non-linear iterative method is much more acceptable than the linear 

inversed result.  

CONCLUSION 

In this paper, starting from Zoeppritz equation, we derived AVO/AVA series 

approximation in terms of P- and S- wave moduli for  𝑅𝑝𝑝 and  𝑅𝑝𝑠 in perturbation form 

and in ratio form. After that, the accuracy comparisons and the effect of high-order effect 

for  𝑅𝑝𝑝 and  𝑅𝑝𝑠 were discussed. The 2
nd

 order truncated  𝑅𝑝𝑝 in ratio form with angle 

incidence was recommended to apply the non-linear AVO/AVA inversion with series 

reversion and Gauss-Newton method. To solve for the local convergence problem of 

Gauss-Newton iterative method, we solved the first order term of series reversion and 

considered it as the initial value for non-linear AVO/AVA with Gauss-Newton iterative 

algorithm. Eventually, AVO well synthetic angle gather both for PP- and PS- wave were 

applied into this new non-linear AVO/AVA method to examine the resolution of the 

AVO series approximated formula. According to comparisons and discussions, this new 

AVO/AVA approximation and the non-linear inversion method are advisable and 

efficient way to achieve a better answer. 
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APPENDIX I: RPP, RPS IN PERTURBATION FORM 

The explicit weighting factors of  𝑅𝑝𝑝 and  𝑅𝑝𝑠 in perturbation forms are shown in this 

appendix.  

 
(1) (2) (3)

pp pp pp ppR R R R   …；
 (I.1) 

 
(1) (2) (3)

ps ps ps psR R R R   …； (I.2) 

I.1 First order poroelastic weighting factors of RPP for Ma , a
, a

 

 
(1) pp pp pp

pp M MR a a a        (I.3) 

2

0sec

4

pp

M


    (I.4) 

2

02

2
sinpp

sat

 


     (I.5) 

2

0sec1

2 4

pp




     (I.6) 

I.2 Second order poroelastic weighting factors of RPP for Ma , a
, a

 

 
(2) 2 2 2

2 2 2

pp pp pp pp pp pp

pp M M M M M MR a a a a a a a a a                
 (I.7) 

 2

2 0

1
1 2sin

8

pp

M      (I.8) 

2

2 02

1 1
2 sinpp

sat sat

 
 

 
   

 
  (I.9) 

2

2 0
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APPENDIX II: RPP, RPS IN RATIO FORM 

The explicit weighting factors of  𝑅𝑝𝑝  and  𝑅𝑝𝑠  in ratio forms are shown in this 

appendix.  
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