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ABSTRACT

The constant-Q wave propagation by series of standard linear solid mechanisms using
perfectly matched layers absorbing boundary condition (PML) are investigated. An PML
with an unsplit field is derived for the viscoacoustic wave equation by introducing the auxil-
iary variables and their associated partial differential equations. The unsplit PML are tested
on a homogeneous velocity and Marmousi velocity models by applying the 2-4 staggered
grid finite-difference scheme. When the wave propagating in the subsurface the amplitude
and phase of seismic wave distort due to attenuation. The acoustic reverse time migration
(RTM) can not explain this distortion, so we used an unsplit viscoacoustic wave equation
with constant Q-model. Comparing the numerical tests on synthetic data for unsplit vis-
coacoustic reverse time migration and acoustic reverse time migration show the advantages
of our approch over acoustic RTM when the recorded data had strong attenuation effects.

INTRODUCTION

Absorbing boundary conditions (ABCs) are used in numerical simulations of wave
propagation in unbounded problems. To absorb outgoing waves ,the reflections from the
outer boundary of the computational domain, the ABCs are in finite difference method.
There are a number of ABCs for use in finite-difference modeling of acoustic and elastic
wave propagation. A lossy material layer to attenuate fields near the computational bound-
ary is used by Cerjan et al. (Cerjan et al., 1985) and Levander(Levander, 1985). The ABCs
of Clayton and Engquist (Clayton and Engquist, 1977) introduce an approach based on a
paraxial approximation of the elastic wave equation. Although these ABCs successful in
many applications, but they adsorb wave imperfectly and the artificial reflections occur at
the edges of the computational domain. The perfectly matched layer (PML)introduced by
Berenger(Berenger, 1994) for numerical simulation of electromagnetic wave propagation.
Instead of finding an absorbing boundary condition, Berenger found an absorbing boundary
layer. An absorbing boundary layer is a layer of artificial absorbing material that is placed
to the edges of the grid. The wave is attenuated by the absorption and decays exponentially
when it enters the absorbing layer. The PML is considered because of its highly effective ,
excellent absorption over a wide range of angles and insensitivity to frequency. The PML
has been developed for elasticity(Chew and Liu, 1996), poroelasticity(Zeng and Liu, 2001)
and anisotropic media(Becache and Joly, 2001). Berenger’s original formulation is called
a split-field PML, because it splits the variables into two independent parts in the PML
region. A later formulation that has become more popular because of its simplicity and
efficiency is called uniaxial PML (UPML)which expresses the PML region as the ordinary
wave equation with a combination of artificial anisotropic absorbing materials. In this pa-
per, we consider a 2-D visco acoustic medium unsplit-field PML formulation. We describe
the PML for viscoacoustic medium and give numerical results using test simulations.

CREWES Research Report — Volume 28 (2016) 1



Fathalian et. al

a b

FIG. 1. Illustrate the frequency-dependence of viscoacoustic a) phase velocity and b) reflection
coefficient R(f) for different value of Q (Q = 20 and Q = 100).

ABSORPTION AND ATTENUATION THE MEDIA

To describe the wave propagation in the reflection seismology, acoustic or elastic wave
equation is commonly used. The main assumption is that the seismic wave propagates in the
heat-insulation media, i.e, it will continue infinitely without the attenuation. However, the
Earth is generally anelastic in nature and due to internal friction, seismic waves lose energy
as they propagate. The attenuation of seismic waves is due to three effects: geometric
spreading, intrinsic attenuation, and scattering. Intrinsic (viscoelastic) attenuation is energy
lost to heat and internal friction during the passage of an elastic wave. Seismic attenuation
is commonly characterized by the quality factor Q. Attenuation is defined as the ratio of
maximum amplitude of a wave field for a particular frequency to the change of amplitude
per cycle. By this definition, Q and he attenuation coefficient are related by

α(ω) =
ω

2c0Q
(1)

where c0 is the propagation velocity. Aki and Richards(Aki and Richards, 2002) note
that many approaches result in combined absorption and dispersion pairs that, in the con-
text of Q, and on a reasonable seismic frequency band, amount to the replacement of the
wavenumber k = ω/c0 by

K =
ω

c0
[1 +

i

2Q
− 1

πQ
ln(

ω

ωr
)] (2)

where ωr is a reference frequency, at which the wave field propagates with the phase ve-
locity c0. The complex velocity of the constant-Q model can be obtain as

v(ω) =
ω

K
= c0[1 +

i

2Q
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πQ
ln(

ω
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The real part of complex velocity is attenuated phase velocity and can be written as

vp(ω) = c0[1 +
1

πQ
ln(

ω

ωr
)] (4)
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FIG. 2. Illustrate an absorbing layer is placed adjacent to the edges of the computational region−a
perfect absorbing layer would absorb outgoing waves without reflections from the edge of the ab-
sorber. There are three different PML absorbing regions ,PML for x direction (d(y) = 0), PML for y
direction (d(x) = 0), and PML in the corners, both damping parameters d(x) and d(z) are positive,
and either d(z) = 0 or d(x) = 0 inside the PML region in the x and z directions.

where c0 refer to the reference phase velocity at a reference frequency ω0 (it usually refers to
the phase velocity at the Nyquist frequency).Also the reflection coefficient of viscoacoustic
media is complex and frequency dependent and can be written as function of scatterng
potential(Fathalian and Innanen, 2015).

Rva(z, σ, k) '
iω

2c0 cos θ0
(α(z)− 2ζ(z)F (k) + β(z)(1 + cos σ))) (5)

To understand attenuation effects, we consider a numerical example to describe the
phase velocity and reflection coefficient.For a constant Q-model, the attenuation coefficient
is linear with frequency ω , while the phase velocity vp is slightly dependent on frequency.
Figure 1 shows how the reflection coefficient and phase velocity are distorted for different
Q values for different frequencies. The phase velocity dispersion is more significant when
the quality factor is small (Q=20), while for Q=100 the phase dispersion is much weaker
(see Fig. 1a). For a same quality factor Q, the phase delay is more in the lower frequency.
The spectra of reflection coefficients for a variety of Q values is illustrated in Figure 1b.
The attenuative reflection coefficient approaches its acoustic counterpart as k −→ kr; the
variability of R with f increases away from the reference frequency.

FORMULATION

The PML absorbing layer is a non-physical region located outside the artificial numer-
ical boundary as shown in Figure 2. The 2D visco-acoustic medium can be expressed as a
system of first-order differential equations in terms of the particle velocities and stresses.

Newton’s second law completes the full description of wave propagation in a viscoa-

CREWES Research Report — Volume 28 (2016) 3



Fathalian et. al

coustic medium. This is

∂ux
∂t

= −1

ρ

∂p

∂x
(6)

∂uz
∂t

= −1

ρ

∂p

∂z

where u(x; t) is the particle velocity components in the x and z-direction, p(x; t) is the
stress tensor, and ρ(x) is density. The first-order differential equations in terms of the
particle velocities and stresses for the 1-D case where the viscoelastic equations are the
same as the viscoacoustic can be written as(Robertsson et al., 1994):

∂p

∂t
= −ρc2p(

∂ux
∂x

+
∂uz
∂z

)(1−
L∑
`=1

(1− τε`
τσ`

))−
L∑
`=1

r` (7)

where τε` and τσ` are the stress and strain relaxation times of the `th mechanism and r` is
called memory variables (Carcions et al., 1988a).

∂r`
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= − 1
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r` + ρc2p(

∂ux
∂x

+
∂uz
∂z

)
1

τσ`
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For one memory variable, L = 1, the first-order linear differential equations (Eqs. 7 and
8)of viscoacoustic wave propagation are become

∂p

∂t
= −ρc2p(

∂ux
∂x

+
∂uz
∂z

)(
τε
τσ
)− r (9)

∂r
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= − 1

τσ
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+
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)
1

τσ
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τσ
) (10)

In order to introduce the PML for visco-acoustic wave, the first-order linear differential
equations will be modified using the a complex coordinate stretching approach (Chew and
Liu, 1996; Zeng and Liu, 2001; Liu and Tao, 1997). In the frequency domain, the PML
formulations can be derived as

∂x→ (1 +
id(x)

ω
)∂x (11)

∂z → (1 +
id(z)

ω
)∂z

where d(x) and d(z) refere to the exponential damping coefficients in the PML region
and ω is the temporal frequency. By applying the complex coordinate stretching expressed
to the linearized equation of motion and equation of deformation the frequency domain we
have

∂

∂t
(1 +

id(x)

ω
)ũx = −

1

ρ

∂p̃

∂x
→ −iω(1 + id(x)

ω
)ũx = −

1

ρ
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(12)
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To calculate the unsplit-field PML formulations these equations must be transformed
back to time domain. So we have

∂ux
∂t

= −1

ρ
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∂x
− d(x)ux (13)
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where the auxiliary variables ux, uz, p , and r are the time-integrated components for
velocity, pressure and memory variable fields. They are defined as

ux(X, t) =

∫ t

−∞
ux(X, t

′
)dt

′
(14)
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∫ t

−∞
uz(X, t

′
)dt

′
(15)

p(X, t) =

∫ t

−∞
p(X, t

′
)dt

′

r(X, t) =

∫ t

−∞
r(X, t

′
)dt

′

The relaxation parameters τε and τσ are defined as(Robertsson et al., 1994):
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FIG. 3. Illustrate a)The velocity model, b)Snapshots of 2-D viscoacoustic simulations and using the
PML absorbing layer model with δ = 20m, δ = 40m, and δ = 80m. The snapshots are the norm of
the velocity at t =0.28s.

τσ =

√
1 + 1/Q.2 − 1/Q

f0
(16)

τε =
1

f0.2τσ
(17)

where f0 is the central frequency wavelet.
There are various unsplit-field PML formulations (Abarbanel and Gottieb, 1997; Sacks
et al., 1995; Turkel and Yefet, 1988; Fan and Liu, 2001; Zhou, 2005)as well-posed which
are based on the uniaxial PML and the complex coordinate stretching methods. A simple
and systematic method to derive the well-posed PML formulations are useful to apply the
PML methods to more complex media. Fan and Liu (Fan and Liu, 2003) proposed the
unsplit-field PML formulations, well-posed PML in Cartesian coordinate, for the acoustic
wave equations in a lossy medium. In this work, we propose the unsplit-field, strongly
well-posed PML for visco acoustic media in Cartesian coordinate. Such a method is very
straightforward
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a b

FIG. 4. Illustrate the separation of velocity dispersion (a) and amplitude loss effects(b) at the same
simulation configuration. i) Acoustic wavefield, ii) viscoacoustic wavefiled (Q=100) , iii) viscoa-
coustic wavefiled (Q=50), and iv) viscoacoustic wavefiled (Q=20).The value of v = 2500m/s and
ρ = 1200g/m.3.

NUMERICAL RESULTS

A perfectly matched layer (PML) is an artificial absorbing layer for wave equations,
commonly used to truncate computational regions in numerical methods to simulate prob-
lems with open boundaries, especially in the finite-difference (FD) method. In the PML
region the outgoing waves from the interior of a computational region strongly absorbed
without reflecting them back into the interior while in the inner region, the PML equations
are the same as the original wave equations. In the absorbing layers,Collino and Tsogka
(Collino and Tsogka, 2001)have used the following model for the damping parameter d(x)
that shows a relation based on a theoretical reflection coefficient,

d(x) = d0(
x

δ
)2 (18)

where δ is the width of the PML layer and d0 is the maximum damping parameter which
is a function of the theoretical reflection coefficient

d0 = log(
1

R
)
3V p

2δ
(19)

To investigate the accuracy of solution of the constant-Q wave equation using the PML
absorbing boundary condition we consider the constant velocity model. The viscoacoustic
medium considered here is characterized by the constant velocity model presented in Figure
3a. The size of the grid is 250×250,and the source is located at point (500 m, 12 m), which
is a zero-phase Ricker wavelet with a centre frequency of 30 Hz. The grid spacing in the
x and z directions is 4 m. To reduce artificial reflections that are introduced by the edge
of the computational grid, a PML absorbing boundary condition is applied to the sides and
bottom of the model. Figure 3b show the snapshpts of 2D viscoacoustic wavefiled using
the PML absorbing layers. Equations (18) and (19) are used for different width of the PML
layer = 20m (5 grid), =40m(10 grid), and =80m ((20 grid)). The theoretical reflection
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FIG. 5. show depth traces at four different time steps. The solid blue lines, dashed black lines, and
solid red lines represent the acoustic and viscoacoustic wave propagation with Q=100 and Q=20
respectively. The viscoacoustic waveforms have smaller amplitude and wider spread and shifted
phase due to velocity dispersion.

coefficient are related with the PML tickness and are close to the numerical ones when
the number of meshes inside the layer is large (Collino and Tsogka, 2001). There is no
visible artificial reflections observed in the snapshot when the PML layer size is 20 grid,
while in the smaller PML layer thicknesses the artificial reflections are visible. The results
show that some of waves approaching the boundaries are adsorbed in the PML layer, so
some of the artificial reflections are still visible. By spending the computational grid by the
size of the PML, we can remove these artificial reflections. The effectiveness of the PML
depends on its size and absorption. Also the time step used in the simulation can affect the
effectiveness of the PML. For a small time step, the wave spends more time in the PML
layer and more absorbed.

Figure 4a and 4b shows the effect of attenuation on amplitude and phase of a propa-
gating seismic wave in a homogeneous medium with a background velocity of 2500 m/s
and for different values of qualty factor (Q=20 , Q=50 and Q=100). The viscoacoustic
wavefield has the reduced amplitude and advanced phase in comparison with the acoustic
wavefield.
To understand attenuation effects we simulate the 2D viscoacoustic wave propagation with
different values of quality factor (Q=20, Q=100). Figure 5 shows depth traces extracted at
four different time steps. The solid blue lines, dashed lines, and solid red lines represent the
acoustic and viscoacoustic wave propagation with Q=20 and Q=100 respectively. There are
two main attenuation effects, reduced amplitude and dispersed phase shift. The phases do
not match together, and it becomes worse as depth increases because of velocity dispersion
in the attenuating media. As the wave starts propagating, the amplitudes in the acoustic
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FIG. 6. Illustrate a) Marmousi velocity model, and b) Q model.

and viscoacoustic cases are very similar, while by increasing the propagation time ( greater
depth), the wave amplitude in case of Q=20 is more attenuated. For moderate attenuation
values (Q=100), as shown by the black dashed curves in Figure 5, the attenuation effect at
different depths is still significant compared to the blue curves that represent the acoustic
case in which there is no attenuation.
In the second example, we consider the Marmousi model.Figure 6a shows the part of Mar-
mousi velocity model. The model is 6 km wide and 3 km in depth. There is a one shot
is located at point (500 m, 12 m),which is a zero-phase Ricker wavelet with a centre fre-
quency of 25 Hz, and receivers are located 4 m apart at 12 m depth. The Q model includes
the constant quality factors with different value, while the background of model has Q =
100 (Fig. 6b). The FD synthetic data for acoustic and viscoacoustic using equations 6, 9
and 10 are shown in figure 7. The first-order pressure-velocity viscoacoustic wave equation
usind PML absorbing boundary condition is used to compute the synthetic seismograms.
The staggered-grid FD solver has 2nd-order accuracy in time and 4th-order accuracy in
space. The snapshots are included the first arrivals, multiples, reflections, refractions and
diffractions events. The viscoacoustic simulation have reduced amplitude (particulary mul-
tiples)and shifted phase due to velocity dispersion, as highlighted by the red arrow. The

FIG. 7. Show shot record from acoustic simulation (a), and viscoacoustic simulation (b) using PML
absorbing boundary condition. Attenuation effects and dispersion of the events highlighted with the
blue arrow.
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FIG. 8. Illustrate the trace number 900 of acoustic (blue line), and viscoacoustic (red dashed line).

a) b)

FIG. 9. Illustrate (a) Difference between acoustic and viscoacoustic . (b) The absorption of energy.

trace number 900 of the acoustic and viscoacoustic cases are illustrated in Figure 8, which
confirms the reduced amplitude and shifted phase due to attenuation effects. To understand
the attenuation effects the difference waveforms between the acoustic and viscoacoustic
data are illustrated in Fig. 9a. The energy of waveform is decreased when the wave is
propagated in the attenuative media (Fig. 9b).

REVERSE TIME MIGRATION USING UNSPLIT PML VISCOACOUSTIC WAVE
EQUATION

The RTM images are computed by the time-space domain FD methods for a layered
model with attenuation. The source wavelet is a zero-phase Ricker wavelet with a centre
frequency of 25 Hz. The synthetic data are migrated by using acoustic RTM and viscoa-
coustic RTM. Perfectly matched layer (PML) absorbing boundary conditions are used to
attenuate the reflections of an artificial boundary.

A layered model is shown in Fig. 10a with the Q anomaly(Fig. 10b). The model
grid measures are 301×401, the grid size is 4 m ×4 m, the quality factors for background
and anomaly (red )are 100 and 20 respectively. The sampling interval is 0.4 ms and the
recording length is 2 s.
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Figure 11a and 11b compares the RTM images for acoustic and viscoacoustic approxi-
mations with the attenuation. The acoustic RTM image has similar artifacts and amplitudes
in the shallow layers compared with the viscoacoustic RTM image, while the acoustic
RTM image has very weak amplitudes at the deeper layers specially blew the layers with
the strong attenuation (blue arrows in Figure 11).This is because strong attenuation affects
the amplitudes and the phases of the propagating waves. However, for viscoacoustic RTM
the migration amplitudes of layers are more accurate than the acoustic RTM and the reflec-
tors are imaged at the correct locations.
To eliminate source signatures and low-frequency noises we used the imaging condition
and highpass filter respectively (Fig. 12). Imaging conditions are used to correlate the
source and receiver wavefield snapshots to get the subsurface images. Similar to the acous-
tic case(Whitmore and Lines, 1986), imaging conditions can be developed for the 2D visco-
acoustic case. The imaging conditions for visco-acoustic case:

I(x, z) =

∫
t
S(x, z, t)R(x, z, t)∫

t
S2(x, z, t)

(20)

where, I(x, z) is the migration result of the position (x, z), S(x, z, t) represents the time-
domain forward propagated wavefield from the source and R(x, z, t) represents the time-
domain receiver wavefield that is back propagated in reverse time from the receiver. The
auto-correlation of source in the right can help to remove the effects of source. Also, by
applying the highpass filttering method, the RTM image can filter and remove the effects
of low-frequency noises.

CONCLUSIONS

A time-domain constant-Q wave propagation by a series of standard linear solid mech-
anisms is investigated to compensate for the distortion in amplitudes and phases of seismic
waves propagating in strong attenuative layers. Numerical synthetic data illustrated for
strong attenuation, the acoustic RTM cannot correct for the attenuation loss, while the
unsplit viscoacoustic wave equations can compensate the attenuation loss during the iter-
ations. Comparing the synthetic data results for unsplit viscoacoustic and acoustic RTMs
show that the migration amplitudes of layers are more accurate than the acoustic RTM and

a) b)

FIG. 10. Illustrate the layered velocity model (a) and Q model (b).
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a) b)

c)

FIG. 11. The RTM images of the layered model (a) acoustic RTM, (b)viscoacoustic RTM, and c)
Imaging condition and denoising viscoacoustic RTM. The blue arrows refer to the reflectors below
the attenuation layer where we can see that RTM image is clear and the position is accurate from
viscoacoustic RTM, compared with the acoustic RTM image.

the reflectors are imaged at the correct locations in strong attenuative media.
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