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ABSTRACT

A geometrical model of the shape and response of a buried DAS fibre, which allows for
both a helical wind and arbitrary curvature of the cable, is a tool for analysis and appraisal
of DAS experiments. The model takes as input vectors describing the cable shape and
(optionally) the parameters of the helix. As output, the model generates arc-length, fibre
positioning, and tangent information, with (optionally) a gauge length imposed. Five ex-
ample applications of the model are presented: (1) the fibre may be embedded in modelled
3D elastic wave field and its response computed; (2) the 3C vector wave is reconstructed
along the fibre within defined reconsruction windows; (3) the six components of tensor
strain are reconstructed similarly; (4) the cos θ directionality rule for P-wave displacement
is generalized to the arbitrarily curved fibre; and (5) the cos2 θ directionality rule for P-wave
strain is similarly generalized.

INTRODUCTION

Our growing ambitions for detailed analysis of seismic amplitude and phase informa-
tion — both in quantitative interpretation/AVO inversion and full waveform inversion —
raises the bar for seismic instrumentation and acquisition. Broader bandwidths, denser
sampling, higher repeatability and amplitude and phase fidelity, all provided cheaply, will
all be needed to bring multi-parameter FWI to the reservoir. The up and coming acquisi-
tion technology referred to as Distributed Acoustic Sensing (DAS), in which a fibre optic
cable, rather than a geophone, senses seismic motion, appears to have the potential to fulfill
a good portion of this demand. The purpose of this paper is to come to grips with some
of the powerful and/or limiting aspects of the technology, and create a mathematical and
numerical model allowing the interplay of limit and potential to be explored.

In the past five or so years, DAS-seismic technology has received some careful scrutiny
(an early discussion was presented by Mestayer et al., 2011). DAS was tested by Shell as
a cost-effective means for measuring vertical seismic profiling (VSP) data (Mateeva et al.,
2012), and their positive impressions were followed up with discussions of its likely merits
for deep water 4D VSP monitoring (Mateeva et al., 2013) and quantitative details regarding
the fibre response (Mateeva et al., 2014). Subsequent reports of deep water DAS monitoring
suggest that driving the costs even lower is the main current challenge (Chalenski et al.,
2016). No entirely technical aspect of DAS acquisition has yet been pointed to as blocking
its widespread use, which is encouraging.

This is not to say there are no technical limitations. Daley et al. (2013) review some of
the history of development of the optical technology (opto-electronics) which has enabled
DAS, and report on several field tests of fibre in a walkaway VSP configuration as a means
to monitor CO2 injection and storage. Reduced sensitivity and signal-to-noise ratio of
DAS relative to clamped geophones appears to have been the key limiting issue in these
tests. In spite of these challenges, the use of DAS systems to carry out sensitive processing
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tasks such as noise correlation and interferometry has gone forward (Ajo-Franklin et al.,
2015). Vendors have weighed in also, validating with laboratory results that amplitude
and phase responses from fibre correlate closely with the acoustic field illuminating the
fibre (Parker et al., 2014). Spatial sampling is also limited. Although DAS sensing is
sometimes referred to as “continuous” sensing (because all regions along the fibre respond
to the seismic wave), it has what amounts to a spatial bandwidth. The light backscattered
from regions experiencing seismic strain along the fibre strain is weak, and signal must
be integrated over a finite length of the fibre in order to rise above the noise level. This
characteristic interval is referred to as the gauge length, with 1m being the current state of
the art. (Vendors presenting at this year’s EAGE DAS workshop made several references to
new fibre materials with strong backscatter response, so we may see gauge lengths shorten
in the coming years.)

In this paper we will be primarily concerned with analyzing a further technological
limitation caused by the natural response of DAS systems to elastic wave motion (Mateeva
et al., 2012, 2013, 2014) which is the strong directionality (i.e., angle-dependence) arising
from the fibre’s sensitivity only to the component of longitudinal (or normal) strain parallel
to the axis of the fibre. In words, this means that the fibre only responds to being stretched
or squeezed in its long, or axial, dimension, i.e., the direction tangent to the fibre. When, for
instance, a P-wave is incident broadside onto a fibre, and the strain caused by the wave is
therefore at 90◦ to the fibre axis, almost no response is to be expected. A theoretical analysis
of this and a model of the fibre’s elastic response is given by Kuvshinov (2016). This must
be expected to have a significant negative effect on fibre when deployed in walkaway VSP,
cross-well, and near offset surface reflection configurations. Mateeva et al. (2012) refer to
this as the broadside insensitivity issue, and we will follow suit.

Alteration of the geometry of the fibre is a natural way of mitigating broadside insen-
sitivity (Mateeva et al., 2014; Kuvshinov, 2016). If the shape of the fibre is altered from a
straight line to form a curve, for instance by being twisted into a helix, it no longer “ex-
plores” with its tangent only one direction in the field- or laboratory-frame of reference,
and so the special combination of tangent direction and strain direction leading to broad-
side insensitivity occurs less frequently along the fibre. This paper focuses on curvature in
the fibre, and what possibilities expanding its use in DAS systems may have.

The main feature of the mathematical model of the fibre we are introducing is attention
to geometry. By increasing the degree and kind of curvature the fibre in a DAS acquisition
system experiences we increase the aspects of the propagating elastic wave that can be
said to have been measured, but we simultaneously increase the complexity of the fibre
response. Suppose a fibre arranged in a strongly curved shape (a helix wound around
another helix, for instance) is illuminated by a vector elastic field, and suppose further that
between 2310m and 2311m along the fibre we measure a strain which contributes unique
information about the full (vector) elastic disturbance. This is good news, of course, but
use of this unique information is not necessarily simple. What part of the vector exactly (in
a 3C coordinate system defined on the surface of the Earth) is being sensed? Also, though
we know it comes from a point 2310m along the arc-length of the fibre, if the arc-length
traces out a helix within a helix, to what point in space does this arc-length correspond?
These quantities can be kept track of and/or estimated, but only with a reasonably carefully-
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designed geometrical model in hand. The main contribution in this paper is the formulation
of such a model.

In the remainder of this introductory section we (1) give an overview of the geometrical
model, including its basic input and output and the five applications we have so far devel-
oped for it, and then (2) we give a qualitative discussion of the physical basis for DAS, in
particular distinguishing the range of types of optical scattering and highlighting the type
in operation during DAS sensing. Following this the paper is divided up into two main
sections. In the first of these two the geometrical model is set out, and in the second the
model is applied. Demos of the Matlab codes implementing the model are provided also.

Geometrical DAS/fibre model overview

The inputs to the model are

1. A set of three vectors which describe the positioning in 3D space of the axis of the
cable containing the fibre;

2. Parameters of the helix described by the fibre as it winds around the cable axis; and
3. Optical and response characteristics of the fibre (e.g., gauge length) and parameters

of all estimation problems (e.g., 3C reconstruction window size, source location for
directivity characterization).

The model begins by computing all of the secondary geometrical features of the fibre,
which (now) can experience quite a complex degree of curvature. This includes

1. Arc-length s′ along the cable axis;
2. A set of Cartesian unit vectors built around the tangent directions of the cable axis

(one for each unit of arc-length along the cable) ;
3. Arc-length s along the fibre;
4. A set of three vectors which describe positioning of the fibre in 3D space;
5. A set of Cartesian unit vectors built around the tangent directions of the fibre (one

for each unit of arc-length along the fibre);

Items (3.)-(5.) above are next averaged and re-sampled to reflect the gauge length as spec-
ified by the user in the input. Finally, the model is applied in each of several modes to
characterize aspects of the response of the fibre. Currently there are four applications:

1. The fibre is embedded in an input snapshot of a 3D elastic wave field, and the
response of the fibre to the field is computed. The wave field should be provided
as three 3D arrays, each containing one component of the elastic displacement field.
The fibre (with or without a gauge length imposed) is embedded in this field, and is
assumed to be sensitive to the component of displacement in the direction tangent
to the fibre at all points along its length. The output is a vector of components of
tangential displacement of the same size as the vector of arc-lengths along the fibre.

2. The 3C vector displacement field is reconstructed from a known fibre geometry
and measurements of the elastic displacement tangent to the fibre at all points
along its length. This occurs over a reconstruction window which should be cho-
sen to be (a) sufficiently large for the fibre within it to explore a significant range of
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tangent directions, but (b) sufficiently small so that the displacement field may be as-
sumed to be approximately constant within it. This application requires us to assume
that from the tangential strain the tangential displacement can be estimated through
some calibration.

3. The 9C strain tensor field is reconstructed from a known fibre geometry and
measurements of the longitudinal strain tangent to the fibre at all points along
is length. This requires no assumption about the calibration of strain component to
displacement component, but it does require the fibre to explore sufficient directions
within the reconstruction window to constrain six independent parameters instead of
three.

4. The broadside displacement curve for incident plane P-waves is generalized.
The phenomenon discussed by Mateeva et al. (2014) and Kuvshinov (2016) for
straight and helical fibres is generalized to the case of a helix winding around an
arbitrarily curved cable axis. The user-input source position and the fibre geome-
try are used to construct angles of incidence at each point along the fibre, and the
P-wave displacement vector is projected onto the fibre tangents with these angles.
The resulting curves, which can be inspected to quantify broadside directionality and
sensitivity in any proposed experimental configuration, reduces to the familiar cos θ
rules given the special case of a straight fibre.

5. The broadside strain curve for incident plane P-waves is generalized. The phe-
nomenon also discussed by Mateeva et al. (2014) and Kuvshinov (2016) for straight
and helical fibres is generalized to the case of a helix winding around an arbitrarily
curved cable axis. With the same inputs the P-wave strain tensor is projected onto
the fibre tangents with these angles. The resulting curves, which can be inspected to
quantify broadside directionality and sensitivity in any proposed experimental con-
figuration, reduces to the familiar cos2 θ rules given the special case of a straight
fibre.

Physical basis for DAS

Distributed Acoustic Sensing relies on the tendency for light to reflect from regions
within an otherwise transparent medium which are experiencing some mechanical distor-
tion. In this section we provide a qualitative discussion of the types of optical scattering
in real media and their relation (or not) with fibre-optic sensing technology. Most of these
phenomena are described quantitatively in the classic optics texts (e.g., Born and Wolf,
1999).

Rayleigh scattering

The interaction of light and matter is a very complicated process in general, particularly
when light of high energy interacts with substances whose particulate components are large
compared to the wavelength. A scale quantity is often introduced

x =
2πr

λ
, (1)

whereby if the characteristic radius of the particles illuminated is r and the wavelength
of the light is λ, the cases x � 1 and x � 1 are found to require different theoretical
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treatment. Those of us with seismic backgrounds can intuitively see why: if the object
is large, i.e., x � 1, the wave scattering from it is complex, usually with a new phase
character different and more complex than that of the incident wave. If the object is small,
i.e., x � 1, there is some directionality but much of the phase character of the incident
wave is preserved. In optics when x � 1 the process is described in terms of Mie scat-
tering; when x � 1 it is described in terms of Rayleigh scattering. Rayleigh scattering
has the property that the re-radiated light has the same phase character as the incident
light. However, the scattered light involves a strong (∼ λ−4) wavelength dependence,
with longer wavelengths tending to transmit un-impeded through a particulate medium and
shorter wavelengths tending to scatter∗.

As the energy of the light increases, its wavelength decreases, and the smaller the par-
ticles must be in order for scattering to be of Rayleigh type. Other factors begin to become
important in such regimes also. Simple scattering of light occurs because particles of matter
are polarized by the incoming electric field, meaning that positively and negatively charged
components move relative to one another. Since all accelerating charges radiate, this mo-
tion induces light to propagate away from the particle. When energies are low, all of the
incoming light either stays as it is or re-radiates in this way. Such scattering is referred
as elastic. When the energy of the incident light increases, the probability that internal
degrees of freedom within the particle and its neighbours will be set in motion by it in-
creases. If some of the incident energy excites motion which re-radiates differently and/or
with lower energy, the scattering is referred to as inelastic. Raman scattering methods are
used to describe such processes.

Other related optical scattering terms

Bragg scattering. These are optical scattering phenomena which occur when (1) the
particles under illumination are in an orderly (e.g., crystalline) configuration, and (2) the
wavelength of the incident light is on the order of the interval between particles. This
process is not active in general in fibre-optic systems because glass is non-crystalline, that
is its microscopic structure is not orderly.

Brillouin scattering. These are scattering phenomena which occur in a medium (e.g.,
glass) within which acoustic waves are simultaneously propagating; acoustic distortions
affect the index of refraction of the medium which in turn affects the propagation of light.
On a microscopic scale, because acoustic disturbances and the dielectric polarization phe-
nomena which cause Rayleigh scattering both concern distortions of the particles and their
constituents, the two can be conflated. However, the two processes cause quite different
things to happen to backscattered light. Most notably, Brillouin scattering, because the in-
teraction is with moving variations in the index of refraction, is subject to a Doppler shift
and so the signal is dominated by a phase shift. This phase shift is the basis for temperature
sensing fibre technology.

∗So, no matter how mainstream DAS gets, it will always be blue sky research.
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Single and multi-mode optical fibres

DAS fibre technology may be single-mode or multi-mode, by which the following is
meant. The fibre acts as a wave guide. The propagating light travels along the fibre with a
path that is not parallel to the axis of the fibre, and so it regularly impinges on the wall of
the fibre. However, the angle between the path and the axis is sufficiently small that when-
ever this occurs the light undergoes total internal reflection, such that it nearly losslessly
reverberates along the fibre. It does so with a characteristic velocity as measured along the
fibre axis, which depends on the angle with which the light entered the fibre. Light which
enters the fibre at one distinct angle and thereafter exhibits this characteristic reverberation
and axial velocity is considered to constitute a mode. If one mode propagates in the fibre,
the fibre is said to be single-mode; if more than one mode propagates in the fibre, the fibre
is said to be multi-mode. Multi-mode fibres are larger to admit a wider range of angles of
entry.

GEOMETRICAL MODEL OF DAS CABLE AND FIBRE

In this section we will describe the positioning of the cable/fibre system in a geological
volume. This is critical so that the components of strain contributing to the fibre signal can
be computed at any desired point along its length. Some standard results of differential
geometry are required for which we use the text of Kreyszig (1991). The model is built
up through geometrical considerations of the axis of the cable containing the fibre and the
helical shape of the fibre within the cable, in the following order:

1. Cable geometry

(a) Cable axis position c

(b) Arc-length s′ along the cable axis

(c) Axial tangents

2. Fibre geometry

(a) Fibre position f = c + h

(b) Arc-length s along the fibre

(c) Fibre tangents

3. Gauge length

1. Cable geometry

1a. Cable axis position

Let any point along a fibre (wound in a helix along a cable which itself may not be a
straight line), be described with the position vector f . Furthermore let f have two parts.
The first part, c, is a vector pointing from the origin to the position along the the central
axis of the cable which is nearest to f . The second part, h, sits in the plane perpendicular

6 CREWES Research Report — Volume 28 (2016)



A geometrical model of DAS fibre response

to the cable axis, and points from the cable axis to the actual fibre, which winds about the
axis in a helix. At any point along the fibre we have

f = c + h. (2)

We will begin with c, whose job it is to describe the shape of the cable as a curve embedded
in a 3D volume. Its three components are parameterized by a single scalar variable, s′,
which we will choose to represent arc-length along the cable. A point that is a distance s′

along the centre of the cable then has position

c(s′) =



c1(s′)
c2(s′)
c3(s′)


 , (3)

in terms of its components in the Cartesian system defined by the unit vectors {x̂1, x̂2, x̂3},
which, for simplicity, we will write

{
1̂, 2̂, 3̂

}
. (4)

An example curve of this kind is illustrated in Figures 1a and b. We will generally associate
{1̂, 2̂, 3̂} with in-line, cross-line and depth directions respectively.
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FIG. 1. (a) A curve c(s′) embedded in a 3D medium is the starting point of a mathematical descrip-
tion of the axis of a buried DAS cable. (b) The curve is expressed by a vector that points to each
position along the curve, moving from one point to the next as we change the scalar parameter s′.
So to prescribe the curve we need to supply three functions of s, one for each component of the
position vector. (c) The tangent to the curve t̂(s′) can be computed by taking the vector difference
between to nearby points, and normalizing it by the arc-length between them; this becomes t̂(s′) in
the limit. (d) Starting with the tangent direction, a Cartesian coordinate system can then be defined
which characterizes the curve locally.

Especially for practical implementation of the model, it is convenient to include a sec-
ond parameterization in which s′ is eliminated in favour of one of the Cartesian coordi-
nates, which thereafter acts as an independent variable. Choosing c1 to be this coordinate,
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and designating it as independent by renaming it x:

x = c1, (5)

we produce the alternative representation

c =



c1(s′)
c2(s′)
c3(s′)


 =




x
c2(x)
c3(x)


 . (6)

1b. Arc length s′ along the cable axis

To keep track of the path length s′ associated with a given point within this alternative
parameterization, we make use of the formula:

s′(x) =

∫ x

0

dx′
[
dc

dx′
· dc
dx′

]1/2

=

∫ x

0

dx′

[
1 +

(
dc2

dx′

)2

+

(
dc3

dx′

)2
]1/2

. (7)

With either c2(x) and c3(x), or c1(s), c2(s) and c3(s) given, equation (6) alone or equations
(6)-(7) together can be used to determine the positions in our Cartesian system of all points
along the curve, and the arc-length along the curve at any point.

1c. Axial tangents

At any point along the curve c(s′) we may calculate a new set of orthogonal directions,
corresponding to the local character of the curve itself, generating a Cartesian coordinate
system that changes as it follows the curve. This s-dependent system is defined in terms
of the tangent to the curve, and two further orthogonal unit vectors occupying the plane
normal to the tangent.

Consider two closely-spaced positions along a curve, c(s′) and c(s′+∆s′) as illustrated
in Figure 1c. The direction of the vector difference between these positions, ∆c, will
converge to that of the tangent as ∆s′ vanishes. In fact, the unit tangent vector is defined as

t̂(s′) =
dc

ds′
= lim

∆s′→0

c(s′ + ∆s′)− c(s′)

∆s′
. (8)

If the tangent varies continuously along the curve (which we must assume to be true in order
to describe a general deviated cable), that variation can be used to define two orthogonal
unit vectors in the plane normal to the tangent. Any differential change in t̂(s′) with s′,
since its length is always 1, must be perpendicular to t̂(s′) itself. Therefore one viable unit
vector is n̂(s′), where

n̂(s′) =
n(s′)

|n(s′)| , n(s′) =
dt(s′)

ds′
. (9)
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This is referred to as the principal normal. Assuming sufficient curvature is present†, the
third unit vector, referred to as the binormal, can then be calculated as

b̂(s′) = t̂(s′)× n̂(s′). (10)

Now, as s′ or x are varied, i.e., as we move back and forth along the deviated cable, we
have a continuously changing Cartesian coordinate system oriented along the axis of the
cable:

{
t̂(s′), n̂(s′), b̂(s′)

}
, or

{
t̂(x), n̂(x), b̂(x)

}
, (11)

as illustrated in Figure 1d.

2. Geometry of the helical fibre

2a. Fibre position

A helix of radius r winding about the x = x1 axis in the inline-crossline-depth Cartesian
system can be expressed in the parameterized form

f(t) =



f1(t)
f2(t)
f3(t)


 =




vt
r cos t
r sin t


 . (12)

If t were interpreted notionally as time, for instance, this helix could be understood as a
circle of radius r being described in the (x2, x3) plane at a rate of 1/2π cycles per second,
with the centre of that circle advancing along the x = x1 axis at speed v. In a fibreoptic
system the lead angle, rather than a rate quantity like v, is used to characterize the helix.
To form this angle we compare (1) the lead, i.e., the distance l a particle moving along the
helix travels in the axial (x) direction over the course of one complete rotation, against (2)
the perimeter of the envelope of the helix. The lead angle is then γ such that

tan γ =
l

2πr
. (13)

We can use the time interpretation of t to find a formula for moving back and forth between
the v and γ representations. If equation (12) holds, then it takes 2π seconds for a point on
the helix to describe one complete turn. In this amount of time the point moves a distance
l = 2πv along the axis of the helix, which corresponds to the lead. From equation (13) we
obtain

tan γ =
v

r
. (14)

†Notice that this unit vector is not properly defined if the tangent is constant along the curve, i.e., in the
degenerate case of a straight cable. If a straight cable is to be modelled, a valid system can be constructed by
rotating the original Cartesian system such that x = x1 aligns with the cable. To treat cases in which a cable
curves along some segments but is straight along others, algorithms should monitor |n(s′)| as x is varied.
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Therefore when we exhaust the usefulness of the time/speed parameterization of the helix
we can view v instead as merely a constant involving the real parameters of the helix, γ
and r:

v(γ) = r tan γ. (15)

For our purposes, the helix in equation (12) is a special case, in which the axis of the helix
is straight and parallel to the x1 coordinate axis. Our task is to relax these to allow for an
axis that varies. The special helix equation can be re-written

f =



f1(s′)
f2(s′)
f3(s′)


 =




s′

r cos s/v
r sin s/v




=



s′

0
0


+




0
r cos s′/v
r sin s′/v


 = c + h.

(16)

In the last expression, the vector position of a point along the helix is broken up into the
sum of two vectors: first, a vector taking us from the origin to the projection of the point
onto the axis of the helix; and second, a vector taking us from the axis of the helix to the
perimeter (Figure 2).
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0
0

3
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2
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0
r cos s0/v
r cos s0/v

3
5

FIG. 2. A decomposition of the position vector of a point along a helix. A helix wound around the x1
axis forms an envelope as illustrated; our decomposition involves the sum of two vectors, the first
pointing from the origin to the projection of the desired point on the axis of the helix (blue), and the
second, in the plane normal to the x1 axis, pointing the rest of the way (red).

Equation (16) is in the form in which we wanted to describe the fibre, back when we
wrote down equation (2). The only problem is that it is still good only for the special case
of the straight helix. Let us next extend the last line of equation (16) to accommodate the
general case, as illustrated in Figure 3. We start by writing down equation (2) again:



f1(s′)
f2(s′)
f3(s′)


 =



c1(s′)
c2(s′)
c3(s′)


+



h1(s′)
h2(s′)
h3(s′)


 . (17)
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To describe a point along the fibre, we must provide the two terms on the right hand side of
this expression. Equations (6)-(7) from the previous section provide the first term, namely,
the position vector of any point along the axis of the deviated cable and the arc-length to
that point from x = x1 = 0. This is represented by the grey dashed line in Figure 3a.

In the varying coordinate system derived in the previous section, namely {t̂(s′), n̂(s′),
b̂(s′)}, we always rotate ourselves so that the second term in the general case in equation
(17) still looks exactly like the second term in equation (12):




0
r cos s′/v
r sin s′/v


 . (18)

The only remaining task is, therefore, for each position s′, to transform equation (18) into
the original Cartesian system in which the terms of equation (17) are written. We do this by
operating on it with the rotation matrix designed to take us from the {t̂, n̂, b̂} system to the
{1̂, 2̂, 3̂} system. Then we add the two vector components together obtaining f = c + h,
that is,


f1(s′)
f2(s′)
f3(s′)


 =



c1(s′)
c2(s′)
c3(s′)


+




1̂ · t̂(s′) 1̂ · n̂(s′) 1̂ · b̂(s′)

2̂ · t̂(s′) 2̂ · n̂(s′) 2̂ · b̂(s′)

3̂ · t̂(s′) 3̂ · n̂(s′) 3̂ · b̂(s′)






0
r cos s′/v(γ)
r sin s′/v(γ)


 . (19)

2b. Arc-length s along the fibre

The arc-length s′ it should be re-emphasized is not the arc-length around the helix, but
the arc-length of the cable axis about which the helix winds. The arc-length along the helix,
s, is related to s′ by

s =

[
1 +

r2

v2

]1/2

× s′ =
[
1 +

1

tan2 γ

]1/2

× s′. (20)

This arc-length measure is critical to the model because this is the physical dimension along
which fibre measurements are made. That is, when a certain strain is observed by the fibre
interrogator, the interrogator returns the location of this strain in units of distance s.

2c. Fibre tangents

The various quantities needed to track (1) all positions along the deviated cable and its
helical-wound fibre, and (2) the tangent direction to the fibre at each of these positions,
are summarized as follows. If the axis of a cable around which a helical fibre is wound is
described in some suitable reference Cartesian system by [c1, c2, c3]T , with s′ representing
the arc-length of the cable axis, then a point on the helical fibre at a distance s′ along this
axis has the position vector f = [f1(s′), f2(s′), f3(s′)]T , where


f1(s′)
f2(s′)
f3(s′)


 =



c1(s′)
c2(s′)
c3(s′)


+




1̂ · t̂(s′) 1̂ · n̂(s′) 1̂ · b̂(s′)

2̂ · t̂(s′) 2̂ · n̂(s′) 2̂ · b̂(s′)

3̂ · t̂(s′) 3̂ · n̂(s′) 3̂ · b̂(s′)






0
r cos s′/v(γ)
r sin s′/v(γ)


 . (21)
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FIG. 3. Describing a helix winding around an arbitrarily curved cable. (a) The problem is a gener-
alization of the problem of describing a helix winding around one coordinate axis. (b) The position
of a point on the fibre is decomposed into two contributing vectors, one, a vector to the point on the
axis of the cable closest to the point along the fibre to be described, and two, a vector from the axis
to the desired point on the fibre. The latter is in the plane perpendicular to the tangent vector at the
former.

Several re-parameterizations of this formula are also convenient to develop. To re-express
f(s′) as instead f(s), i.e., in terms of total arc-length s rather than axial arc-length s′ the
change of variables

s′(s) =

[
1 +

r2

v2

]1/2

s, (22)

following from equation (20), can be used.

(a) (b) 

In
-lin

e x1

Cross-line x2

Depth x3

1

�1

1

�1

In
-lin

e x1

Cross-line x2

Depth x3

1 �1

1

�1

1

�1

1 �1

t̂(s)

FIG. 4. Each point along fibre is considered to be at the centre of a small interval over which the
fibre “senses” one tangent direction. The set of tangent directions occurring along a given fibre
or fibre segment can be visualized by drawing a unit vector parallel to the tangent direction (a), or
simply plotting a dot on the transparent unit ball of all such unit vectors (b).

The second cable parameterization in equation (6), in which the 2 and 3 components of
position are given in terms of the first component of position x, can also be enacted, this
time by making the change of variables x = f1 and s = s(x) within equations (21)–(22),
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where

s(x) =

∫ x

0

dx′

[
1 +

(
df2

dx′

)2

+

(
df3

dx′

)2
]1/2

. (23)

Finally, in the f(s) parameterization, the tangent

t̂(s) =
df

ds
, (24)

can be calculated. This quantity t̂(s) in particular will be important to store, as it will be the
projection of seismic strain on this direction which produces a DAS signal in our model.

FIG. 5. Top left: cable axis; top right: fibre; bottom left: tangents explored by the cable axis; bottom
right: tangents explored by the fibre.

It will be useful, when applying these results to the response of a DAS fibre system, to
be able to characterize the range of different tangent directions generated by a particular
deviated cable containing a helical-wound fibre. Each point along the fibre generates a
single unit tangent vector t̂(s), which in turn can be represented as a point on a unit sphere
centred on the origin in (x1, x2, x3); the point the tangent vector touches (see Figure 4).
Therefore, as we traverse the fibre, unit tangent vectors will be continuously generated,
some new, and some having already been generated at earlier points along the fibre, curves
and/or areas on the surface of the unit sphere will be drawn and/or filled in. A regular and
periodic cable/fibre system will tend to generate a Lissajous figure on this sphere.

Let us put all of these elements together with two examples. In Figure 5, four panels
illustrate an example fibre geometry. In the top left panel a cable is buried at a fixed depth
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with a low degree of curvature along its lateral extent. In the top right panel a helix (unre-
alistically large for illustration purposes) is wound around this curve (parameters r = 4m,
v = 2m/s). The bottom left and right panels illustrate the tangents explored by each of
these curves (the left being the set of tangents a straight fibre in the same cable would ex-
perience). Without the helix, we find a paucity of tangent directions, but with the helix a
“strip” of tangents is seen.

In Figure 6 a slightly more complicated example is provided, in which the cable itself
winds in a helix (with a radius of 30m and a speed of 8m/s, i.e., with a cable winding rate of
0.125 cycles/m along the x1 axis), and so we have a fibre wound in a helix (r=4m, v=2m/s)
around a cable which is also a helix, producing a “twisted telephone cord” shape. In the
lower panels, we observe that the tangents produced by a lone helix (such as the cable axis)
describe a circle on the unit sphere; whereas, the tangents experienced by the fibre are much
more widespread, and one begins to see a larger fraction of the surface of the unit sphere
being traced out.

FIG. 6. Top left: cable axis; top right: fibre; bottom left: tangents explored by the cable axis; bottom
right: tangents explored by the fibre.

3. Gauge length

The instantaneous strain at a position s along a DAS fibre is proportional to the count of
photons returning along the fibre at time τ = 2s/cf , where cf is the axial velocity of light
in the fibre. Since photons are counted to determine the strain, and it takes time to count,
it follows that the time τ should actually be interpreted as the midpoint of an integration
interval (τ − ∆τ/2, τ + ∆τ/2), with ∆τ being as small as possible while maintaining
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the desired SNR. It further follows that a DAS fibre response has a characteristic spatial
interval (s−∆s/2, s+ ∆s/2), where ∆s = (cf/2)∆τ , to which we assign a single strain
value. This practical limit on DAS spatial resolution is the gauge length.

In the current geometrical model a chosen gauge length ∆s is imposed onto the existing
fibre geometry, i.e., the quantities calculated so far. An ‘impose gauge length’ function can
be called, the output of which is a new full set of the geometrical position and arc-length
quantities, averaged over the selected gauge length. These new vector quantities can be
re-submitted to the functions computing tangents etc., and a full set of newly-resampled
geometrical fibre/cable outputs created.

APPLICATIONS

The purpose of the model described in the previous section is to provide an all-purpose
tool for analysis and appraisal of a planned or existing fibre, and is particularly designed
to do so when the fibre has an interesting or unusual geometry (with or without a helical
wind). In this section we explore four of the possible uses of the model.

I. Embedding fibre in a snapshot of an elastic field

Once a fibre has been given a geometrical form and all auxiliary quantities have been
calculated, it may be embedded into a snapshot of an elastic wave field and its response
to that wave field computed. The current version of the model accepts either (1) a vector
displacement as input, returning as output the component of displacement tangent to the
fibre at all points along its arc-length, or (2) a tensor strain as input, returning as output
the component of normal strain in the direction tangent to the fibre at all points along its
arc-length.

The arc-length (and other) vectors describing the fibre are discretized with sampling ∆s
of a certain size, and the snapshot of the field is assumed to be discretized with a different
sampling interval. The fibre is overlain on the cells of the snapshot of the field and discrete
points on the fibre are associated with cells in the field as per Figure 7.

To exemplify the procedure, we generate a 3D constant elastic wave field with uniform
displacement pointing in the y = x2, or crossline, direction. A “helix on a helix” fibre
geometry is embedded in the volume containing the field. The fibre is depicted in Figure
8, with the right panel illustrating the helical cable and the left panel illustrating the helix
winding around the cable (with nonphysically large radius).

In Figure 9 the characteristic sampling of a constant vector wave field by a helix-on-
helix fibre appears, as a signal varying with two frequencies, one for each “level” of helix.

The effect of increasing the gauge length of the fibre can be analyzed in this context
also. In Figure 10 a 2m gauge length is imposed on the same fibre, and the difference
between what a “perfect” fibre sees (top panel) and what this more realistic fibre sees
(middle panel) can be clearly discerned.
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FIG. 7. Fibre to wave field snapshot discretization and binning scheme. The (e.g.) 7th element of
any vector representing variation along the arc-length of the fibre senses the (4, 5)th element of the
x-component of displacement.

FIG. 8. Cable (left) and fibre (right) used to test vector wave field sampling.

FIG. 9. The displacement sensed by the two-helix fibre along its arc-length.
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FIG. 10. Top panel: fibre response absent a gauge length (i.e., the ideal case); middle panel: fibre
response with a 2m gauge length; bottom panel: comparison.

II. Reconstruction of vector displacement

A simple inverse problem for the determination of the vector displacement in the vicin-
ity of the fibre, given as input measurements of the tangential displacement over a range
of fibre intervals can be set up. The key assumption made here is that the strain along an
interval of fibre can be processed to approximate the component of displacement in the di-
rection tangent to the fibre at that interval. The vector displacement cannot be determined
over arbitrarily short intervals of the fibre, however, but rather must be estimated within
some finite reconstruction window (see Figure 11). If a window can be chosen to be (1)
large enough to contain the range of fibre tangent directions necessary to constrain three
components of displacement, and simultaneously (2) small enough that within it the wave
field is nearly constant, the estimation is well posed.

x1

x2

x3

!

!

!

1̂
2̂

3̂

FIG. 11. A key aspect of the vector and/or tensor reconstruction is that it must occur within a
reconstruction window within which the field must be close to constant.

The inverse problem is set up from the rotation matrices necessary to transform a vector
from the experimental coordinate system (1̂, 2̂, 3̂) to the coordinate system based on the
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tangent at the current value of arc-length along the fibre s, which are of the form


ut
un
ub


 =




t̂ · 1̂ t̂ · 2̂ t̂ · 3̂
n̂ · 1̂ n̂ · 2̂ n̂ · 3̂
b̂ · 1̂ b̂ · 2̂ b̂ · 3̂





u1

u2

u3


 . (25)

Notice that the first inner product in this system (top row by single column) generates the
tangential displacement ut for the particular tangent direction t̂ under consideration. As-
suming access to N such tangents (coming from N positions on the fibre, labelled by their
arc-length locations s1, s2, ... sN ), a new matrix equation, built up of repeated instances of
the topmost inner product in equation (25) can be constructed:




ut(s1)
ut(s2)

...
ut(sN)


 =




t̂(s1) · 1̂ t̂(s1) · 2̂ t̂(s1) · 3̂
t̂(s2) · 1̂ t̂(s2) · 2̂ t̂(s2) · 3̂

...
t̂(sN) · 1̂ t̂(sN) · 2̂ t̂(sN) · 3̂






u1

u2

u3


 . (26)

FIG. 12. An example with a relatively broad exploration of tangent directions. Left: fibre embedded
in a constant vector wave field (ux = 0.2, uy = 0.3, uz = 0.75). Right: recovered signals (solid)
versus exact signals (dashed).

This is the forward problem: given a constant vector field [u1, u2, u3]T , equation (26)
returns the projection of this vector into each tangent direction. Re-writing the equation as




ut(s1)
ut(s2)

...
ut(sN)


 = P



u1

u2

u3


 , (27)

where

P =




t̂(s1) · 1̂ t̂(s1) · 2̂ t̂(s1) · 3̂
t̂(s2) · 1̂ t̂(s2) · 2̂ t̂(s2) · 3̂

...
t̂(sN) · 1̂ t̂(sN) · 2̂ t̂(sN) · 3̂


 , (28)
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the inverse problem can be posed in (for instance) damped least-squares form:



u1

u2

u3




dlsq

= (PTP + αI)−1PT




ut(s1)
ut(s2)

...
ut(sN)


 . (29)

An attractive feature of such a small estimation procedure is that we may consider one
element of the reconstructed vector to have been (or to be likely to be) better or worse con-
strained that another, by dint of our earlier analysis of tangents and whether they spanned
sufficient directions.

Returning to one of our original examples, let us try to reconstruct the fixed constant
elastic displacement field we already analyzed. In Figure 12 we embed the fibre illustrated
in the left panel into a constant elastic field, such that all of its windings can be used
to estimate the elastic field. On the right panel the three components as computed over
reconstruction windows chosen to be 10m, or, 5× the gauge length. On the left panel
the recovered components are plotted individually in comparison with the exact answers.
(Note: inline = h1, crossline = h2, depth = v.)

FIG. 13. An example with a relatively narrow exploration of tangent directions. Left: fibre embedded
in a constant vector wave field (ux = 0.2, uy = 0.3, uz = 0.75). Right: recovered signals (solid)
versus exact signals (dashed).

III. Reconstruction of tensor strain

The same essential mathematical process of sequential projection onto the fibre tangent
directions can also form the basis for an estimation problem for the tensor strain, once again
provided a reconstruction window can be found which is large enough for many tangents
to be contained within it and yet small enough that the strain is close to constant within
it. The strain transforms as a tensor (in contrast to the displacment which transforms as a
vector), and so the equation we start with has to be slightly more complex:



ett etn etb
ent enn enb
ebt ebn ebb


 =




t̂ · 1̂ t̂ · 2̂ t̂ · 3̂
n̂ · 1̂ n̂ · 2̂ n̂ · 3̂
b̂ · 1̂ b̂ · 2̂ b̂ · 3̂





e11 e12 e13

e21 e22 e23

e31 e32 e33






t̂ · 1̂ t̂ · 2̂ t̂ · 3̂
n̂ · 1̂ n̂ · 2̂ n̂ · 3̂
b̂ · 1̂ b̂ · 2̂ b̂ · 3̂



−1

.
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The fibre senses ett in its own coordinate system. (1) Evaluating this matrix multiplica-
tion and extracting the explicit equation for ett, and (2) collecting these equations for all
available tangential strains at fibre positions s1, s2, ..., sN , we form




ett(s1)
ett(s2)

...
ett(sN)


 =




λ1
11 λ1

12 λ1
13 λ1

21 λ1
22 λ1

23 λ1
31 λ1

32 λ1
33

λ2
11 λ2

12 λ2
13 λ2

21 λ2
22 λ2

23 λ2
31 λ2

32 λ2
33

...
λN11 λN12 λN13 λN21 λN22 λN23 λN31 λN32 λN33







e11

e12

e13

e21

e22

e23

e31

e32

e33




,

where

λkij =
(
t̂(sk) · î

)(
t̂(sk) · ĵ

)
. (30)

This again acting as the forward problem: in which the elements of a given strain tensor are
projected onto the normal strain along the fibre element. Letting the matrix be L, where

L =




λ1
11 λ1

12 λ1
13 λ1

21 λ1
22 λ1

23 λ1
31 λ1

32 λ1
33

λ2
11 λ2

12 λ2
13 λ2

21 λ2
22 λ2

23 λ2
31 λ2

32 λ2
33

...
λN11 λN12 λN13 λN21 λN22 λN23 λN31 λN32 λN33


 ,

a damped least-squares inversion takes the form:



e11

e12

e13

e21

e22

e23

e31

e32

e33




dlsq

≈
(
LTL + αI

)−1
LT




ett(s1)
ett(s2)

...
ett(sN)


 . (31)

In equation (31) the symmetry of the strain tensor has not been incorporated in the inversion
– the data are being relied upon to find a value for e12 for instance which is equal to e21.
There would appear to be a few possibilities. First, leave it this way, and use the proximity
of each strain element to its counterpart as an indicator of how well constrained the tensor
strain is by the fibre response. Or, second, remove e21, e31 and e32 from the model vector
along with the corresponding columns from L, and solve an inverse problem with 6 rather
than 9 unknowns. Or, third, since the e31 column could potentially contain more useful
information than the e13 column, and it may be difficult for a complex fibre to know if this
is so, the problem could be left with 9 unknowns but, but solved with a model regularization
term, which penalize ||e13 − e31|| and other symmetry pairs.
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IV. Generalized cos θ directionality rule for P-wave displacement

Suppose a P-wave were to be excited at a source point which is separated from a partic-
ular spot a distance s on a straight segment of fibre by the vector r(s). The P-wave particle
displacement u at the fibre is parallel to r̂(s). If this direction of particle motion forms an
angle θ with the direction of the fibre t̂, as illustrated in Figure 14, and the response of the
fibre is geophone-like, namely the sensitivity is to the component of displacement parallel
to t̂, the directionality for the fibre response (say, χ) will have a χ = t̂ · r̂(s) = cos θ
character. The broadside (θ = 90◦) response is therefore zero.

FIG. 14. Source / straight fibre configuration.

If the fibre is arbitrarily curved, but we have access to (1) the tangent at all points along
its length, t̂(s), and (2) the spatial coordinates in the experimental (1̂, 2̂, 3̂) system of each
point s along its length, which are both provided by the model, the more complex r̂(s) can
be computed, and the directionality response is straightforwardly generalized to

χ = t̂(s) · r̂(s) = cos θ(s). (32)

When plotted, therefore, the presence of the curved fibre will tend to produce either (a)
the standard cos θ curve, provided the horizontal axis is a generalized angle θ = θ(s)
calculated taking into account the co-varying fibre and radial unit vectors, or (b) a more
complex function of s.

V. Generalized cos2 θ directionality rule for P-wave strain

Similar considerations can be used to generalize and characterize the strain direction-
ality and consequent broadside insensitivity. That we can easily characterize the strain
directionality for a P-wave derives from the fact that for a plane P-wave only one element
of the strain tensor is nonzero: the normal strain in the direction parallel to propagation
(i.e., the direction r̂ used in the previous section).

Suppose we focus on a point at arc-length s along the fibre, and at this point we wish
to discuss the strain tensor in the native coordinate system (i.e., t̂(s), n̂(s), b̂(s)). The
strain carried by the P-wave is naturally described in a system containing the propagation
direction r̂, which we will label r̂, 2̂′, 3̂′, where the second two unit vectors span the plane
perpendicular to the P-wave propagation direction. The strain tensor transforms from the
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P-wave system to the local fibre system according to



ett etn etb
ent enn enb
ebt ebn ebb


 =




t̂ · r̂ t̂ · 2̂′ t̂ · 3̂′
n̂ · r̂ n̂ · 2̂′ n̂ · 3̂′
b̂ · r̂ b̂ · 2̂′ b̂ · 3̂′





err er2 er3

e2r e22 e23

e3r e32 e33






t̂ · r̂ t̂ · 2̂′ t̂ · 3̂′
n̂ · r̂ n̂ · 2̂′ n̂ · 3̂′
b̂ · r̂ b̂ · 2̂′ b̂ · 3̂′



−1

,

in general, but because we may set all but one of the strain components in the P-wave
system to zero, we find that all but one of the transformed strain components are likewise
zero:


ett 0 0
0 0 0
0 0 0


 =




t̂ · r̂ t̂ · 2̂′ t̂ · 3̂′
n̂ · r̂ n̂ · 2̂′ n̂ · 3̂′
b̂ · r̂ b̂ · 2̂′ b̂ · 3̂′





err 0 0
0 0 0
0 0 0






t̂ · r̂ t̂ · 2̂′ t̂ · 3̂′
n̂ · r̂ n̂ · 2̂′ n̂ · 3̂′
b̂ · r̂ b̂ · 2̂′ b̂ · 3̂′



−1

.

So, expanding the matrix multiplication and focusing on the top left element, a simple trans-
formation from the normal strain carried by the P-wave to the normal strain experienced by
the fibre is

[fibre strain] =
(
t̂(s) · r̂(s)

)
[P-wave strain]

(
t̂(s) · r̂(s)

)
. (33)

Notice that if the fibre tangent were chosen to be constant and parallel to the depth z axis
(as illustrated in Figure 14), and if θ is defined as the angle of incidence of the P-wave on
the fibre, this directionality reduces to

[vertical fibre strain] = (ẑ · r̂) err (ẑ · r̂) = [P-wave strain] cos2 θ, (34)

the standard result characterizing broadside insensitivity in walkaway VSP using fibre.

If the fibre has an arbitrarily curvature the strain carried by a P-wave thus projects
onto the fibre in a more complex fashion. If the strain experience by the fibre is plotted
as a function of arc-length, then when we move from a straight to a curved fibre that s
dependence becomes increasingly complicated in response. If instead the projected strain
is parameterized in terms of an s-dependent angle θ where

θ(s) = cos−1
(
t̂(s) · r̂(s)

)
, (35)

we expect to recover the same linear [strain] ∝ cos2 θ, with the added complexity of the
geometry of the fibre absorbed in the nonlinear θ(s).

To confirm this within the geometrical model, a straight fibre is embedded in a 3D
medium containing a P-wave source point as illustrated in Figure 15a. A constant dis-
placement and/or strain carried by the P-wave with one nonzero component in the radial
direction (between the source point and any point on the fibre under consideration) is pro-
jected onto the tangent direction of the fibre. In Figure 15b the strain and displacement
so projected are plotted as a function of the incidence angle θ, and in Figure 15c the same
quantities are plotted against arc-length s. These results match the broadside insensitivity
results discussed in the literature (e.g., Mateeva et al., 2014). If the exercise is repeated
with a two-level helical fibre (Figure 16a), and the results are plotted against the new θ(s)
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(b) (c) (a) 

FIG. 15. (a) Straight fibre in the vicinity of a P-wave source point (red circle); (b) normalized strain
(blue) and displacement (black) plotted versus angle of incidence θ; (c) normalized strain (blue) and
displacement (black) plotted verus arc-length s.

computed using equation (35), projected strain versus θ has exactly the same shape as it
had in the case of the straight fibre (Figure 16b); however, closer comparison of Figures
15b and 16b reveals that the latter is now sampled irregularly in accordance with the more
complex θ(s) relationship. The complexity of the altered fibre geometry is more clearly
visible in the plot of strain and displacement versus arc-length s (Figure 16c).

(b) (c) (a) 

FIG. 16. (a) Straight fibre in the vicinity of a P-wave source point (red circle); (b) normalized strain
(blue) and displacement (black) plotted versus angle of incidence θ; (c) normalized strain (blue) and
displacement (black) plotted verus arc-length s.

CONCLUSIONS

Some of the important issues facing DAS technology are geometrical in nature, prin-
ciple of these being the broadside insensitivity issue, and the reconstruction of multicom-
ponent displacement or strain quantities. These issues can be to a degree overcome by
increasing the geometrical complexity of the fibre, thus increasing the variety of direc-
tions “explored” by its direction of sensitivity, the tangent direction. However, although
introducing such curvature might enrich otherwise weak broadside response, it raises the
challenge of understanding exactly what is being measured, a question which can only be
adequately addressed by keeping a very careful account of all the geometrical features of
the fibre. To do this we have assembled a fibre model which enumerates all positions and
tangents of an arbitrarily complex fibre, and from this derives generalized directivity results
as well as simple inverse procedures for the reconstruction of vector and tensor quantities
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being carried by a seismic wave. The model is expected to be useful in both design of and
characterization of experiments.
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