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ABSTRACT

Based on a data-fitting procedure, full waveform inversion (FWI) aims to build high res-
olution subsurface structures using full waveform information. Although FWI is a highly
nonlinear inverse problem, it is usually solved as a local optimization problem under a lin-
ear approximation. The gradient calculation of FWI during each iteration is usually stud-
ied with the aid of sensitivity kernel, or Fréchet derivative. Recently applications of FWI
show that FWI can successfully build high resolution models in shallow regions, where
long-to-intermediate wavelength structures can be reconstructed from diving waves and
post-critical reflections. When first order scattering is considered during the construction
of sensitivity kernel, recently developed reflection waveform inversion (RWI) provides the
possibility to retrieve long-to-intermediate wavelengths in deeper regions from pre-critical
reflections. In this study, we first present the construction of nonlinear sensitivities under
the scattering theory. Extending the sensitivity kernel to higher order can help reduce the
nonlinearity and improve the convergence of FWI. To construct higher order sensitivities,
the model perturbation from the forthcoming iteration is needed. We then present a two-
iteration approach to perform nonlinear FWI in the frequency domain. Finally, we apply
this nonlinear FWI on the Marmousi model. The inverted models with different frequency
ranges and different initial models show that this nonlinear FWI can build a reliable high
resolution model in both shallow and deeper regions.

INTRODUCTION

Full waveform inversion (FWI) (Lailly, 1983; Tarantola, 1984) uses full wavefield in-
formation to estimate the subsurface models by minimizing the misfit between recorded
data and modeled data. Although the full-wave equation is highly nonlinear for the real
earth, the nonlinear waveform inverse problem is usually treated as a local optimization
problem, which can be solved by a linearized version of the problem iteratively through
the repeated calculation of a local gradient. The misfit function in the local optimization
problem is not convex, so FWI suffers from the local minima problem, which makes FWI
heavily relies on the availability of low frequency or long offset seismic data and a good
initial model.

Theoretically, FWI can recover both long and short wavelengths structures correctly
with wide-aperture acquisition systems and broadband sources, while successfully applica-
tion shows that FWI can build high resolution velocity models in shallow regions (Virieux
and Operto, 2009), where long-to-intermediate wavelengths structures are recovered by
the information carried by diving waves and post-critical reflections, and a migration-like
model in the deeper regions sampled by the pre-critical reflections. The spatial resolu-
tion of FWI is governed by the relationship established in diffraction tomography, which is
the relationship between the scattering angle θ and local model wavenumber component k
(Sirgue and Pratt, 2004; Alkhalifah, 2015; Brossier et al., 2015)
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v
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where ω is the angular frequency, v is the local velocity and n is the normalization of
the vector k. Based on this relationship, during updating the subsurface model, FWI uses
large-angle scattering data, e.g., diving waves and post-critical reflections, to get the low-
to-intermediate wavenumber components, and small-angle scattering data to get the high
wavenumber components. Therefore, without long offsets and low frequency information,
FWI cannot reconstruct the low wavenumber components, and behaves more like a least-
squares migration, which updates mainly the high wavenumber component of the struc-
tures. Even with long offset data, the penetration depths of large-angle scattering data are
often insufficient to reach the deeper part of the subsurface structures.

To better retrieve the long wavelengths structures and help FWI converge to a global
minima, it is straight forward to consider building a good starting model first, especially
when very low frequency information can still not be obtained from the recorded data.
One way to do so is to retrieve the low frequency information from the seismic data using
complex-valued frequencies in frequency domain, or to say time damping in the time do-
main, such as Laplace-domain and Laplace-Fourier-domain inversion (Shin and Cha, 2008,
2009), or using envelop information obtained form Hilbert transform, such as envelop in-
version (Wu et al., 2014). The other way is to retrieve the low wavenumber components
of the model directly from reflection data, and several methods have been proposed in both
data and image domain, such as reflection waveform inversion (RWI) (Xu et al., 2012), mi-
gration based traveltime tomography (MBTT) (Chavent et al., 1994), differential semblance
optimization (Symes and Carazzone, 1991) and migration velocity analysis (MVA) (Sava
and Biondi, 2004) and so on. In the data domain methods, the model is decomposed into a
low wavenumber background part, which is to be updated, and a high wavenumber pertur-
bation part, which is assumed to be known, and a migration at each iteration is required to
provide related virtual sources in depth, which introduce the transmission wavepaths from
the reflectors to both sources and receivers, where wide-scattering angles can be obtained
to help updating the low wavenumber components of the model. While refractions can be
used together with reflections to perform a better reconstruction of the background model
(Wang et al., 2015; Zhou et al., 2015), simultaneously inversion of the background and
perturbation model are also studied in the data domain and mixed data/image domain (Sun
and Symes, 2012; Biondi and Almomin, 2014; Wu and Alkhalifah, 2015; Alkhalifah and
Wu, 2016) to mitigate nonlinearities of the FWI formulation.

On the other hand, as pointed out in the FWI review (Virieux and Operto, 2009), the
gradient is usually studied in the framework of Fréchet derivative, or sensitivity kernel,
which indicates the changes in the seismic waveform caused by the model parameter per-
turbations, and the sensitivity kernel is generally computed with the Born approximation,
which indicates a linear relationship between the model perturbations and the change of
the waveform and valid in the case of weak and small perturbations. Although different
linearizion approach, such as Rytov approximation, can be used in FWI, several work have
already been done to study nonlinear sensitivity as in resistivity inversion (Mcgillivray and
Oldenburg, 1990), optical diffuse imaging (Kwon and Yazici, 2010) and seismic inversion
(Wu and Zheng, 2014; Innanen, 2014, 2015).

Although FWI can be implemented in both time domain and frequency domain, there
are a lot of numerical advantages in frequency domain. Only a few frequencies are needed
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for the inversion in the frequency domain method (Sirgue and Pratt, 2004), and frequency
domain is more natural to perform a multiscale approach, where for each iteration the
impedance matrix is only needed to be constructed once. Therefore, in this study, following
Innanen’s work (2014; 2015), we study the nonlinear FWI in frequency domain. We start
from the construction of the nonlinear sensitivities. By adding a perturbation to the nth
updated model, the wavefield can be divided into a background wavefield that is obtained
in the nth updated model and a perturbation wavefield that is obtained from both nth
updated model and the perturbation. Using both background wavefield and perturbation
wavefield, we can obtain the nonlinear sensitivities which contain both the zero-order and
higher-order sensitivities. Based on this nonlinear sensitivities, we discuss the construction
of a nonlinear two-iteration FWI scheme in frequency domain. For each iteration, we first
invert the perturbation using linear inversion scheme in the inner iteration, then substitute
the obtained perturbation to generate the nonlinear sensitivities for the outer iteration, and
the gradient of the outer iteration nonlinear FWI can be constructed using the nonlinear
sensitivities and data residual at the nth updated model or data residual from both nth
updated model and the perturbation model. It has to be point out that without calculating
the gradient of the outer iteration, the perturbation obtained from the inner iteration can
provide a direct update of the model, similar as discussed in Kwak et al’s work (2014).
From the numerical example, we see that the usage of higher order sensitivities provide the
transmission wave paths from the scatter points to both sources and receivers at the surface,
along which, the wide-scattering angles provide the ability to update the low wavenumber
components between the reflectors and the surface. Inversion using only the higher order
sensitivities can provide a good updated background model, which can be further used as
initial model in FWI. The applications on the Marmousi model show that this nonlinear
FWI converges faster than the conventional FWI, and the inversion results shows that this
approach can provide a good inversion result even without the low frequency data.

THEORY

In this paper, we will use the isotropic acoustic wave equation with constant density
to describe the wave motion. In the space-frequency domain, the wave equation can be
written as [

ω2s(r) +∇2
]
P (r, rs, ω) = −W (ω)δ(r− rs), (1)

where P (r, rs, ω) is the wavefield generated by a source located at rs, ω is the frequency,
and s(r) is the squared slowness parameter s(r) = v−2(r). In this study, we are using point
source with spectrum W (ω) = 1 as source term, so the wavefield P (r, rs, ω) is equivalent
to the related Green’s function G(r, rs, ω). The observed data is collected at receivers rg as
P (rg, rs, ω).

Conventional FWI

FWI seeks to estimate subsurface properties through an iterative process by minimize
the difference between the synthetic data and the observed data. The misfit function is
usually given in a least-square norm as

φ(sn) =
1

2

∑
rs

∑
rg

∑
ω

‖δP (rg, rs, ω|sn)‖2 , (2)

CREWES Research Report — Volume 28 (2016) 3



Geng and Innanen

where δP (rg, rs, ω|sn) = P (rg, rs, ω) − G (rg, rs, ω|sn) is the data residual between the
observed data P (rg, rs, ω) and the synthetic data G(rg, rs, ω|sn) calculated using the up-
dated model sn at the nth FWI iteration.

Gradient-based method is usually used to find the optimization solution of the problem.
Suppose that at the nth iteration, the model is updated from sn(r) to sn+1(r) through a
perturbation δsn(r)

sn+1(r) = sn(r) + δsn(r). (3)

This perturbation δsn(r) can be determined by

δsn(r) = −
∑
r′

H−1n (r, r′) gn (r′) , (4)

where gn(r) and Hn (r, r′) are the gradient and the Hessian matrix calculated at the nth
iteration, which are defined as the first and second order derivatives of the misfit function
φ(sn) with respect to the model sn, respectively,

gn(r) =
∂φ(sn)

∂s(r)
, Hn (r, r′) =

∂2φ(sn)

∂s(r)∂s(r′)
. (5)

The gradient can be calculated through

gn(r) = −
∑
rs

∑
rg

∑
ω

Re
(
∂G (rg, rs, ω|sn)

∂s(r)
δP ∗ (rg, rs, ω|sn)

)
, (6)

where ∗ stands for the complex conjugate, and ∂G(rg, rs, ω|sn)/∂s(r) is the Fréchet deriva-
tive or the sensitivity. Since it is extremely expensive to explicitly calculate the sensitivity,
in FWI, the adjoint-state method (Plessix, 2006) is used to directly calculate the gradient.
While the gradient indicates the descent direction to solve the optimization problem, the
inverse Hessian matrix helps to alter the direction and length of the gradient vector. Cal-
culation of full form of the Hessian matrix is usually very expensive, so approximation of
Hessian is used to form a Gaussian-Newton update (Virieux and Operto, 2009),

H (r, r′) ≈ HGN (r, r′) =
∑
rs

∑
rg

∑
ω

Re
(
∂G(rg, rs, ω|sn)

∂s(r)

∂G∗(rg, rs, ω|sn)

∂s(r′)

)
. (7)

When assuming the Hessian matrix as an identity matrix, the model can then be updated
through

sn+1(r) = sn(r)− µngn(r), (8)

where µn is the step length which can be determined by a line search method.

From linear to nonlinear sensitivities

The optimization problem of minimizing the misfit function (2) is highly nonlinear,
since the relationship between the wavefield and model parameter is nonlinear, as described
by the wave equation (1). One direct way to help mitigating this nonlinearity is to have
broadband seismic data with wide-offset range and very good initial model before starting
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the FWI procedure, however, even with different types of misfit definition proposed (van
Leeuwen and Mulder, 2008; Brossier et al., 2015), the gradient used to update the model is
still obtained with the sensitivity ∂G/∂s derived under the Born approximation (as shown
in APPENDIX (A-4)) as

∂G(rg, rs, ω|sn)

∂s(r)
≈ ω2G(rg, r, ω|sn)G(r, rs, ω|sn), (9)

where the Green’s functions are calculated in the background model sn, so it depends only
on sn but not δsn. Insert the sensitivity equation (9) back to the gradient equation (6), the
gradient can be constructed as the multiplication between the incident wavefield from the
source point and backpropagated complex conjugate of the data residual from the receiver
positions in the frequency domain, which can also be seen as a zero-lag correlation of the
incident wavefield and the backpropagated data residuals in the time domain,

gn(r) = −
∑
rs

∑
rg

∑
ω

Re
(
ω2G(r, rs, ω|sn)G(rg, r, ω|sn)δP ∗ (rg, rs, ω|sn)

)
. (10)

The other way to mitigate the nonlinearity is taking multiple forward scattering into
account, which can be performed by introducing nonlinear or to say higher-order sensitiv-
ities. Based on the scattering theory as discussed in former work of Innanen (2015), the
synthetic data calculated using model sn+1(r) can be written as an expansion of the syn-
thetic data calculated using model sn(r) using Lippmann-Schwinger equation as shown in
APPENDIX (A-2),

G (rg, rs, ω|sn+1)

= G(rg, rs, ω|sn) + ω2

∫
dr′G(rg, r

′, ω|sn)δsn(r′)G(r′, rs, ω|sn+1)

= G(rg, rs, ω|sn) + ω2

∫
dr′G(rg, r

′, ω|sn)δsn(r′)G(r′, rs, ω|sn)

+ ω4

∫
dr′G(rg, r

′, ω|sn)δsn(r′)

∫
dr′′G(r′, r′′, ω|sn)δsn(r′′)G(r′′, rs, ω|sn)

+ . . . . (11)

When adding a small variation δs which is localized at the position r to sn+1, it can be seen
as changing the perturbation from δsn to δsn + δs(r) while keep the background model sn
unchanged, then the calculated field is

G(rg , rs, ω|sn+1 + δs(r)) = G(rg, rs, ω|sn)

+ ω2

∫
dr′G(rg, r

′, ω|sn) [δsn(r′) + δs(r)δ(r− r′)]G(r′, rs, ω|sn+1 + δs(r))

= G(rg, rs, ω|sn) + ω2

∫
dr′G(rg, r

′, ω|sn) [δsn(r′) + δs(r)δ(r− r′)]G(r′, rs, ω|sn)

+ ω4

∫
dr′G(rg, r

′, ω|sn) [δsn(r′) + δs(r)δ(r− r′)]

×
∫

dr′′G(r′, r′′, ω|sn) [δsn(r′′) + δs(r)δ(r− r′′)]G(r′′, rs, ω|sn) + . . . . (12)
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On the other hand, if we add the variation δs(r) to the background model sn and keep the
perturbation δsn unchanged, the calculated field is

G(rg,rs, ω|sn+1 + δs(r)) = G(rg, rs, ω|sn + δs(r))

+ ω2

∫
dr′G(rg, r

′, ω|sn + δs(r))δsn(r′)G(r′, rs, ω|sn+1 + δs(r)). (13)

By keeping the first order term related to δs(r), G(rg, rs, ω|sn + δs(r)) in equation (13) is

G(rg, rs, ω|sn + δs(r))

= G(rg, rs, ω|sn) + ω2

∫
dr′G(rg, r

′, ω|sn)δs(r)δ(r− r′)G(r′, rs, ω|sn + δs(r))

= G(rg, rs, ω|sn) + ω2

∫
dr′G(rg, r

′, ω|sn)δs(r)δ(r− r′)G(r′, rs, ω|sn)

+ ω4

∫
dr′G(rg, r

′, ω|sn)δs(r)δ(r− r′)

×
∫

dr′′G(r′, r′′, ω|sn)δs(r)δ(r− r′′)G(r′′, rs, ω|sn)

+ . . .

= G(rg, rs, ω|sn) + ω2G(rg, r, ω|sn)δs(r)G(r, rs, ω|sn) + . . . . (14)

Insert (14) back to (13), we can get

G(rg , rs, ω|sn+1 + δs(r)) = G(rg, rs, ω|sn) + ω2G(rg, r, ω|sn)δs(r)G(r, rs, ω|sn)

+ ω2

∫
dr′
(
G(rg, r

′, ω|sn) + ω2G(rg, r, ω|sn)δs(r)G(r, r′, ω|sn)
)
δsn(r′)

×
(
G(r′, rs, ω|sn) + ω2G(r′, r, ω|sn)δs(r)G(r, rs, ω|sn)

)
+ . . .

= G(rg, rs, ω|sn) + ω2G(rg, r, ω|sn)δs(r)G(r, rs, ω|sn)

+ ω2

∫
dr′G(rg, r

′, ω|sn)δsn(r′)G(r′, rs, ω|sn)

+ ω4

∫
dr′G(rg, r, ω|sn)G(r, r′, ω|sn)G(r′, rs, ω|sn)δsn(r′)δs(r)

+ ω4

∫
dr′G(rg, r

′, ω|sn)G(r′, r, ω|sn)G(r, rs, ω|sn)δsn(r′)δs(r) + . . . . (15)

which is equivalent to the result obtained by keeping the background model unchanged as
in equation(12). Comparing the synthetic data G(rg, rs, ω|sn+1 + δs(r)) in the perturbed
model sn+1 + δs(r) in equation (15) and synthetic data G(rg, rs, ω|sn+1) at the n + 1th
iteration in equation (11), the perturbation δG(rg, rs, ω|sn+1, δs(r)) caused by this variation
δs(r) is the difference between these two series:

δG(rg , rs, ω|sn+1, δs(r)) = G(rg, rs, ω|sn+1 + δs(r))−G(rg, rs, ω|sn+1)

= ω2G(rg, r, ω|sn)δs(r)G(r, rs, ω|sn)

+ ω4

∫
dr′G(rg, r, ω|sn)G(r, r′, ω|sn)G(r′, rs, ω|sn)δsn(r′)δs(r)

+ ω4

∫
dr′G(rg, r

′, ω|sn)G(r′, r, ω|sn)G(r, rs, ω|sn)δsn(r′)δs(r)

+ . . . . (16)
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The sensitivities at n+ 1th iteration can then be written as

∂G(rg, rs, ω|sn+1)

∂s(r)
= lim

δs→0

δG(rg, rs, ω|sn+1, δs(r))

δs(r)

=

(
∂G(rg, rs, ω|sn+1)

∂s(r)

)
0

+

(
∂G(rg, rs, ω|sn+1)

∂s(r)

)
1

+ . . . , (17)

where the zero order term is the conventional FWI sensitivities (9)(
∂G(rg, rs, ω|sn+1)

∂s(r)

)
0

=
∂G(rg, rs, ω|sn)

∂s(r)
= ω2G(rg, r, ω|sn)G(r, rs, ω|sn), (18)

and the first order term is(
∂G(rg, rs, ω|sn+1)

∂s(r)

)
1

= ω4

∫
dr′δsn(r′) [G(rg, r

′, ω|sn)G(r′, r, ω|sn)G(r, rs, ω|sn)

+ G(rg, r, ω|sn)G(r, r′, ω|sn)G(r′, rs, ω|sn)] . (19)

Same as in the conventional FWI sensitivities, the zero order term depends only on the
model sn, while starting from the first order term, the sensitivities depend not only on the
model sn, but also on the perturbation δsn, which introduce the nonlinear effect to the
sensitivities.

Calculation of perturbation δsn before n+ 1th FWI iteration

Note that all the Green’s functions used in this new sensitivities (17) for n+ 1th model
sn+1 are still calculated in the nthmodel sn. However, to calculate the higher order terms in
the new sensitivities (17), we need to know δsn first. In the former research work, Innanen
(2015) showed the perturbation δsn can be exchanged in to a series related to the nth data
residual δP (rg, rs, ω|sn), according to inverse scattering theory, therefore, the perturbation
δsn can be inverted from the data residual through direct nonlinear inverse scattering. In
this study, instead of using direct nonlinear inverse scattering, we are using a linearized
inversion to get a perturbation for each model sn during the FWI iteration.

The data residual δP (rg, rs, ω|sn), which is the difference between the observed data
P (rg, rs, ω) and the simulated data G(rg, rs, ω|sn) in the nth model sn, can be seen as the
scattered data produced by the difference between the true model s and the nth model sn,
and is related with the perturbation ∆s = s− sn through the relation

δP (rg, rs , ω|sn) = P (rg, rs, ω)−G(rg, rs, ω|sn)

= ω2

∫
dr′G(rg, r

′, ω|sn)∆s(r′)G(r′, rs, ω|sn) + . . . . (20)

By taking only the first order term related to ∆s, equation (20) becomes the Born for-
ward modeling, which describe the relationship between the perturbation ∆s and the data
residual as

δP (rg, rs, ω|sn) = ω2

∫
dr′G(rg, r

′, ω|sn)∆s(r′)G(r′, rs, ω|sn). (21)
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Therefore, instead of calculating the exact direct inverse of the forward modeling (21), the
perturbation ∆s can be approached by the solution δs̃ of a data fitting scheme in a least
squares sense, which iteratively minimizes the misfit function

φ(δs̃) =
1

2

∑
rs

∑
rg

∑
ω

‖δP (rg, rs, ω|sn)− δPcal(rg, rs, ω|sn)‖2

=
1

2

∑
rs

∑
rg

∑
ω

‖δS(rg, rs, ω|sn)‖2 , (22)

where δPcal(rg, rs, ω|sn) is the scattered data calculated using the Born forward modeling
(21), and δP (rg, rs, ω|sn) is the observed scattered data obtained from the difference of the
observed data P (rg, rs, ω) and the simulated data G(rg, rs, ω|sn) in the nth model as in
(20). The perturbation is then obtained by

δs̃m+1(r) = δs̃m(r)−
∑
r′

H̃−1m (r, r′) g̃m(r′), (23)

where H̃−1 and g̃ are the inverse of the Hessian and the gradient of the misfit func-
tion (22), respectively. Suppose that at the mth iteration, the scattered data residual is
δSm(rg, rs, ω|sn). Similar to FWI, in this inversion, the gradient of misfit function (22) is

g̃m(r) = −
∑
rs

∑
rg

∑
ω

ω2Re (G(rg, r, ω|sn)G(r, rs, ω|sn)δS∗m(rg, rs, ω|sn)) , (24)

and approximation of the Hessian can also be used instead of using the full Hessian

H̃GN(r, r′) =
∑
rs

∑
rg

∑
ω

ω4Re(G(rg, r, ω|sn)G(r, rs, ω|sn)

×G∗(rg, r′, ω|sn)G∗(r′, rs, ω|sn)), (25)

so that a Gaussian-Newton updating can be performed. Since the Hessian is diagonally
dominant in most case, the Hessian can be approximated by the diagonal term in the ap-
proximated Hessian (25) as

H̃GN(r, r) =
∑
rs

∑
rg

∑
ω

ω4 |G(rg, r, ω|sn)|2 |G(r, rs, ω|sn)|2 . (26)

Line search can also be used to determine the optimized scaling factor during the updating
as

δs̃m+1(r) = δs̃m(r)− αmg̃m(r). (27)

Nonlinear FWI with nonlinear sensitivities

Once obtain the perturbation as the solution δs̃ from (23) or (27) for nth iteration during
FWI, we can write a direct update using this perturbation without line searching as

s̃n+1(r) = sn(r) + δs̃(r), (28)
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similar as discussed in Kwak et al ’s work (2014). Here we will continue to use this per-
turbation to construct the higher order sensitivities. To avoid the calculation of Green’s
function G(r′, r, ω|sn) at each point r in the higher order terms of the sensitivities (17)
explicitly, we can calculate these higher order terms by solving the related wave equation.
The scattered wavefield from source can be expended as

δG(r, rs, ω|sn, δs̃)

= ω2

∫
dr′G(r, r′, ω|sn)δs̃(r′)G(r′, rs, ω|s̃n+1)

= ω2

∫
dr′G(r, r′, ω|sn)δs̃(r′)G(r′, rs, ω|sn)

+ ω4

∫
dr′G(r, r′, ω|sn)δs̃(r′)

∫
dr′′G(r′, r′′, ω|sn)δs̃(r′′)G(r′′, rs, ω|sn)

+ . . . (29)

and scattered wavefield from receiver as

δG(rg, r, ω|sn, δs̃)

= ω2

∫
dr′G(rg, r

′, ω|sn)δs̃(r′)G(r′, r, ω|s̃n+1)

= ω2

∫
dr′G(rg, r

′, ω|sn)δs̃(r′)G(r′, r, ω|sn)

+ ω4

∫
dr′G(rg, r

′, ω|sn)δs̃(r′)

∫
dr′′G(r′, r′′, ω|sn)δs̃(r′′)G(r′′, r, ω|sn)

+ . . . . (30)

By substituting scattering wavefield (29) and (30) back into the nonlinear sensitivities (17),
the higher order terms of the sensitivities can be reduced to(

∂G(rg, rs, ω|s̃n+1)

∂s(r)

)
1

+ . . . = ω2 [δG(rg, r, ω|sn, δs̃)G(r, rs, ω|sn)

+G(rg, r, ω|sn)δG(r, rs, ω|sn, δs̃)] . (31)

It is obvious that unlike the conventional FWI sensitivity or to say the zero order sensitivi-
ties, the higher order sensitivities are the combination of two parts, which are the products
between the scattered wavefield and the background wavefield for both source and receiver
side. If only the first order scatterings in the scattered wavefield (29) and (30) are consid-
ered, then the first order sensitivity can be written as(

∂G(rg, rs, ω|s̃n+1)

∂s(r)

)
1

= ω2 [δGBorn(rg, r, ω|sn, δs̃)G(r, rs, ω|sn)

+G(rg, r, ω|sn)δGBorn(r, rs, ω|sn, δs̃)] . (32)

Substituting the higher order sensitivities (31) or first order sensitivities (32) and the
zero order sensitivity (18) back to the gradient (6), we can get the gradient of the nonlinear
FWI with nonlinear sensitivities as

gn(r) = −
∑
rs

∑
rg

∑
ω

Re
(
ω2δP ∗ (rg, rs, ω|sn)

(
G(r, rs, ω|sn)G(rg, r, ω|sn)

+ δG(rg, r, ω|sn, δs̃)G(r, rs, ω|sn) +G(rg, r, ω|sn)δG(r, rs, ω|sn, δs̃)
))
, (33)
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and update the model from sn to sn+1 through equation (8).

Note that the data residual in the gradient (33) is still the data residual from the nth it-
eration, which is used to generate the backpropagated receiver side wavefield and scattered
wavefield. Therefore, for each shot, the source side wavefield and scattered wavefield in
the higher order sensitivites (31) can be obtained by solving(

ω2sn(r) +∇2
)
G(r, rs, ω|sn) = −δ(r− rs), (34)(

ω2s̃n+1(r) +∇2
)
δG(r, rs, ω|sn, δs̃) = −ω2δs̃(r′)G(r′, rs, ω|sn), (35)

and with the reciprocity principle G(r, rg, ω|sn) = G(rg, r, ω|sn), the receiver side wave-
field Ur(r, rg, ω|sn) = δP ∗ (rg, rs, ω|sn)G(r, rg, ω|sn) and the related scattered wavefield
δUr(r, rg, ω|sn) = δP ∗ (rg, rs, ω|sn) δG(r, rg, ω|sn, δs̃) can be obtained by solving(

ω2sn(r) +∇2
)
Ur(r, rg, ω|sn) = −δ(r− rg)δP

∗ (rg, rs, ω|sn) , (36)(
ω2s̃n+1(r) +∇2

)
δUr(rg, r, ω|sn, δs̃) = −ω2δs̃(r′)Ur(rg, r

′, ω|sn). (37)

When sensitivities up to only first order is used to construct the gradient as in equation (32),
the scattered wavefield can be obtained in model sn instead of model s̃n+1 in equation (35)
and (37).

From another point of view, since s̃n+1 in equation (28) itself is already a direct update
of the model, we can modify the data residual into

δP (rg, rs, ω|s̃n+1) = P (rg, rs, ω)−G (rg, rs, ω|s̃n+1)

≈ P (rg, rs, ω)−G (rg, rs, ω|sn)− δG(rg, rs, ω|sn, δs̃), (38)

which contains not only the data residual in model sn, but also the data residual of the
synthesized scattered data in perturbation δs̃, to get the gradient as

gn(r) = −
∑
rs

∑
rg

∑
ω

Re
(
ω2δP ∗ (rg, rs, ω|s̃n+1)

(
G(r, rs, ω|sn)G(rg, r, ω|sn)

+ δG(rg, r, ω|sn, δs̃)G(r, rs, ω|sn) +G(rg, r, ω|sn)δG(r, rs, ω|sn, δs̃)
))

= −
∑
rs

∑
rg

∑
ω

Re
(
ω2δP ∗ (rg, rs, ω|s̃n+1)

(
G(r, rs, ω|s̃n+1)G(rg, r, ω|s̃n+1)

− δG(rg, r, ω|sn, δs̃)δG(r, rs, ω|sn, δs̃)
))
. (39)

and perform an update from s̃n+1 to sn+1 by replacing sn to s̃n+1 in equation (8).

Implementation of nonlinear FWI

So far we have discussed the calculation of nonlinear sensitivities by dividing the whole
scheme into two steps: the first step is calculating the perturbation using a linear waveform
inversion, the second step is using the perturbation to generate the higher order terms in
the sensitivities. Using this nonlinear sensitivity, we can then get the nonlinear gradient for
FWI. The whole scheme for this nonlinear FWI is shown as in Table 1.
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Table 1: Nonlinear FWI

Algorithm 1 Algorithm for nonlinear FWI

Input: Recorded seismic data P (rg, rs, ω), initial model s0
Output: Inverted model sn

1: for n = 0, . . . , nmax do . Outer loop for FWI
2: Get data residual δP (rg, rs, ω|sn) for all frequency
3: Initial perturbation δs̃0 ← 0
4: for m = 0, . . . ,mmax do . Inner loop for perturbation
5: Calculate δPcal(rg, rs, ω|sn)
6: Get data residual δS(rg, rs, ω|sn)
7: Calculate the gradient g̃m(r) (equation (24))
8: Calculate the step length αm using the line search method
9: Update s̃m (equation (23))

10: end for
11: Calculate nonlinear gradient (equation (33) or (39) )
12: Calculate the step length µn using the line search method
13: Update to sn+1 (equation (8))
14: end for

In the above algorithm, all the frequency components are inverted simultaneously,
which is equivalent to the time domain approach. In frequency domain, as Sirgue and Pratt
discussed (2004), it is more straightforward to perform the inversion sequentially from the
low to high frequencies, and the computational cost is far cheaper than full time-domain ap-
proach. Moreover, the frequency interval can be determined according to the half offset-to
depth ratio Rmax = hmax/z as

ωn+1 =
ωn
αmin

, (40)

with
αmin =

1√
1 +R2

max

(41)

Although the frequency interval determined by equation (40) is not constant as the normally
used frequency domain interval, which is determined by the maximum recorded time to
prevent aliasing, it can provide enough coverage for the vertical wavenumber. A more
efficient nonlinear FWI algorithm can be perform with certain frequencies as shown in
Table 2.

NUMERICAL EXAMPLES

In this section, we will investigate this nonlinear FWI scheme numerically. We will use
a nine point frequency domain finite difference with constant-density (Jo et al., 1996) to
model the observed data and synthetic data. DWI will be used to refer the direct inversion
as in equation (28) with the perturbation calculated under the linear inversion. FOFWI and
NFWI will be used to distinguish the gradient calculated using equation (33) up to first
order with data residual in model sn and (39) with data residual in model s̃n+1, respec-
tively. First, we will discuss the physical meaning of the higher order sensitivities with a
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Table 2: Frequency domain nonlinear FWI

Algorithm 2 Algorithm for frequency domain nonlinear FWI

Input: Recorded seismic data P (rg, rs, ω), initial model s0
Output: Inverted model sn

1: for ω = ωmin, . . . , ωmax do . Frequency loop
2: for n = 0, . . . , nmax do . Outer loop for FWI
3: Get data residual δP (rg, rs, ω|sn)
4: Initial perturbation δs̃0 ← 0
5: for m = 0, . . . ,mmax do . Inner loop for perturbation
6: Calculate δPcal(rg, rs, ω|sn)
7: Get data residual δS(rg, rs, ω|sn)
8: Calculate the gradient g̃m(r) (equation (24))
9: Calculate the step length αm using the line search method

10: Update s̃m (equation (23))
11: end for
12: Calculate nonlinear gradient (equation (33) or (39))
13: Calculate the step length µn using the line search method
14: Update to sn+1 (equation (8))
15: end for
16: end for

simple model. Then by showing the inversion results in complex model, we will discuss
the efficiency and accuracy of this method.

Higher order sensitivities in an one-interface model

As we have discussed in the former section, the zero order term of the new sensitivities
(17) is the sensitivity kernel of the conventional FWI, which depends only on the back-
ground model sn and contains the iso-phase or iso-time surfaces where data residual can
be back-projected. For example, Figure 1 shows a single frequency zero-order sensitivity
kernel built in a homogeneous velocity model, where velocity is 2km/s, with one source
and one receiver. We can see that this kernel can provide the complete resolution ability
carried out by all of the arrivals in the seismogram, and it represents the first Fresnel zone
at the shallow depth, which associated with the forward scattering, while the secondary
Fresnel zones, which are the outer fringes of the sensitivity kernel, are associated with the
back scattering. As the width of this zone is relatively limited and decreases with depth as
the scattering angle decreases for a fixed source-receiver offset, it is hard to update the long
wavelengths component of deep part of the model.

Meanwhile, the higher order sensitivities depend not only on the background model
sn, but also on the perturbation δsn. For example, a single frequency first-order sensitivity
kernel built with same frequency, velocity and acquisition system but with one reflector as
perturbation is shown in Figure 2, and for reference, the nonlinear sensitivity as used in
gradient (33) calculated in the model with reflector is shown in Figure 3, where in both
figures, the yellow line shows the position of the reflector. The two parts of this first order
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FIG. 1. Zero-order sensitivity kernel in a homogeneous model.

kernel in Figure 2 are built from the product of the scattered wavefield generated from the
receiver side and the incident wavefield from the source side and the product of the scattered
wavefield generated from the source side and the incident wavefield from the receiver side,
which generate two first Fresnel zones connecting both the source position and the reflector
(as indicated by cyan line) and the reflector and receiver position (as indicated by red line),
respectively. Therefore, during the nonlinear FWI updating, these first order sensitivities
provide the ability to update the long wavelengths component of deep part of the model.
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FIG. 2. First-order sensitivity kernel in a homogeneous model with one reflector.
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FIG. 3. Nonlinear sensitivity kernel in a homogeneous model with one reflector.

Inversion using first order sensitivities with prior known model perturbation

Here we only present one simple example of frequency domain RWI with prior known
perturbation to demonstrate the contribution of the first order sensitivities for updating the
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long wavelength structures, and in a companion paper we discuss and review the detail
of the usage of this first order sensitivities and reflection data residual to perform a RWI
in time domain. With prior known model perturbation, the higher order sensitivities can
be seen as the connection between the perturbations of the background velocity and the
change of the wavefield. As shown in Figure 4, we add a Gaussian ball and a reflector to the
homogeneous background. The model is 2.2km in the horizontal direction and 1.2km in
the depth direction, with spatial interval 10m in both directions. The background velocity
is 2.5km/s, the center of the Gaussian ball is 2.8km/s and the reflector locates at z =
1km. We put both sources and receivers along the surface, with source interval dsx =
50m and receiver interval dgx = 10m. Suppose that the reflector information is already
known, we are trying to invert the Gaussian ball using the homogeneous background as
initial model. Figure 5 shows the inversion result using only the first order sensitivities
with one iteration for each frequency in the range of 1Hz to 20Hz and interval 1Hz. As
expected, the result gives information of the Gaussian ball, which has good resolution along
the horizontal direction, and does not have good resolution along the vertical direction.
Using this inversion result as the initial model for conventional FWI, we can get a good
reconstruction of the Gaussian ball in both horizontal and vertical direction as shown in
Figure 6.
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FIG. 4. Velocity model with Gaussian ball and reflector (a) and related background velocity
model (b).

Nonlinear FWI test of Marmousi data

The Marmousi model is used to perform the synthetic test of the nonlinear FWI. The
true model is shown in Figure 7, we add a 500m water layer on the top of the model to
reduce the refractions in the data. First we will test with a initial model by smoothing the
true velocity using a Gaussian smoother as shown in Figure 8. There are 461 fixed receivers
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FIG. 5. Inversion result using first order sensitivities.
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FIG. 6. FWI result using inversion result in Figure 5 as initial model.

with spacing of 20m and 46 sources with spacing of 200m along the surface, where the first
receiver locates at x = 0m and the first source locates at x = 100m. With 3 frequency data
(4Hz, 6.6Hz, 14.9Hz) starting from 4Hz to 15Hz, 10 iterations for each frequency are
used for FWI, DWI and nonlinear FWI inversion by updating only the velocity under the
added water layer, and 5 inner iterations are used for calculating perturbation in FOFWI,
DWI and NFWI. Figure 9a, Figure 9b, Figure 9c and Figure 9d shows the inversion results
from conventional FWI, FOFWI, DWI and NFWI, respectively. Velocity profiles along x =
2km, 4km, 6km, 8km are shown in Figure 10, where black lines show the true velocity,
green lines show the initial velocity, red lines show the conventional FWI inverted velocity,
dashed blue lines show the FOFWI inverted velocity, magenta lines show the DWI inverted
velocity and solid blue lines show the NFWI inverted velocity. Compared to conventional
FWI result, both of the nonlinear FWI results and DWI result give better reconstruction of
the velocity, especially in the deeper part, while the NFWI gives the best inversion result
in all the four methods. However, it has to be pointed out that in this example, although
DWI result is better than conventional FWI result, quality of inversion result obtained by
DWI depends on the inner iteration. Therefore, we only compare the conventional FWI
results and NFWI results in the following test. Figure 11 shows the norm of the data
residual vector of the three inversion methods as a function of iteration numbers for all
three frequencies, and DWI data residual is not shown because the velocity is updated
directly with the perturbation obtained from linear inversion, where data residual plotted
here is not used as a misfit function during iteration. Since in NFWI, both data synthesized
in model sn and δs̃ is used to obtain the data residual, it shows a lower data residual at
the first iteration, where the data residuals of conventional FWI and FOFWI are almost the
same.
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FIG. 7. True velocity model of the Marmousi example.
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FIG. 8. The initial velocity model of the Marmousi example.

Then we use a linearly increasing model as the initial model, which is exact at the added
water layer, but changes linearly along depth direction from 1.5km/s to 4km/s, as shown
in Figure 12. The acquisition system is the same as the former test, but 5 frequency data
(2Hz, 3.3Hz, 5.5Hz, 9Hz, 14.9Hz) starting from 2Hz to 15Hz are used for the inversion.
Figure 13a shows the inversion result from conventional FWI with 10 iterations for each
frequency, and Figure 13b shows the inversion result from NFWI with same iterations.
Velocity profiles along x = 2km, 4km, 6km, 8km are shown in Figure 14, where black
lines show the true velocity, green lines show the initial velocity, blue lines show the NFWI
inverted velocity and red lines show the conventional FWI inverted velocity. Since the
initial model is far away from the true velocity model, and we update the velocity at the
water layer in this test, even with frequency as low as 2Hz, conventional FWI can only
reconstruct rough structures of the model, but NFWI gives accurate high resolution of the
model even at the deeper part.

Next we change the starting frequency from 2Hz to 4Hz, and 3 frequencies (4Hz,
6.6Hz, 14.9Hz, and the last frequency is changed to match the last frequency as in the
2 − 15Hz case) are used to get the data for the inversion. During this test, we keep the
water layer velocity unchanged, and only update the velocity under the water layer. Figure
15a shows the inversion result from conventional FWI with 30 iterations for each frequency,
and Figure 15b shows the inversion result from NFWI with same iterations. Velocity pro-
files along x = 2km, 4km, 6km, 8km are shown in Figure 16. Without lower frequency
information, the conventional FWI gives wrong velocity updates even at shallow part of the
velocity, where NFWI can provide reasonable velocity information. However, compared
with the inversion results with a better initial model as in Figure 10, the deeper area of the
inverted velocity using both methods are not good, which may be caused by the insuffi-
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FIG. 9. Inversion using a) FWI b) FOFWI c) DWI and d) NFWI with 10 iterations for 3
frequencies starting from 4Hz to 15Hz.
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FIG. 12. The initial velocity model of the Marmousi example.
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FIG. 13. Inversion using a) FWI and b) NFWI with 10 iterations for 5 frequencies starting
from 2Hz to 15Hz.
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CREWES Research Report — Volume 28 (2016) 19



Geng and Innanen

cient wavenumber coverage with only 3 frequencies for the whole inversions. To verify
this, we use uniformly sampled 12 frequencies between 4Hz to 15Hz to perform both con-
ventional FWI and NFWI inversions with the same initial model. Figure 17a shows the
inversion result from conventional FWI with 10 iterations for each frequency, and Figure
17b shows the inversion result from NFWI with same iterations. Velocity profiles along
x = 2km, 4km, 6km, 8km are shown in Figure 18. Compared to the inversion results in
Figure 15 with only 3 frequencies, more frequency information provide better wavenumber
coverage, and the inversion results are improved significantly. With the conventional FWI
method, velocity is updated incorrectly, especially at the shallow area around z = 1km to
1.5km along vertical profile x = 4km and deeper area along the vertical profile x = 6km,
where the NFWI method provides a fairly good result.
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FIG. 15. Inversion using a) FWI and b) NFWI with 30 iterations for 3 frequencies starting
from 4Hz to 15Hz.

DISCUSSION AND CONCLUSION

It is shown that the resolution of FWI is determined by the scattering angle and fre-
quency information, which is similar as in diffraction tomography. Successful applications
of FWI rely on good initial model and seismic dataset with long offset and low frequency
information. Due to the restriction of the availability of scattering angle in the deep regions,
reconstructing the long-to-intermediate wavelength structures can still be challenging.

FWI can be performed in both time and frequency domain. Compared to time domain,
which is more appropriate to choose certain time window to distinguish certain type of the
data needed to different type of inversion, e.g., reflections only in RWI, or diving waves
and reflections separately in joint FWI (Wang et al., 2015; Zhou et al., 2015), frequency
domain FWI is more natural to perform a multiscale inversion and theoretically only a few
discrete frequencies are sufficient to cover the wavenumber spectrum. When initial model
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FIG. 16. Velocity profiles along a) x = 2km, b) x = 4km, c) x = 4km and d) x = 8km.
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FIG. 17. Inversion using a) FWI and b) NFWI with 10 iterations for 12 frequencies starting
from 4Hz to 15Hz.

CREWES Research Report — Volume 28 (2016) 21



Geng and Innanen

0 0.5 1 1.5 2 2.5 3 3.5

2

3

4

5

6

7

a)

Depth (km)

V
el

oc
ity

 (
km

/s
)

Velocity profile at x=2km

 

 

True model
Initial model
FWI−iter10
NFWI−iter10

0 0.5 1 1.5 2 2.5 3 3.5
1.5

2

2.5

3

3.5

4

4.5

5

5.5b)

Depth (km)

V
el

oc
ity

 (
km

/s
)

Velocity profile at x=4km

 

 

True model
Initial model
FWI−iter10
NFWI−iter10

0 0.5 1 1.5 2 2.5 3 3.5
1.5

2

2.5

3

3.5

4

4.5
c)

Depth (km)

V
el

oc
ity

 (
km

/s
)

Velocity profile at x=6km

 

 

True model
Initial model
FWI−iter10
NFWI−iter10

0 0.5 1 1.5 2 2.5 3 3.5

2

3

4

5

6

d)

Depth (km)

V
el

oc
ity

 (
km

/s
)

Velocity profile at x=8km

 

 

True model
Initial model
FWI−iter10
NFWI−iter10

FIG. 18. Velocity profiles along a) x = 2km, b) x = 4km, c) x = 4km and d) x = 8km.

is not close to the complex true model, it is still necessary to use sufficient frequencies to
get a reasonable inversion result.

The recent research on nonlinear sensitivities provide the possibility to better handle the
nonlinearity in FWI. The sensitivities used in conventional FWI is equivalent to the zero
order term in the nonlinear sensitivities, and back-project diving wave and post-critical re-
flections to the low wavenumber first Fresnel zone, while pre-critical reflections are usually
back-projected to the corresponding high-wavenumber migration isochrones. Study on the
higher order sensitivities based on the scattering theory shows that these higher order sen-
sitivities can provide transmission wave paths from scatters to both sources and receivers,
where wide scattering angle can be obtained to provide the ability to update the long wave-
length structures between the reflectors and the surface. Application of these first order
sensitivities is studied as in the recent proposed method RWI, and it shows that with prior
known perturbation model, first order sensitivities can help update the long wavelength
components in the region between reflectors and sources/receivers, and the inverted results
can be further used as initial model in conventional FWI.

In this study, by including both zero order and higher order terms in the calculation
of sensitivities, we have constructed a two-iteration nonlinear FWI approach in frequency
domain, which can provide a better update to the model and converges faster than the
conventional FWI. In this nonlinear FWI approach, a linear inversion is used to obtain the
perturbation model before calculating the nonlinear FWI gradient. In the linear inversion,
the data residual from the current iteration is used as the observed data, and in the following
nonlinear FWI, although same data residual can be used in the related misfit function,
data residual includes the scattering data synthesized from the linear inversion as well can
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provide a better inversion result. The results of a Marmousi model to with different initial
model and frequency bands illustrate the convergence characteristics of the nonlinear FWI.
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APPENDIX - THE BORN APPROXIMATION

Suppose that the model can be split into two parts

s(r) = s0(r) + δs(r), (A-1)

where s0(r) contains the low-wavenumber component of the model or the background part,
and δs(r) contains the high-wavenumber component or the perturbation part. Accordingly
the Green’s function satisfying equation (1) can be split into the Green’s function in the
background model and perturbation as

G(r, rs, ω|s) = G(r, rs, ω|s0) + δG(r, rs, ω|s0, δs), (A-2)

where the perturbation of the Green’s function or scattered wavefield can be expressed
exactly as

δG(r, rs, ω|s0, δs) = ω2

∫
dr′G(r, r′, ω|s0)δs(r′)G(r′, rs, ω|s)

= ω2

∫
dr′G(r, r′, ω|s0)δs(r′)G(r′, rs, ω|s0)

+ ω4

∫
dr′G(r, r′, ω|s0)δs(r′)

∫
dr′′G(r′, r′′, ω|s0)δs(r′′)G(r′′, rs, ω|s0)

+ . . . . (A-3)

Under the single-scattering assumption, only first-order term is considered in equation
(A-3), which gives the Born approximation

δGBorn(r, rs, ω|s0, δs) = ω2

∫
dr′G(r, r′, ω|s0)δs(r′)G(r′, rs, ω|s0), (A-4)

GBorn(r, rs, ω|s) = G(r, rs, ω|s0) + ω2

∫
dr′G(r, r′, ω|s0)δs(r′)G(r′, rs, ω|s0). (A-5)

The Lippmann-Schwinger equation (A-2) describes a nonlinear relationship between the
model perturbation δs and the scattered wavefield δG(r, rs, ω|s0, δs), while under the Born
approximation (A-4), this nonlinear relationship reduces to a linear one, and the back-
ground Green’s function and the perturbation of the Green’s function can be calculated
with the following equations[

ω2s0(r) +∇2
]
G(r, rs, ω|s0) = −δ(r− rs), (A-6)[

ω2s0(r) +∇2
]
δGBorn(r, rs, ω|s0, δs) = −ω2δs(r′)G(r′, rs, ω|s0) (A-7)
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by finite-difference method with point source and source term as ω2δs(r′)G(r′, rs, ω|s0),
respectively.
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