
FWI tutorial

Tutorial: acoustic full waveform inversion in time domain

Khalid Almuteri and Kris Innanen

ABSTRACT

Full waveform inversion (FWI) is an optimization problem that aims at extracting the
earth’s physical parameters, from recorded seismic data, through an iterative inversion
process. This paper reviews the concept of FWI and provides an environment where a
single-parameter acoustic FWI problem can be solved in time domain. We cover the wave
equation discretization, using a second-order finite difference approximation, Clayton-
Engquist absorbing boundary conditions, modeling stability and grid dispersion, and we
derive the gradient needed to solve this optimization problem.

INTRODUCTION

Full waveform inversion (FWI) is a powerful technique that aims at reconstructing the
physical parameters of the subsurface, by iteratively minimizing the difference between
modeled data and observed data (Lailly, 1983; Tarantola, 1984; Virieux and Operto, 2009).
The rise of FWI as a velocity model building tool is due to the high-resolution models that
it provides (Pan and Innanen, 2015).

This paper aims at providing the necessary tools to solve a single-parameter acoustic
FWI problem in a self-sufficient manner. The purpose of self-sufficiency is to address
introductory level, yet essential, aspects associated with FWI, creating an environment
where advanced topics in FWI can be investigated.

This paper is organized as follows. First, we briefly review numerical modeling of the
acoustic wave equation. We then introduce the FWI problem. Afterward, we cover the
line search approach, which is a strategy for solving optimization problems. Finally, we
discuss some computational optimization technics.

BACKGROUND

Wave quation

The 2-D acoustic wave equation is given by

∂2u

∂t2
=
k2

ρ2

[
ρ5 ·

(
1

ρ
5 u

)]
+ f (1)

where ρ = ρ(x, z) is the density, k = k(x, z) is the bulk modulus, u = u(x, z, t) is the
pressure field, and f is the source function; it expands to

∂2u

∂t2
= v2

[
−1

ρ

(
∂ρ

∂x

∂u

∂x
+
∂ρ

∂z

∂u

∂z

)
+

(
∂2u

∂x2
+
∂2u

∂z2

)]
+ f (2)

CREWES Research Report — Volume 28 (2016) 1

Almuteri et. al

where v = v(x, z) =
√

ρ(x,z)
k(x,z)

is the compressional wave velocity. In this reposrt, we
assume a constant density model; hence, equation (2) simplifies to

∂2u

∂t2
= v2

(
∂2u

∂x2
+
∂2u

∂z2

)
+ f (3)

Absorbing boundary conditions

The absorbing boundary conditions (ABC) that we present here is the Clayton-Engquist
boundary conditions (Clayton and Engquist, 1977). It is based on the paraxial approxima-
tion of the scalar wave equation that separates the wavefield into up-going/down-going
and right-going/left-going waves (Claerbout, 1985).

To obtain the paraxial approximation, the first step is to Fourier transform the homo-
geneous wave equation

1

v2
∂2u

∂t2
= 52u (4)

which yields the dispersion relation

k2x + k2z =
ω2

v2
. (5)

The dispersion relation enables us to separate the wavefield by solving for the appro-
priate wavenumber. For instance, the down-going wavefield is obtained by solving for the
positive values of the wavenumber kz

kz =

√
ω2

v2
− k2x =

ω

v

√
1− v2

ω2
k2x (6)

⇒ v

ω
kz =

√
1− v2

ω2
k2x. (7)

The paraxial approximation is achieved by expanding the square root
√

1− v2

ω2k2x and
transforming the expansion to space-time domain. Higher order approximations using the
Taylor expansion gives an unstable paraxial approximation (Engquist and Majda, 1977),
while Padé expansion, (equation 8), is more stable and used instead.

aj = 1− (vkx/ω)2

1 + aj−1
, a1 = 1. (8)

As a result, the first two orders of the paraxial approximation in Fourier domain are

First− order : kz =
ω

v
(9a)

Second− order : kz =
ω

v

(
1− 1

2

(
vkx
ω

)2
)

(9b)

2 CREWES Research Report — Volume 28 (2016)

FWI tutorial

and the corresponding paraxial approximations in time-space domain are

First− order :
∂u

∂z
− 1

v

∂u

∂t
= 0 (10a)

Second− order :
∂2u

∂z∂t
− 1

v

∂2u

∂t2
+
v

2

∂2u

∂x2
= 0. (10b)

The first-order approximation, (equation 10a), is known as the 5◦ wave equation, and the
second-order approximation, (equation 10b), is known as the 15◦ wave equation (Claer-
bout, 1985).

The 15◦ wave equation is discretized and solved to apply the ABC for the sides of the
model. In this case, (equation 10b) is used to create an absorbing boundary along the top
side of the model. For the corners, the ABC is implemented by rotating the first-order
approximations by 45◦ (Clayton and Engquist, 1977).

Differential operators

A second-order central finite difference approximation scheme is commonly used to
numerically modeling the wave equation. The first partial derivative operator is defined as

∂u

∂x
≈ u(x+ h, z, t)− u(x− h, z, t)

2h
(11)

where h is the grid points spacing (dt is used for the time step). Equation 11 in the indices
notation is

∂u

∂x
= ux|x=i ≈

uni+1,j − uni−1,j
2h

(12)

where we use subscript i for offset (x), subscript j for depth (z), and subscript n for time
(t). The second partial derivative operator is defined as

∂2u

∂x2
≈ u(x+ h, z, t)− 2u(x, z, t) + u(x− h, z, t)

h2
(13)

Equation (13) in the indices notation is

∂2u

∂x2
= uxx|x=i ≈

uni+1,j − 2uni,j + uni−1,j
h2

(14)

The discretized form of equation (3) is given by

un+1
i,j − 2uni,j + un−1i,j

dt2
≈ v2i,j

uni+1,j + uni,j+1 − 4uni,j + uni−1,j + uni,j−1
h2

+ f (15)

where we are interested in solving for un+1
i,j .

CREWES Research Report — Volume 28 (2016) 3

Almuteri et. al

Stability and grid dispersion

Wave equation discretization causes two issues to the numerical solution, grid disper-
sion, and instability of the forward modeling. Grid dispersion causes different frequencies
to travel at different velocities, whereas instability of the finite-difference process results
in accumulation of errors and failure of the numerical solution. As a result, two necessary
criteria need to be met to limit the consequences of the discretization.

The first criterion relates the grid dispersion to the spatial sampling h. If h is not
small enough, a dispersion will occur. For a second-order finite difference, at least, ten
grid points are required for the upper half-power wavelength of the source (Alford et al.,
1974). The equation that governs the relationship is

h ≤ vmin(x, z)

10f◦
(16)

where f◦ is the upper half-power frequency (Figure 1).

FIG. 1. Power spectrum of source wavelet [figure 3a of (Alford et al., 1974)].

The second criterion relates the stability to the temporal sampling dt (Lines et al.,
1999). The criterion for a second-order scheme is

vmax(x, z)dt

h
≤ 1√

2
(17)

4 CREWES Research Report — Volume 28 (2016)

FWI tutorial

FULL WAVEFORM INVERSION

We define the data residual as

∆d = dobs − dcal(m) (18)

where dobs is the recorded seismic data and dcal(m) is the modeled data, where m is p-
wave velocity. FWI tries to minimize an objective function E (m), which is the L2-norm
of the data residual

E (m) =
1

2
‖∆d‖2 . (19)

The least-squares norm E can be viewed as a function that maps M to R (E : M →
R), where M is a set of all geologically acceptable velocity models and R is a set of all
residuals. The model m can be written as a sum of a known reference model m0 and a
perturbation model δm (mn+1 = mn+δmn). In FWI we are trying to find a model update
δmn so that mn+1 satisfies

arg min
m∈M

E (mn+1) := {m |m ∈M 3 ∀s ∈M : E (m) ≤ E (s)}. (20)

The misfit function (equation 19), in the vicinity of the model mn, can approximated,
using Taylor expansion, as

E (mn + δmn) ≈ E (mn) +
∂E (mn)

∂mn

δmn (21)

taking the derivative with respect to the model parameter m yields

∂E (mn + δmn)

∂mn

≈ ∂E (mn)

∂mn

+
∂2E (mn)

∂m2
n

δmn. (22)

The minimum of the misfit function E(mn) is attained when ∂E(mn)
∂mn

= 0; hence, the
perturbation model is

δmn = −
[
∂2E (mn)

∂m2
n

]−1
∂E (mn)

∂mn

(23)

where

g =
∂E (mn)

∂mn

(24)

is the gradient and

H =
∂2E (mn)

∂m2
n

(25)

is the Hessian1.

1For a detailed derivation of the perturbation model and for an interpretation of the Hessian the reader is
referred to Margrave et al. (2011).

CREWES Research Report — Volume 28 (2016) 5

Almuteri et. al

To understand the physical interpretation of the gradient (equation 24), we introduce
two equations 2 [

52 + ω2m0

]
G0(rg, rs, ω) = δ(rg − rs) (26)[

52 + ω2m
]
G(rg, rs, ω) = δ(rg − rs) (27)

where G0 is the modeled wavefield, G is the actual wavefield, m0 is the known reference
medium, m is the actual medium, and m = m0 + δm. Also, we redefine the the data
residual (equation 18) as

δG(rg, rs, ω|m0) = G(rg, rs, ω)−G0(rg, rs, ω|m0). (28)

First, we take the derivative of equation (19) with respect to the model parameters m
(using equation 28 instead of equation 18), which will give us

∂E (m0)

∂m0(r)
= −

∑
rs,rg

∫
dω<

{
∂G0(rs, rg, ω|m0)

∂m0(r)
δG∗(rs, rg, ω|m0)

}

⇒ ∂E (m0)

∂m0

= −<
{
∂GT

0 (r, ω|m0)

∂m0

δG∗(r, ω|m0)

}
= −<

{
JT δG∗

} (29)

where J is the sensitivity or Fréchet derivative. In a matrix form equation (29) can be
written as

∂E (m0)

∂m0

= −<





∂u1
m1

. . . ∂uk
m1

. . . ∂un
m1

∂u1
m2

. . . ∂uk
m2

. . . ∂un
m2

...

∂u1
mn

. . . ∂uk
mn

. . . ∂un
mn





δG∗1

...

δG∗k

0

...

0





(30)

where the node points are ordered so that the first k columns corresponds to the nodes
of the receivers locations. Each column in JT describes the change of behavior of the
wavefield at a node point when there is a change in the model parameters. For a point
diffractor model, the quantity <

{
JT δG∗

}
attains its extremum at the location of the point

diffractor (Pratt et al., 1998). This corresponds to a perturbation in the wavefield due to
a variation between the current velocity model m0 and the actual velocity m, (δm 6= 0)
(Virieux and Operto, 2009); hence, the opposite direction to the gradient is the update
direction that should minimize the misfit function.

2The derivations of the FWI equations will be carried in the frequency domain. For time domain deriva-
tion, the reader is referred to (Yang et al., 2015).

6 CREWES Research Report — Volume 28 (2016)

FWI tutorial

Although, equation (30) indicates that we only need to know the behavior of the wave-
field at receivers locations, which reduces equation (30) to

∂E (m0)

∂m
= −<





∂u1
m1

. . . ∂uk
m1

∂u1
m2

. . . ∂uk
m2

...

∂u1
mn

. . . ∂uk
mn




δG∗1

...

δG∗k




. (31)

The construction of the sensitivity matrix J in its full or reduced form is extremely ex-
pensive (Virieux and Operto, 2009); hence, another approach to compute the gradient is
needed.

Using equations (26) and (27), one can compute the gradient with only two forward-
modeling problems. First, we substitute m0 + δm for m in equation (27)[

52 + ω2m0

]
G(rg, rs, ω) = δ(rg − rs)− ω2δm(rg)G(rg, rs, ω). (32)

The solution of equation (32) in integral form is given by

G(rg, rs, ω) = G0(rg, rs, ω|m0)− ω2

∫
dr′G0(rg, r

′, ω|m0)δm(r′)G(r′, rs, ω). (33)

Using born series to eliminate G(r′, rs, ω) yields

δG(rg, rs, ω) = −ω2

∫
dr′G0(rg, r

′, ω)δm(r′)G0(r
′, rs, ω)

+ ω4

∫
dr′G0(rg, r

′, ω)δm(r′)

∫
dr′′G0(r

′, r′′, ω)δm(r′′)G0(r
′′, rs, ω)

+

. (34)

Localizing the perturbation model δm(r) by introducing the delta function so that

δm(r′) = δm δ(r′ − r), (35)

and by substituting equation (35) into equation (34), we obtain

δG(rg, rs, ω) = −ω2G(rg, r, ω)δmG(r, rs, ω)

+ ω4G(rg, r, ω)δmG(r, r, ω)δmG(r, rs, ω) + . . .

= −ω2G0(rg, r, ω)δmG(r, rs, ω)[1− ω2δmG(r, r, ω) + . . .] .

(36)

CREWES Research Report — Volume 28 (2016) 7

Almuteri et. al

Noting that the series expansion of 1
1+x

is (1− x+ x2 − . . .), equation (36) can be re-
written as

δG(rg, rs, ω) = −ω
2G(rg, r, ω)δmG(r, rs, ω)

1 + ω2δmG(r, r, ω)

⇒ δG(rg, rs, ω)

δm
= −ω

2G(rg, r, ω)G(r, rs, ω)

1 + ω2δmG(r, r, ω)
.

(37)

By taking the limit so that δm goes to zero we obtain

∂G(rg, rs, ω|m0)

∂m0(r)
= lim

δm→0

δG(rg, rs, ω|m0)

δm
= −ω2G(rg, r, ω|m0)G(r, rs, ω|m0),

(38)
and substituting equation (38) into equation (29) gives us

g(r) =
∑
rs,rg

∫
dω ω2G(r, rs, ω|m0)×G(rg, r, ω|m0)δG

∗(rs, rg, ω) (39)

where G(r, rs, ω|m0) is the source wavefield forward-propagated in medium m0 and
G(rg, r, ω|m0)δG

∗(rs, rg, ω) is the back-propagated data residual in medium m0. Equa-
tion (39) is the gradient of the misfit function in frequency domain, where the model
parameter m(r) is parametrized in terms of slowness squared (1

v(r)2
).

The inverse of the hessian H can be replaced by a positive scalar α in equation (23)
which gives us

δm = −α∂E (m0)

∂m0

(40)

that results in solving the FWI problem using a gradient method (Virieux and Operto,
2009).

The corresponding equation in time domain to equation (39) is given by

g(r) =
−2

v3

∑
rs,rg

∫ T

0

dt
∂2G(r, rs, t)

∂t2
[
G(rg, r, T − t) ∗ δG(rs, rg, t)

]
(41)

where ∂2G(r,rs,t)
∂t2

is the second partial derivative in time of the forward-propagated source
wavefield, G(rg, r, T − t) ∗ δG(rs, rg, t) is the time-reversed back-propagated data resid-
ual wavefield, and ∗ denotes convolution. In equation (41) the parametrization has been
changed, so that the model parameter m(r) is parametrized in terms of the velocity (v(r)),
by applying the chain rule

[
dE/dv = (dE/d 1

v2)(d 1
v2/dv) = (−2

v3)dE/dv)
]
.

8 CREWES Research Report — Volume 28 (2016)

FWI tutorial

Algorithm 1: FWI - Gradient method
Initialization :

dobs, m0, num_iter;
Computation:

for i = 0 to num_iter do
compute :

source wavefield
∂2G(r,t;rs,mi)

∂t2
;

modeled data dcal(mi);
data residual ∆d;
data residual wavefield δG(r, t; rs,mi);
gradient ∇E (mi);

updatemodel :
findα that minimizes E (mi − α∇E);
mi+1 = mi − α∇E ;

end

LINE SEARCH

The gradient (equation 24) relate changes in the data residual to variations in the ve-
locity model, which is a relative quantity that needs to be scaled (Basker et al., 2016).
Ideally, the Hessian (equation 25) is the appropriate scaling multiplier (Margrave et al.,
2011); however, it is computationally expensive to compute and can be replaced with a
scalar α for a single-parameter inversion.

In the process of line search, the goal is to find a step-length α that satisfies

E (mn + αnpn) < E (mn) (42)

where pn = −∇E (mn). Equation (42) imposes a simple reduction, however, such crite-
rion is insufficient (Nocedal and Wright, 2006). An optimum α value is one that satisfies

arg min
α∈R≥0

E (m+ αp) := {α |α ∈ R≥0 3 ∀β ∈ R≥0 : E (m+ αp) ≤ E (m+ βp)} (43)

A sufficient decrease can be achieved by using Armijo condition (equation 44), instead of
equation (42)

E (mn + αnpn) ≤ E (mn) + c αn∇ET
n pn (44)

where c ∈ (0, 1).

The Armijo condition can be implemented using a backtracking approach (Algorithm
2). In this method, an initial value of α is set to a large positive number (α = ᾱ | ᾱ > 0)
and will be checked whether or not it satisfies Armijo condition. If α meets the Armijo
condition, then it has the appropriate value, and if it does not satisfy the condition, then
α need to be decreased by a factor ρ (α ← ρα). The advantage of the backtracking
approach is that it ensures that the step length is either a fixed value (α = ᾱ) or that
it is sufficiently small to satisfy the Armijo condition, but not too small that it requires

CREWES Research Report — Volume 28 (2016) 9

Almuteri et. al

many iterations for the problem to converge (ᾱ > α > ε) (Nocedal and Wright, 2006).
Algorithm 2: Backtracking line search

Initialization :
choose ᾱ > 0, ρ ∈ (0, 1), c ∈ (0, 1);
α← ᾱ;

Computation:
while E (mn + αnpn) > E (mn) + c αn∇ET

n pn do
α← ρα;

end
αn ← α;

OPTIMIZATION

In this section, we present a set of techniques to optimize the FWI problem solving,
along with the necessary tools for a python implementation of the problem. First, we will
point some of the freely available tools to solve the FWI problem. Afterward, we will
discuss the optimization techniques.

Tools

Python

Python is an open-source, general-purpose, high-level programming language. It has
a large number of specialized libraries, with a wide number of developers. Also, Python
takes less time to develop compared to other languages. As a result, it is an ideal lan-
guage to solve sophisticated and computationally-intensive problems for both educational
purposes and industry usage.

Spyder

Spyder is an integrated development environment (IDE) for scientific programming in
Python. Important libraries for scientific computing such as Numpy, Scipy, and Matplotlib
are integrated within Spyder. Moreover, IPython, an interactive command shell, which
enables a UNIX-based commands and Python scripts to be executed at the same place,
and much more other features, is included in Spyder. All of which makes Spyder an
attractive environment for scientific programming.

Joblib

Joblib is an open-source optimization library used to speed up execution of programs
through processes such as memoization and/or parallelization. This library has an advan-
tage of ease of parallelizing codes.

10 CREWES Research Report — Volume 28 (2016)

FWI tutorial

Memory management

FWI is a computationally expensive problem to solve. A major issue is memory re-
quirement, as typically a significant amount of memory is required to store wavefields to
compute the gradient. For instance, calculating a single wavefield of a model that consists
of 501 × 301 grid points, a recording time of 4.5 s (tmax = 4.5 s), and sampling inter-
val of 1ms (dt = 0.001 s); the memory required is 5.056 GB. For a single shot in FWI,
two wavefields are needed to compute the gradient. Also, for a parallel implementation of
FWI; the memory required to solve the problem is tremendous. For the same model, utiliz-
ing ten cores to solve the problem would require 101.12 GB of memory. This might not be
an issue when solving a single-parameter 2D acoustic FWI problem on a cluster, however,
moving into a more complicated, FWI-based, problems such as reflection-based waveform
inversion (RWI) or elastic FWI, the memory requirement increases drastically. As a result,
memory management is a vital aspect in a successful parallel FWI implementation.

In here, we suggest an alternative approach to compute the wavefield by slicing it into
sub-wavefields and saving every sub-wavefield to disk separately (Figure 2). In this way,
the complete wavefield need not be stored in memory, but rather only a part of it need
to be in memory and saved to disk before computing another segment of the wavefield.
This method does not exhaust the memory and is faster than saving every time-step of
the wavefield to disk separately, which is the least memory-exhaustive approach to follow.
Algorithm (2) shows a method to compute time-steps for the sub-wavefields.

Offset (km)

Time (s)

Depth (km)

FIG. 2. Wavefield cube.

CREWES Research Report — Volume 28 (2016) 11

Almuteri et. al

Algorithm 3: Sub-wavefields computation
Initialization :
num_cores: number of cores to be used;
mem_use : memory to be used;
nx : number of x− axis grid points;
nz : number of z − axis grid points;
nt : number of time steps;
Computation:

// sub_nt : maximum time-steps for sub-wavefields

sub_nt = [mem_use]/[(8)(num_cores)(nx)(nz)];
// rem_proc: time-steps for the last sub-wavefields

rem_proc = nt % sub_proc;
// num_proc: number of sub-wavefields

num_proc = [(nt-rem_proc)/sub_proc] + 1;
// num_iter: array of length equal to number of sub-wavefields

// with values corresponding to the time-steps for

// each sub-wavefield

for i=1:(num_proc-1) do
num_iter[i] = [sub_nt];

end
num_iter[num_proc] = [rem_proc];

Parallelization

In this section we show a simple example on how to use joblib package to parallelize
a task (code 1), where the parallelization is carried by distributing sources over proces-
sors. In here, we use a function, compute_observed, that takes a set of parameters as an
argument and generate a shot gather. From joblib we utilize two functions, Parallel and
delayed. Parallel takes a keyword n_jobs to specify the number of cores to be used. The
function delayed is decorator that separate a function from its passed arguments. This
decorator takes a function and its arguments as an argument and returns the function and
its arguments as a tuple, (function, arguments).

1 from j o b l i b i m p o r t P a r a l l e l , d e l a y e d
2
3 # P a r a l l e l : p a r a l l e l i z a t i o n f u n c t i o n from j o b l i b
4 # d e l a y e d : d e c o r a t o r f u n c t i o n from j o b l i b
5 # xs : s h o t s l a t e r a l p o s t i o n s
6 # i : i n d e x o f s h o t (sho t_number − 1)
7 # k : s o u r c e l a t e r a l p o s i t i o n (node p o s i t i o n)
8 # zs : s o u r c e d e p t h
9 # xr : r e c e i v e r s l a t e r a l p o s t i o n s

10 # z r : r e c e i v e r s d e p t h s
11 # v e l : v e l o c i t y model
12 # d e n s i t y : d e n s i t y model
13 # nx : number o f g r i d p o i n t s a l o n g t h e x−a x i s
14 # nz : number o f g r i d p o i n t s a l o n g t h e z−a x i s
15 # tmax : maximum r e c o r d i n g t ime
16 # s r c : s o u r c e f u n c t i o n (1−D a r r a y)
17 # d t : t ime s t e p i n t e r v a l

12 CREWES Research Report — Volume 28 (2016)

FWI tutorial

18 # dx : g r i d p o i n t s s p a c i n g
19 # compute_obse rved : a f u n c t i o n t h a t computes a s i n g l e s h o t
20 # o b s e r v e d _ d a t a : i f " compute_obse rved " r e t u r n s somthe ing i t w i l l be

s t o r e d i n compute_obse rved
21 o b s e r v e d _ d a t a = P a r a l l e l (n _ j o b s =num_cores) (d e l a y e d (compute_obse rved) (i ,

k , zs , xr , zr , ve l , d e n s i t y , nx , nz , tmax , s r c , d t , dx) f o r i , k i n
enumera t e (xs))

Code 1. An example of a parallelized code.

CONCLUSION

This tutorial briefly reviews the numerical aspects of wave equation modeling, using
the finite difference method, and the concept of FWI. Also, simple optimization techniques
to overcome some computational obstacles are presented. The motivation of this report is
to provide the fundamental tools for an FWI implementation.

APPENDIX A: FINITE-DIFFERENCE ENGINE

The finite-difference approximation is the simplest and most widely used method to
solve partial differential equations numerically. Numerical solutions provide an environ-
ment that helps in understanding physical phenomena, such as wave propagation in differ-
ent media, as exact analytical solutions are usually unavailable. In Geophysics, the wave
equation modeling is the fundamental block of processes such as reverse-time migration,
and seismic modeling and inversion; hence, a proper implementation is vital. In this ap-
pendix, we present our implementation of the finite-difference engine in Python (code 2).

1 # i m p o r t a copy f u n c t i o n
2 from copy i m p o r t deepcopy
3 # i m p o r t numpy l i b r a r y
4 i m p o r t numpy as np
5 # i m p o r t boundary c o n d i t i o n s f u n c t i o n
6 from a p p l y _ b o u n d a r y _ c o n d i t i o n i m p o r t a p p l y _ b o u n d a r y _ c o n d i t i o n
7
8 d e f d2x_d2z (u , p , dx) :
9 " " "

10 Th i s f u n c t i o n computes [d ^2 u / x ^2 + d ^2 u / z ^2] (l a p l a c i a n
o p e r a t o r)

11
12 p : d e n s i t y
13 " " "
14 a = (u [1 : −1 , 2 :] + u [1:−1 , :−2]+ u [2 : , 1 : −1] + u [:−2 ,1:−1]−4.0∗u

[1 :−1 ,1 :−1]) / (dx ∗∗2)
15 b = (p [1:−1 ,2:]− p [1 :−1 , :−2]) ∗ (u [1:−1 ,2:]− u [1 :−1 , :−2]) / (4 . 0 ∗ (dx ∗∗2) ∗

p [1 :−1 ,1 :−1])
16 c = (p [2: ,1 :−1]− p [:−2 ,1 :−1]) ∗ (u [2: ,1 :−1]− u [:−2 ,1 :−1]) / (4 . 0 ∗ (dx ∗∗2) ∗

p [1 :−1 ,1 :−1])
17 d2 = a−b−c
18 r e t u r n d2
19
20 ####
21
22 d e f w a v e f i e l d (v e l o c i t y , d e n s i t y , u0 , u , u1 , i t , sou rce , xs , zs , xr , zr ,

dx , d t , d e r i v a t i v e = F a l s e) :

CREWES Research Report — Volume 28 (2016) 13

Almuteri et. al

23 " " "
24 Th i s f u n c t i o n computes t h e w a v e f i e l d
25 " " "
26 # compute l a p l a c i a n o p e r a t o r
27 d = d2x_d2z (u , d e n s i t y , dx)
28
29 # compute wave f i e l d a t t ime t = n+1
30 u1 [1:−1 ,1:−1] = d ∗ (d t ∗∗2) ∗ (v e l o c i t y [1 :−1 ,1 :−1]∗∗2) + 2 . 0 ∗ u

[1:−1 ,1:−1] − u0 [1:−1 ,1:−1]
31
32 # i n j e c t s o u r c e
33 i f l e n (s o u r c e . shape) == 1 :
34 u1 [zs , xs] = u1 [zs , xs] + s o u r c e [i t] ∗ (d t ∗∗2)
35 e l i f l e n (s o u r c e . shape) == 2 :
36 u1 [zr , x r] = u1 [zr , x r] + s o u r c e [i t , :] ∗ (d t ∗∗2)
37
38 # r e t u r n w a v e f i e l d and i t s second t ime d e r i v a t i v e
39 i f d e r i v a t i v e == 1 :
40 r e t u r n u1 , (u0−2.0∗u+u1) / (d t ∗∗2)
41
42 # r e t u r n w a v e f i e l d
43 r e t u r n u1
44
45 ####
46
47 d e f a f d (i t r , dx , v e l o c i t y , d e n s i t y , snap1 , snap2 , tmax , sou rce , xs , zs ,

b o u n d a r y _ c o n d i t i o n , d t , x r = [] , z r = [] , o p t i o n =0 , d e r i v a t i v e = F a l s e) :
48 " " "
49 Th i s f u n c t i o n manages t h e a c o u s t i c f i n i t e −d i f f e r e n c e scheme
50
51 i t r : number o f t ime−s t e p s t o be computed
52 dx : g r i d p o i n t s s p a c i n g
53 snap1 : p r e s s u r e f i e l d a t t ime t = n−1 (p a s t t ime)
54 snap2 : p r e s s u r e f i e l d a t t ime t = n (c u r r e n t t ime)
55
56 s o u r c e : s o u r c e a r r a y (1−D f o r a w a v e l e t − 2−D f o r s h o t back−

p r o p a g a t i o n)
57 xs : x node o f s o u r c e
58 zs : z node o f s o u r c e
59
60 d t = t ime s t e p
61
62 xr : a r r a y o f x nodes o f r e c e i v e r s
63 z r : a r r a y o f z nodes o f r e c e i v e r s
64
65 o p t i o n = 0 : compute s y n t h e t i c d a t a and w a v e f i e l d cube
66 o p t i o n = 1 : compute s y n t h e t i c d a t a on ly
67 o p t i o n = −1: compute w a v e f i e l d cube on ly
68
69 d e r i v a t i v e : t o compute second t ime d e r i v a t i v e o f w a v e f i e l d
70 " " "
71 # g e t model d i m e n s i o n s
72 (nz , nx) = v e l o c i t y . shape
73
74 # p r e s s u r e f i e l d s
75 #### f u t u r e (t =n +1) p r e s s u r e f i e l d
76 u1 = np . z e r o s ((nz , nx))
77 # #### c u r r e n t (t =n) p r e s s u r e f i e l d
78 u = deepcopy (snap2)

14 CREWES Research Report — Volume 28 (2016)

FWI tutorial

79 #### p a s t (t =n−1) p r e s s u r e f i e l d
80 u0 = deepcopy (snap1)
81
82 # memory a l l o c a t i o n f o r s y n t h e t i c d a t a − o p t i o n = 1 or 0
83 i f o p t i o n == 1 or o p t i o n == 0 :
84 acq = np . z e r o s ((i t r , l e n (x r)))
85
86 # memory a l l o c a t i o n f o r w a v e f i e l d − o p t i o n = 1 and d e r i v a t i v e =

F a l s e
87 i f o p t i o n != 1 and n o t d e r i v a t i v e :
88 ou t_u = np . z e r o s ((i t r , nz−2, nx−2))
89
90 # memory a l l o c a t i o n f o r w a v e f i e l d − o p t i o n = 1 and d e r i v a t i v e =

True
91 i f o p t i o n != 1 and d e r i v a t i v e :
92 ou t_u = np . z e r o s ((i t r , nz−2, nx−2))
93 ou t_u2 = np . z e r o s ((i t r , nz−2, nx−2))
94
95 # c o m p u t a t i o n t h a t i n c l u d e w a v e f i e l d
96 i f o p t i o n != 1 :
97 f o r i t i n r a n g e (i t r) :
98 i f n o t d e r i v a t i v e :
99 # compute w a v e f i e l d

100 u1 = w a v e f i e l d (v e l o c i t y , d e n s i t y , u0 , u , u1 , i t , sou rce
, xs , zs , xr , zr , dx , d t)

101 e l s e :
102 # compute w a v e f i e l d and i t s second t ime d e r i v a t i v e
103 u1 , u2 = w a v e f i e l d (v e l o c i t y , d e n s i t y , u0 , u , u1 , i t ,

sou rce , xs , zs , xr , zr , dx , dt , True)
104
105 # a p p l y boundary c o n d i t i o n s
106 u1 = a p p l y _ b o u n d a r y _ c o n d i t i o n (u1 , u0 , u , v e l o c i t y , dx , d t ,

b o u n d a r y _ c o n d i t i o n)
107
108 # u p d a t e w a v e f i e l d s
109 u0 = deepcopy (u)
110 u = deepcopy (u1)
111
112 # s t o r e s y n t h e t i c d a t a
113 i f o p t i o n != −1:
114 acq [i t , :] = u [zr , x r]
115
116 # s t o r e w a v e f i e l d
117 i f o p t i o n != 1 and n o t d e r i v a t i v e :
118 ou t_u [i t] = np . a r r a y ([deepcopy (u1 [1 :−1 ,1 :−1])])
119
120 # s t o r e w a v e f i e l d and i t s second t ime d e r i v a t i v e
121 i f o p t i o n != 1 and d e r i v a t i v e :
122 # i n t h i s s t a t e m e n t ou t_u2 i f d ^2 u / d t ^2 and ou t_u i s u
123 ou t_u [i t] = np . a r r a y ([deepcopy (u1 [1 :−1 ,1 :−1])])
124 ou t_u2 [i t] = np . a r r a y ([deepcopy (u2 [1 :−1 ,1 :−1])])
125
126 # c o m p u t a t i o n t h a t does n o t i n c l u d e w a v e f i e l d
127 e l s e :
128 f o r i t i n r a n g e (i t r) :
129 # compute w a v e f i e l d
130 u1 = w a v e f i e l d (v e l o c i t y , d e n s i t y , u0 , u , u1 , i t , sou rce , xs

, zs , xr , zr , dx , d t)
131

CREWES Research Report — Volume 28 (2016) 15

Almuteri et. al

132 # a p p l y boundary c o n d i t i o n s
133 u1 = a p p l y _ b o u n d a r y _ c o n d i t i o n (u1 , u0 , u , v e l o c i t y , dx , d t ,

b o u n d a r y _ c o n d i t i o n)
134
135 # u p d a t e w a v e f i e l d s
136 u0 = deepcopy (u)
137 u = deepcopy (u1)
138
139 # s t o r e s y n t h e t i c d a t a
140 acq [i t , :] = u [zr , x r]
141
142 # r e t u r n computed d a t a
143 i f d e r i v a t i v e and o p t i o n != 1 :
144 i f o p t i o n == 0 :
145 r e t u r n acq , out_u2 , out_u , u0 , u
146 e l i f o p t i o n == −1:
147 r e t u r n out_u2 , out_u , u0 , u
148 e l s e :
149 r e t u r n None
150
151 e l i f n o t d e r i v a t i v e and o p t i o n != 1 :
152 i f o p t i o n == 0 :
153 r e t u r n acq , out_u , u0 , u
154 e l i f o p t i o n == −1:
155 r e t u r n out_u , u0 , u
156 e l s e :
157 r e t u r n None
158 e l s e :
159 r e t u r n acq

Code 2. Finite-difference engine

ACKNOWLEDGEMENTS

We thank the sponsors of CREWES for continued support. This work was funded
by CREWES industrial sponsors and NSERC (Natural Science and Engineering Research
Council of Canada) through the grant CRDPJ 461179-13.

REFERENCES

Alford, R., Kelly, K., and Boore, D. M., 1974, Accuracy of finite-difference modeling of the acoustic wave
equation: Geophysics, 39, No. 6, 834–842.

Basker, B., Rüger, A., Deng, L., and Jaramillo, H., 2016, Practical considerations and quality control for an
FWI workflow: The Leading Edge, 35, No. 2, 151–156.

Claerbout, J. F., 1985, Imaging the earth’s interior: Blackwell scientific publications Oxford.

Clayton, R., and Engquist, B., 1977, Absorbing boundary conditions for acoustic and elastic wave equations:
Bulletin of the Seismological Society of America, 67, No. 6, 1529–1540.

Engquist, B., and Majda, A., 1977, Absorbing boundary conditions for numerical simulation of waves:
Proceedings of the National Academy of Sciences, 74, No. 5, 1765–1766.

Lailly, P., 1983, The seismic inverse problem as a sequence of before stack migrations, in Conference on
Inverse Scattering: Theory and Application, Society of Industrial and Applied Mathematics, 206–220.

Lines, L. R., Slawinski, R., and Bording, R. P., 1999, A recipe for stability of finite-difference wave-equation
computations: Geophysics, 64, No. 3, 967–969.

16 CREWES Research Report — Volume 28 (2016)

FWI tutorial

Margrave, G., Yedlin, M., and Innanen, K., 2011, Full waveform inversion and the inverse hessian:
CREWES Annual Report, 23.

Nocedal, J., and Wright, S., 2006, Numerical optimization, Springer Series in Operations Research and
Financial Engineering: Springer-Verlag New York, second edn.

Pan, W., and Innanen, K., 2015, Full-waveform inversion in the frequency-ray parameter domain: CREWES
Annual Report, 27.

Pratt, R. G., Shin, C., and Hick, G., 1998, Gauss-newton and full newton methods in frequency-space seismic
waveform inversion: Geophysical Journal International, 133, No. 2, 341–362.

Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation: Geophysics, 49,
No. 8, 1259–1266.

Virieux, J., and Operto, S., 2009, An overview of full-waveform inversion in exploration geophysics: Geo-
physics, 74, No. 6, WCC127–WCC152.

Yang, P., Gao, J., and Wang, B., 2015, A graphics processing unit implementation of time-domain full-
waveform inversion: Geophysics, 80, No. 3, F31–F39.

CREWES Research Report — Volume 28 (2016) 17

