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ABSTRACT

The 3-D TTI medium can be characterized as eight parameters (5 independent elastic
moduli in constitutive coordinate system, density, tilt as well as azimuth angle) at each
spatial point. One of the key issues in implementing FWI for parameter characterizing
TTI media is efficient gradient calculation of objective function with respect to each model
parameter. To calculate the gradient of each independent parameter involves the synthetic
and adjoint data, as well as the derivatives of elastic moduli with respect to the independent
parameters of the model. In this paper, the synthetic and adjoint wavefields are simulated
with a staggered-grid finite-difference algorithm in anisotropic media. The derivatives of
the elastic modulus tensor for TTI media are also analyzed in this paper. Numerical ex-
amples of the gradients calculation are thus illustrated in a three-layer TTI model. One of
the issues addressed in the discussion is that the synthetic data at each time step should be
stored on the disk so as to perform cross-correlation with the adjoint wavefields to generate
the gradient for FWI in time domian. The huge dataset storage during synthetic wave-
field simulation and loading when calculating the gradient is highly memory cost and time
consuming. The use of random boundary layer allows us to compute both the adjoint and
synthetic wavefield simultaneously without the necessity of storing total synthetic data. In
this paper, cubic grains are implemented as random boundary layers. The randomized elas-
tic moduli instead of velocities are thus added in elastic wave equations in TTI medium.
The synthetic waveforms with random boundary layers are finally illustrated.

INTRODUCTION

According to (Thomsen, 1986), shale, laminated thin-layers and oriented vertical frac-
tures are transversely isotropic (TI) media. Consistently weathering tectonic movement,
fold and overthrusting, the symmetry axis of TI media instead of being either be vertical
or horizontal, will have an angle with respect to the observation coordinates system, which
is called tilted transversely isotropic (TTI) media. The parameter characterization of TTI
media using elastic moduli, tilt angle, polar angle as well as density is of great importance.

Seismic full-waveform inversion (FWI)(Tarantola, 1984; Gauthier, 1986; Mora, 1987;
Palloff and Pratt, 1999) is capable of providing formation parameters with high spatial
resolution. Over the past few decades, space and time domain FWI (Kolb et al., 1986;
Mora, 1987; Bunks et al., 1995) has been paid an increasing interest since the initial work
proposed by Lailly (1983) and Tarantola (1984). The recent development of FWI in elastic
and anisotropic media (Lee et al., 2010; Kamath et al., 2013) makes it possible for the use
of multicomponent reflection data. The gradient of a misfit function can be obtained based
on two numerical simulations (forward simulation for current model and time-reversed
simulation for adjoint source)(Tromp et al., 2005). Liu and Tromp (2006) derived the
gradients of the objective function for an elastic earth model. Lee et al. (2010) performed
elastic FWI of synthetic multicomponent seismic data for VTI media with respect to elastic
moduli. Kamath et al. (2013) calculated gradients of Thomsen parameters for 2D laterally
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heterogeneous VTI media.

On the other hand, recent development of high-performance computing and numerical
simulation techniques have made it possible for three-dimensional (3D) simulations of elas-
tic wave propagation in complicated media (Komatitsch and Tromp, 2002). The conven-
tional method of gradient calculation in time domain needs to record synthetic wavefield at
each time step to correlate with the adjoint wavefield time reversely, which is highy mem-
ory cost. And the shabby input/output (I/O) of recorded data dramatically increases the
total running time of the algorithm, which impedes the computational efficiency. Nguyen
and McMechan (2014) discussed 5 alternative algorithms avoid storing source wavefield
snapshots during forward and backward wavefield correlation in reverse time migration
(RTM). Symes (2007) and Anderson et al. (2012) used an optimal checkpointing algorithm
to minimize the total storage at the cost of increasing the computational complexity of the
adjoint wavefield simulation. Clapp (Clapp, 2008) suggested implementing a boundary
re-injection scheme that the wavefield at each time step is saved at the edge of damping
zone so as to regenerate the wavefield. Clapp et al. (2009) proposes an alternate random
boundary condition method that uses an increasingly random velocity region by replacing
the conventional damped region.

In this paper, We first discuss the FWI scheme formulated in the time domain for a 3-D
elastic medium. The relationship between elastic moduli in constitutive coordinate system
and in 3D TTI medium are then given a detailed review, based on which, the gradients
for elastic moduli as well as Thomsen parameters in TTI medium are thus obtained. A
three-layer heterogeneous TTI media model is used for gradient calculation with respect to
both elastic moduli and Thomsen parameters. Because of the huge dataset storage during
synthetic wavefield simulation and loading when calculating the gradient, which is highly
memory cost and time consuming, we suggest useing random boundary layer to compute
both the adjoint and synthetic wavefield simultaneously without the necessity of storing
total synthetic data. During synthetic model simulation, cubic grains are implemented as
random boundary layers in this paper. The randomized elastic moduli instead of velocities
are thus added in elastic wave equations in TTI medium. The synthetic waveforms with
random boundary layers are finally illustrated.

THEORETICAL BACKGROUND

FWI in time domain

For three-component data dobs recorded at N receiver stations, we have the correspond-
ing synthetic data dsyn, the aim of time-domain FWI is to find a model m∗ minimize the
least-squares waveform misfit function:

χ =
1

2

N∑
r=1

∫ T

0

‖ dsyn − dobs ‖2 dt. (1)

Suppose the current model used for the synthetic data is M-dimensional vector m, the
perturbation in the model that causes the differences between the data and synthetics can
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be expressed as

∆m = −α
(
∂χ

∂m

)
, (2)

where
(
∂χ
∂m

)
is the gradient direction of the objective function; α is a step length that can be

calculated with a linear assumption (Crase et al., 1990):

α = ε
(dpert − dsyn)T (dsyn − dobs)
(dpert − dsyn)T (dpert − dsyn)

, (3)

where dpert is data generated by a small known model perturbation ε.

The iteration of model parameters to minimize χ is thus expressed as

mn+1 = mn + ∆m, (4)

where, the superscript n denotes the nth iteration.

According to the above equation, to determine the model update is to compute the
gradient of the objective function

(
∂χ
∂m

)
. Given a general anisotropic model ρ, cijkl, in

which ρ is the model density and cijkl is the elastic moduli, according to Liu and Tromp
(2006), the Fréchet derivatives with respect to density and the elastic moduli are the 3-D
waveform misfit kernels Kρ and Kcijkl that can be defined as

Kcijkl = −
S∑
s=1

R∑
r=1

∫
∂δui
∂xj

∂Gk

∂xl
dt, (5)

in which, u and G are the forward and adjoint displacement wavefields. The gradient of
each model parameter mn can be obtained by chain rule as

Kmn = −
∑
ijkl

Kijkl
∂cijkl
∂mn

dt. (6)

3-D TTI Medium

According to Thomsen(Thomsen, 1986), the parameters that characterize wave propa-
gation in transversely isotropic medium (TI medium) are

VP0 = sqrt( c33
ρ

), VP0 = sqrt( c55
ρ

),

ε =
c11−c33

2c33
, γ = c66−c44

2c44
, δ∗ = 1

2c233
[2(c13 + c44)

2 − (c33 − c44)(c11 + c33 − 2c44)] ,

(7)
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where Thomsen parameters VP0,VS0 are phase velocities of qP- and qS- wave along axis of
symmetry; ε, γ are degree of qP-, qS- wave anisotropy, δ∗is related to wavefront ellipticity.

In vertical transverse isotropy (VTI) medium, The elastic moduli can also be described
by Thomsen parameters as

c11 = ρ(1 + 2ε)V 2
P0,

c13 = ρ{V 4
P0δ
∗ + (V 2

P0 − V 2
S0) [V 2

P0(1 + ε)− V 2
S0]}1/2 − ρV 2

S0,

c33 = ρV 2
P0,

c44 = ρV 2
S0,

c66 = ρ(1 + 2γ)V 2
S0.

(8)

When there is an angle between the observation coordinate system and axis of sym-
metry for VTI media, tilted transversely isotropic (TTI) media are generated. Gener-
ally, the 3-D TTI medium can be characterized as eight parameters at each spatial point
mv = {c11, c13, c33, c44, c66, ρ, θ, ϕ}, in which c11, c13, c33, c44, c66 are independent elastic
moduli in VTI media in constitutive coordinate system ([x, y, z]); θ, ϕ are the spherical tilt
angle and azimuthal phase angle. The auxiliary Cartesian coordinate system [x′, y′, z′] can
thus be rotated by the tilt angle θ around z axis (Tsvankin, 2012).

Let’s suppose the symmetry axis of TTI media lies in X’OZ’ plane in this paper. Based
on Bond’s law (Winterstein, 1990; Bansal and Sen, 2008; Zhu and Dorman, 2000), the
relationship between the elastic moduli matrix C′ of TTI medium and the matrix C in VTI
is

C′ = RCRT , (9)

where the Bond transform matrix R is

R =


α2
1 β2

1 γ21 2β1γ1 2α1γ1 2α1β1
α2
2 β2

2 γ22 2β2γ2 2α2γ2 2α1β1
α2
3 β2

3 γ23 2β3γ3 2α3γ3 2α1β1
α2α3 β2β3 γ2γ3 β2γ3 + β3γ2 γ2α3 + γ3α2 α2β3 + α3β2
α1α3 β1β3 γ1γ2 β1γ3 + β3γ1 γ1α3 + γ3α1 α1β3 + α3β1
α1α2 β1β2 γ1γ2 β1γ2 + β2γ1 γ1α2 + γ2α1 α1β2 + α2β1

 , (10)

in which, α, β, γ are the direction cosine of coordinates transform, that satisfy

Table 1. The direction cosine of coordinates transform
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x y z
x′ α1 β1 γ1
y′ α2 β2 γ2
z′ α3 β3 γ3

Set azimuthal angle ϕ = 0, Bond’s matrix in equation (10) (when rotating around the
y-axis) is

R =


cos2θ 0 sin2θ 0 −sin(2θ) 0

0 1 0 0 0 0
sin2θ 0 cos2θ 0 sin(2θ) 0

0 0 0 cosθ 0 sinθ
sinθcosθ 0 −sinθcosθ 0 cos(2θ) 0

0 0 0 −sinθ 0 cosθ

 . (11)

The matrix C in the VTI medium is as follows

C =


c11 c11 − 2c66 c13 0 0 0

c11 − 2c66 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66

 . (12)

The matrix C′ in the TTI medium is thus obtained according to equations (10) to (12)
as

C′ =


c′11 c′12 c′13 0 c′15 0
c′21 c′22 c′23 0 c′25 0
c′31 c′32 c′33 0 c′35 0
0 0 0 c′44 0 c′46
c′51 c′52 c′53 0 c′55 0
0 0 0 c′64 0 c′66

 . (13)

The above thirteen non-zero elastic moduli in TTI medium can be expressed by the tilt
angle and the elastic moduli in VTI medium in constitutive coordinate system as
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c′11 = c11cos
4θ + c33sin

4θ + 2c13)sin
2θcos2θ + c44sin

2(2θ),

c′12 = c′21 = c12cos
2θ + c13sin

2θ,

c′13 = c′31 = c13(cos
4θ + sin4θ) + (c11 + c33)sin

2θcos2θ − c44sin2(2θ),

c′15 = c′51 = [(c11 − c13) cos2θ + (c13 − c33)sin2θ] sinθcosθ − c44sin(2θ)cos(2θ),

c′22 = c11,

c′23 = c′32 = c12sin
2θ + c13cos

2θ,

c′25 = c′52 = (c12 − c13)sinθcosθ,

c′33 = c11sin
4θ + c33cos

4θ + 2c13sin
2θcos2θ + c44sin

2(2θ),

c′35 = c′53 = [(c11 − c13) sin2θ + (c13 − c33)cos2θ] sinθcosθ + c44sin(2θ)cos(2θ),

c′44 = c44cos
θ + c66sin

2θ,

c′46 = c′64 = (c66 − c44)sinθcosθ,

c′55 = (c11 − 2c13 + c33)sin
2θcos2θ + c44cos

2(2θ),

c′66 = c44sin
2θ + c66cos

2θ.
(14)

Gradients for elastic moduli in TTI Medium

As is discussed in last section, the 3-D TTI medium can be characterized as eight pa-
rameters at each spatial point mv = {c11, c13, c33, c44, c66, ρ, θ, ϕ}. Based on equation (5)
and equation (6), in 3D polar TTI media (ϕ = 0), considering a constant density ρ, the
gradients of 6 other TTI parameters are expressed as
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Kc11 = −
S∑
s=1

R∑
r=1

∫ ∑
ijkl

∂ui
∂xj

∂Gk

∂xl

∂cijkl
∂c11

dt = −
S∑
s=1

R∑
r=1

∫
∂M11

∂c11

∂G1

∂x1
+
∂M12

∂c11

∂G1

∂x2

+
∂M13

∂c11

∂G1

∂x3
+
∂M22

∂c11

∂G2

∂x2
+
∂M23

∂c11

∂G2

∂x3
+
∂M33

∂c11

∂G3

∂x3
dt,

Kc13 = −
S∑
s=1

R∑
r=1

∫ ∑
ijkl

∂ui
∂xj

∂Gk

∂xl

∂cijkl
∂c13

dt = −
S∑
s=1

R∑
r=1

∫
∂M11

∂c13

∂G1

∂x1
+
∂M12

∂c13

∂G1

∂x2

+
∂M13

∂c13

∂G1

∂x3
+
∂M22

∂c13

∂G2

∂x2
+
∂M23

∂c13

∂G2

∂x3
+
∂M33

∂c13

∂G3

∂x3
dt,

Kc33 = −
S∑
s=1

R∑
r=1

∫ ∑
ijkl

∂ui
∂xj

∂Gk

∂xl

∂cijkl
∂c33

dt = −
S∑
s=1

R∑
r=1

∫
∂M11

∂c33

∂G1

∂x1
+
∂M12

∂c33

∂G1

∂x2

+
∂M13

∂c33

∂G1

∂x3
+
∂M22

∂c33

∂G2

∂x2
+
∂M23

∂c33

∂G2

∂x3
+
∂M33

∂c33

∂G3

∂x3
dt,

Kc44 = −
S∑
s=1

R∑
r=1

∫ ∑
ijkl

∂ui
∂xj

∂Gk

∂xl

∂cijkl
∂c44

dt = −
S∑
s=1

R∑
r=1

∫
∂M11

∂c44

∂G1

∂x1
+
∂M12

∂c44

∂G1

∂x2

+
∂M13

∂c44

∂G1

∂x3
+
∂M22

∂c44

∂G2

∂x2
+
∂M23

∂c44

∂G2

∂x3
+
∂M33

∂c44

∂G3

∂x3
dt,

Kc66 = −
S∑
s=1

R∑
r=1

∫ ∑
ijkl

∂ui
∂xj

∂Gk

∂xl

∂cijkl
∂c66

dt = −
S∑
s=1

R∑
r=1

∫
∂M11

∂c66

∂G1

∂x1
+
∂M12

∂c66

∂G1

∂x2

+
∂M13

∂c66

∂G1

∂x3
+
∂M22

∂c66

∂G2

∂x2
+
∂M23

∂c66

∂G2

∂x3
+
∂M33

∂c66

∂G3

∂x3
dt,

Kθ = −
S∑
s=1

R∑
r=1

∫ ∑
ijkl

∂ui
∂xj

∂Gk

∂xl

∂cijkl
∂θ

dt = −
S∑
s=1

R∑
r=1

∫
∂M11

∂θ

∂G1

∂x1
+
∂M12

∂θ

∂G1

∂x2

+
∂M13

∂θ

∂G1

∂x3
+
∂M22

∂θ

∂G2

∂x2
+
∂M23

∂θ

∂G2

∂x3
+
∂M33

∂θ

∂G3

∂x3
dt,

(15)

where, Mij is the moment tensor in TTI media as

Mij = c′ijklε
′
kl, (16)

in which, c′ijkl can be determined by equation (13), ε′kl denotes the strain tensor in TTI
media.

Each term of equation (15) can be determined according to equation (14) and equation
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(16), which is shown in Appendix.

Alternatively, the gradients of Thomsen parameters can also be obtained based on equa-
tion (8) as

KVP0
=
∑
ijkl

Kcijkl
∂cijkl
∂VP0

= Kc11
∂c11
∂VP0

+Kc13
∂c13
∂VP0

+Kc33
∂c33
∂VP0

+Kc44
∂c44
∂VP0

+Kc66
∂c66
∂VP0

,

KVS0
=
∑
ijkl

Kcijkl
∂cijkl
∂VS0

= Kc11
∂c11
∂VS0

+Kc13
∂c13
∂VS0

+Kc33
∂c33
∂VS0

+Kc44
∂c44
∂VS0

+Kc66
∂c66
∂VS0

,

Kε =
∑
ijkl

Kcijkl
∂cijkl
∂ε

= Kc11
∂c11
∂ε

+Kc13
∂c13
∂ε

+Kc33
∂c33
∂ε

+Kc44
∂c44
∂ε

+Kc66
∂c66
∂ε
,

Kδ∗ =
∑
ijkl

Kcijkl
∂cijkl
∂δ∗

= Kc11
∂c11
∂δ∗

+Kc13
∂c13
∂δ∗

+Kc33
∂c33
∂δ∗

+Kc44
∂c44
∂δ∗

+Kc66
∂c66
∂δ∗

,

Kγ =
∑
ijkl

Kcijkl
∂cijkl
∂γ

= Kc11
∂c11
∂γ

+Kc13
∂c13
∂γ

+Kc33
∂c33
∂γ

+Kc44
∂c44
∂γ

+Kc66
∂c66
∂γ
.

(17)

Each term of equation (17) can be determined, which is shown in Appendix.

INVERSE PROBLEM AND GRADIENT CALCULATION

Gradients calculation of Gaussian anomaly model

First of all, a simple Gaussian anomaly model is used to test the gradient computation
based on the gradient equations in TTI media. The model is shown in Figure (1), where,
the red dot denotes the source. The Gaussian anomaly lies in the middle of the model, and
a total number of 48*48 receivers are evenly spaced in the yellow plane. The 3-component
residual data can be acquired by calculating the difference between the observed data in
the presence of Gaussian anomaly and the background modeled data with a homogeneous
isotropic medium, shown in Figure (2)

The gradients with respect to the model elastic moduli are calculated based on equation
(15), shown in Figure (8). The huge difference of the order of magnitudes between the
tilt angle and the elastic moduli leads to the huge difference between their gradients (This
introduces another problem, that is, how to choose a suitable step length during the update
of the model or is it necessary to choose different step length parameters for parameters
with different orders of magnitude. We will not discuss this issue in this paper). Based
on the relationships shown in equation (8), the gradients of the misfit function with respect
to Thomsen parameters can also be acquired according to equation (17), shown in Figure
(9). The gradient of vertical P-wave velocity is only dependent on the elastic modulus c33
according to equation (7). Similarly, the vertical velocity VS0 is only dependent on the
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FIG. 1. Gaussian anomaly model in 3D media.

FIG. 2. 3-C residuals of Gaussian anomaly model in 3D media.
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FIG. 3. Gradients of misfit function with respect to constitutive elastic moduli and tilt angle.

elastic modulus c44 when tilt angle equals to zero.

Gradients calculation of three-layered TTI media

In this section, a simple synthetic model will be used to calculate the gradients of misfit
function. The model is a three-layer anisotropic model with different elastic moduli for
each layer, whose cross-sectional is shown in Figure (5), in which the upper formation
is an isotropic layer with VP, VS and density of 3500 m/s, 2000 m/s and 2500 kg/m3.
Figure (6) shows the acquisition survey in XOY plane. The right picture of Figure (5) is
the initial model. The positions of sources and receivers are denoted by red circles and blue
stars. 72 sources at a depth of 25 m are excited simultaneously. The evenly spaced receiver
arrays (the total number of receivers is 2304) are arranged within the same depth of the
source. The 3-component residual data (adjoint source) can be acquired by calculating the
difference between the observed data in the presence of TTI layers and the background
modeled data with a homogeneous isotropic medium (the first layer in Table (2)), shown in
Figure (7). The gradients with respect to the model elastic moduli are calculated based on
equation (15), shown in Figure (8). Based on the relationships shown in equation (8), the
gradients of the misfit function with respect to Thomsen parameters can also be acquired
according to equation (17), shown in Figure (9).

Table 2. The elastic moduli of each layer for 3D layered model.

First layer Second layer Third layer Fourth layer
c11 30.6 16.2 20.1 34.9
c12 10.625 8 13.95 15.75
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FIG. 4. Gradients of misfit function with respect to constitutive Thomsen parameters and tilt angle.
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FIG. 5. Cross-section of three-layered anisotropic model and its corresponding initial model.
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FIG. 6. The source receiver distribution geometry of the three-layered model. The red dots are the
simultaneous sources and the blue stars are the distribution of receivers

First layer Second layer Third layer Fourth layer
c13 10.625 5.2 11.39 12.81
c22 30.6 18 23.87 40
c23 10.625 8 11.18 21.25
c33 30.6 16.2 15.86 38.4
c44 10 4.85 3.145 9
c55 10 4.3 4.371 11.81
c66 10 4.85 3.895 11
c15 0 1.5 2.77 1.62
c25 0 1.6 2.40 4.76
c35 0 1.5 0.925 1.41
c46 0 0.65 0.650 -1.73

DISCUSSION

Random boundary condition

As is discussed in this paper, the staggered-grid finite difference method in time domain
is applied in the synthetic wavefield forward simulation as well as the residual data time
reversing propagation. The synthetic data at each time step should be stored on the disk
so as to perform cross-correlation with the adjoint wavefields to generate the gradient for
FWI in time domian. The huge dataset storage during synthetic wavefield simulation and
loading when calculating the gradient is highly memory cost and time consuming. Symes
(2007) and Anderson et al. (2012) used an optimal checkpointing algorithm to minimize the
total storage at the cost of increasing the computational complexity of the adjoint wavefield
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FIG. 7. The residual data for the three component velocity field.

FIG. 8. Gradients of the objective function with respect to five elastic moduli and tilt angle.
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FIG. 9. Gradients of the objective function with respect to Thomsen parameters and tilt angle.

simulation. Clapp (Clapp, 2008) suggested implementing a boundary re-injection scheme
that the wavefield at each time step is saved at the edge of damping zone so as to regenerate
the wavefield by taking advantage of the reversibility of the wave equation. One issue
of this technique is the need of injecting energy from the non-damped forward wavefield
because of the conventional damped region requires significant disk IO.

Clapp et al. (2009) proposes an alternative random boundary condition method that uses
an increasingly random velocity region by replacing the conventional damped region. The
principle of this new scheme is to distort the reflections outside the computational areas
rather than eliminate them so as to minimize coherent correlations with the adjoint wave-
field while preserving the reversibility of wave equation. This allows us to compute both
the adjoint and synthetic wavefield simultaneously without the necessity of storing total
synthetic data. Shen and Clapp (2015) applied the random boundary condition into gradi-
ent calculation for FWI, in which larger irregularly shaped zones of randomized velocities
are used to introduce incoherency in wavefronts at a large range of wavelengths. In this pa-
per, cubic grains with 5 m side length (the same as the FD space interval) are implemented
as random boundary layers. The randomized elastic moduli instead of velocities are thus
added in elastic wave equations in TTI medium.

Figure 10 (Left) shows the random parameter cubic grains with 5 m side length out-
side the computational areas. Instead of adding a random term that relates to the distance
within boundary(Clapp et al., 2009), an exponential attenuation term r is multiplied with
the elastic moduli to guarantee no boundary reflections are generated in random layers. The
attenuation term r can be described as
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FIG. 10. Random parameter in 3D volume (Left) and randomized normal stress component τxx.

r =

(
rand · d

AB

)n
, (18)

where, rand denotes random number within the interval of [0,1]; AB is the number of
boundary layers (AB = 30 in this paper); d is the distance within boundary and n is the
attenuation index. In isotropic media, the index can be set as n = 1 if velocities are subject
to the exponential attenuation term. In this paper, the index can be set as 5 >= n >= 3
when elastic moduli are subject to the exponential attenuation term.

Figure 10 (Right) shows the elastic modulus c11 in a three-layer model when the ran-
dom boundary layers are applied (n=4). The randomized elastic moduli are thus used in
synthetic data forward simulation in FWI.

Figure 11 shows the wavefield propagation (normal stress component τxx) in the syn-
thetic model from 0.15 s to 0.3 s. The central frequency of the point source used in this
example is 30 Hz. With the increasing of propagation time, the wavefield travels from the
source into the random boundary where all boundary reflections generated along and inside
the random layers are distorted because of the randomly distributed elastic moduli, these
distorted boundary reflections are treated as noise which show low coherence with the time
reversed adjoint wavefield during gradients calculation.

Figure 12 and 13 show snapshots in both xy- and xz- plane, respectively, with travel
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FIG. 11. τxx wavefield propagation with random boundary layers
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(a) (b)

(c)

(e) (f)

(d)

FIG. 12. Snapshots in xy-plane with travel
time ranging from 0.15 s to 0.9 s

(a)

(c) (d)

(e)

(b)

(f)

FIG. 13. Snapshots in xz-plane with
travel time ranging from 0.15 s to 0.9 s

time ranging from 0.15 s to 0.9 s. The snapshots in xy-plane show the current random
boundary has distorted reflections from the computational boundaries. The snapshots in
xz-plane show that the randomized boundary reflections act as random background noise
(13 (b) and (c)) when true reflections travel through computational areas. Theoretically,
these random background noise will scatter coherent wavefields effectively and thus the
adjoint wavefield time reversing simulation can be performed simultaneously with the syn-
thetic model backward simulation, which in turn makes it possible to calculate coherence
parameter or gradient of each model parameter perturbation at each time step.

CONCLUSIONS

When performing FWI, one of the most important steps is the gradient calculation of
the objective function with respect to the model parameters. In 3-D TTI medium, the
model can be characterized by the constitutive elastic moduli, density, tilt angle as well as
the phase angle. In this paper, we discussed gradient computation in regard to both the
elastic moduli and Thomsen parameters for elastic multicomponent wavefields from 3D
TTI media.

Based on the adjoint state method, the synthetic and adjoint wavefields are simulated
with a staggered-grid finite-difference algorithm in anisotropic media. Numerical examples
of the gradients calculation in a medium with the presence of Gaussian anomaly media as
well as in the three-layered anisotropic media are illustrated.

One of the issues addressed in the discussion is that the synthetic data at each time step
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should be stored on the disk so as to perform cross-correlation with the adjoint wavefields
to generate the gradient for FWI in time domian. The huge dataset storage during synthetic
wavefield simulation and loading when calculating the gradient is highly memory cost
and time consuming. In this paper, the random boundary layer is used to compute both
the adjoint and synthetic wavefield simultaneously without the necessity of storing total
synthetic data. The randomized elastic moduli instead of velocities are thus added in elastic
wave equations in TTI medium. The synthetic waveforms with random boundary layers are
finally illustrated.

For further study, the random boundary layer in regard to the elastic moduli should
be implemented into the adjoint state method so as to efficiently calculate the gradient of
misfit function without a huge burden of I/O on the disk as well as high memory cost. An
appropriate line-search technique should also be used so as to update the model for FWI.
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APPENDIX: DERIVATIVES OF MOMENT TENSOR AND ELASTIC MODULI

According to equation (16) and (14), the derivative of moment Mij tensor with respect
to constitutive elastic moduli and tilt angle can be described as

∂M11
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∂ux
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and
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and,
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According to equation (8), the derivative of elastic moduli in constitutive coordinate
system with respect to Thomsen parameters can be described as
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(22)

Substitute the above derivatives into (17), the Thomsen gradients with respect to model
parameters can be determined.
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