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ABSTRACT

The objective of this work is to obtain seismic moment tensor, Mpq, from amplitude
inversion of multi-component microseismic data. Mpq describes source mechanism and
can be decomposed into double-couple, isotropic and compensated-linear-vector-dipole
(related to tensile fracturing) components - the tensile components might show a corre-
lation to hydrocarbon production rate. The retrieved Mpq are sensitive to the accuracy of
the source location, the accuracy of the velocity model, and the receiver array geometry.
Excluding the first two factors, the determination of the proper observation geometry for
which the full moment tensor is resolvable was sought. Having two vertical or surface re-
ceiver arrays, or a combination of them, Mpq may be fully determined using the inversion
of P- and S-wave first arrival amplitudes. This configuration, which is sufficient for this
purpose, includes the receiver arrays located in the vertical and horizontal part of a single
deviated well. To avoid the cumbersome task of picking first-arrival amplitudes, we consid-
ered a waveform inversion scheme based on the method proposed by Vavryc̆uk and Kühn
(2012). This method combines inversions in both the time and frequency domains. The
first requirement was the inversion for the source-time function in the frequency domain.
Second, a time domain inversion for Mpq using the source-time function calculated in the
first step was initiated. For this waveform inversion, we have not yet achieved an accurate
retrieval ofMpq, but we have been able to obtain an accurate source-time function estimate.

INTRODUCTION

Determination of the seismic moment tensor is a routine procedure in earthquake seis-
mology (e.g., Dziewonski et al., 1981; S̆ílený, 1998; Shearer, 1999). The seismic mo-
ment tensor provides a general representation of the seismic source and can be determined
from inversion of seismic amplitudes detected on surface/downhole receiver arrays. Mpq

is commonly decomposed into a double couple tensor, produced by shear faulting, and
a non-double couple tensor, produced by the opening or closing of faults (tensile fault-
ing) (Vavryc̆uk, 2001) (see Appendix A). Hence Mpq provides information related to the
physical processes at the source (e.g., Ross et al., 1999; Maxwell and Urbancic, 2001;
Foulger et al., 2004; Vavryc̆uk, 2007).

Moment tensor inversions are less frequently performed on microseismic events for
the purpose of extracting source mechanism. Figure 1 displays a cartoon of microseis-
mic clouds for a hypothetical well. It is commonly assumed that a higher production is
associated with a denser microseismic cloud. However for this hypothetical well, good
production comes from the side-track with the less dense microseismic cloud. If the source
mechanism of such microseismic events were analyzed, there would be some possibility
of correlating the production rate with the higher percentage of tensile fracturing from the
decomposition of the Mpq. With this motivation, this research is aimed at obtaining an
accurate source parameters using the moment tensor inversion as a long-term goal.
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(a) (b)

FIG. 1: A hypotetical well with two side-tracks and known production rate. (a) Left side-
track with denser microseismic clouds and a low production rate. (b) Right side-track with
less dense microseismic clouds and a high production rate. This cartoon of microseismic
events are produced based on the first author’s experience with unconventinal shale reser-
voirs in central Alberta. This plot although fictional, displays a case often observed in
production of shale reservoirs going through hydraulic fracturing enhansement.

A point source with a general radiation pattern can be represented by the seismic mo-
ment tensor. The complete moment tensor is characterized by the six independent elements
of the 3 × 3 symmetric moment tensor matrix. The 3-components of the displacement
wavefield observed at the geophone located at ~x are expressed as (Aki and Richards, 2002,
equation 3.23)

un(~x, t) = mpq(t) ∗ gnp,q(~x, t), (1)

where ∗ is convolution symbol, summation convention is applied, and n = (1, 2, 3). mpq(t),
the time-dependent seismic moment tensor, describes the properties of the source. gnp,q(~x, t),∗

the spatial derivative of the Green’s function, describes the properties of the medium. For
a point source, the time-dependent moment tensor can be factorized as

mpq(t) =MpqS(t), (2)

where Mpq is the seismic moment tensor that we are trying to invert for, and S(t) is the
source-time function. Determination of Mpq is a demanding procedure influenced by sev-
eral factors. The most important of these are::

1. Observations from many stations (good station coverage of the focal zone), to extract
all the six Mpq, which will be termed the receiver geometry effect.

2. Deriving the representative source-time function.

3. An accurate knowledge of the velocity model and focal location, in order to calculate
the Green’s functions.

4. The availability of quality data, to enable event picking in the source location step.

∗The Green’s functions are due to a point source at ~xs. The precise notation is g(~x, ~xs, t) which the source
term has been dropped out for simplicity.
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In microseismic monitoring the effect of receiver’s geometry in determination of Mpq

is a known issue, point (1) listed above. The complete moment tensor can be determined
from noise-free amplitudes of P- and S-waves from the event observed at three stations
at least, with the condition that the raypaths must have different directions and must not
lie in a single plane (Vavryc̆uk, 2007). This means that using data from a single bore-
hole or surface array, the full seismic moment tensor is not resolvable. The impossibility
of recovering the complete moment tensor from a single borehole has been established
by Nolen-Hoeksema and Ruff (2001). Vavryc̆uk (2007) used the far-field approximation
of the P- and S-wave Green’s function in homogenous isotropic and anisotropic media to
show that a single-azimuth data set recorded in one vertical well can not resolve the dipole
perpendicular to the plane of geophones and the hypocenter. He showed analytically and
using numerical modelling experiments that for receivers on a single borehole (a) inverting
only P-waves amplitudes the three components of the moment tensor (M11,M33,M13) can
be retrieved, (b) when inverting S-waves, the M12,M13,M23 and the difference M11−M33

are retrievable, (c) inverting P- and S-wave data simultaneously yields five components of
the moment tensor, M22 is not recoverable. He also demonstrated that using two borehole
arrays in two different wells (observing the source from two different azimuths), the full
Mpq is retrievable using P- and S-wave amplitudes simultaneously. Rodriguez et al. (2011)
examined the resolvability of the full moment tensor under single-well monitoring geom-
etry and demonstrated that only five of the six Mpq can be correctly estimated when the
observation plane is aligned with two axes of the moment tensor reference system. They
also suggested that using receiver array in a deviated well satisfies the required receivers’
orientation for a full moment tensor inversion.

We report the effect of receiver geometry on retrieval of the seismic moment tensor, for
vertical or surface arrays while ignoring the other three factors listed above. We found that
the full moment tensor may be determined using P- and S-wave amplitude data from two
receiver arrays (vertical or surface) observing the source from two distinctive azimuths,
regardless of being aligned with the source reference system or not. Using data from a
single vertical or surface array, five Mpq may be resolved, however only if the observation
plane is aligned with the source reference system. Having receivers in both vertical and
horizontal part of a deviated well, we found, regardless of the azimuth of the well, the full
moment tensor is resolvable when using P- and S-wave amplitude data.

Another key factor in recovering seismic moment tensor is the determination of the time
variation of the source, point (2) listed above. The source-time function is often assumed to
have a simple form, a single pulse appearing in all elements of the moment tensor (equation
2). While this is an oversimplified assumption for earthquake sources, due to the possibil-
ity of having a complex fault geometry, equation 2 is a reasonable assumption for a point
source directly applicable to microseismic events. With this assumption, the determination
of Mpq and the source-time function is still a non-linear problem (equations 1-2) and re-
quires non-linear inversions of the seismic waveform (S̆ílený, 1998). Avoiding non-linear
inversions, a number of studies used P/S amplitude ratios (e.g., Julian and Foulger, 1996;
Rau et al., 1996; Hardebeck and Shearer, 2003) or absolute P- and S amplitudes (e.g., Ebel
and Bonjer, 1990; Nakamura et al., 1999) to determine the source mechanism. Vasco (1989)
estimated the source-time function through the singular value decomposition (SVD) of
three-component (3C) displacement data in the frequency domain; The eigenvector associ-

CREWES Research Report — Volume 28 (2016) 3



Mahmoudian and Innanen

ated with the largest singular value coincides with the most dominant source-time function.
He showed the adequacy of assuming a single source-time function with the application of
this SVD technique on a nuclear explosion data. Vavryc̆uk and Kühn (2012) presented a
two step linear waveform inversion applied in time and frequency domain to estimate the
source-time function and the Mpq. First, they performed a frequency domain inversion for
the single source-time function (similar to Vasco (1989) method). Second, a time-domain
inversion for the Mpq was performed using the source-time function calculated in the first
step. In this report, we followed Vavryc̆uk and Kühn (2012) two-step linear inversion to es-
timate the source-time function and Mpq using the seismic waveform. Testing this method
on numerical model data generated with TIGER software, we obtained the source-time
function that was a good match to the initial wavelet used in the modelling.

This report presents a general view of moment tensor theory, describes the linear inver-
sion of P- and S-wave first-arrival amplitudes for the seismic moment tensor to examine the
resolvability of the seismic moment tensor under single/multiple vertical/surface receiver
array configuration, and the two-step waveform inversion, yet linear, for the source-time
function and the seismic moment tensor.

GENERAL VIEW OF SEISMIC MOMENT TENSOR

Definition

In a Cartesian coordinate system (x1, x2, x3), the seismic moment tensor is a 3 × 3
symmetric matrix of force couples Mpq (e.g., Shearer, 1999; Lay and Wallace, 1995;
Madariaga, 2007) as

M =

M11 M12 M13

M21 M22 M23

M31 M32 M33

 . (3)

A force couple Mpq is defined as a pair of opposing forces pointing in the p direction,
separated in the q direction (Figure 8 8(a)). For angular momentum of a system to be
preserved, for everyMpq there must exists a complementary equal coupleMqp that balances
the forces (Mpq = Mqp) (Shearer, 1999). Thus, the seismic moment tensor is a symmetric
matrix with six independent elements (M11,M22,M33,M23,M13,M12).

Radiation pattern from moment tensor sources

For a homogenous isotropic medium, from equation 1, the n’th component of the far-
field displacement wavefield observed at point ~x, from a point source at ~xs, can be written
as the sum of the far-field P- and S-wave displacements, un(~x, t) = uPn (~x, t) + uSn(~x, t).
The far-field P- and S-wave displacements are expressed as (Aki and Richards, 2002, third
term in equation 4.29)

uPn (~x, t) =
γnγpγq
4πρα3r

MpqṠ
(
t− r

α

)
, (4)

uSn(~x, t) =
(δnp − γnγp)γq

4πρβ3r
MpqṠ

(
t− r

β

)
, (5)
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where ρ is the density, α is the P-wave velocity, β is the S-wave velocity, and r = |~r| =
|~x − ~xs| is source-receiver distance. Recall that the summation convention is used for the
repeated indexes (p and q). The blue coloured terms, are called radiation patterns F P (~x)
and F S(~x) for P-wave and S-wave respectively, where γn are the direction cosines for
the source-receiver vector, ~r, so that γn = (~x− ~xs)n

r
. Dropping out the Mpq in the radiation

patterns, will define the Green’s function that we started with in equation 1. Hence for a ho-
mogenous isotropic medium, the spatial derivatives of the P- and S-wave Green’s function
are

gPnp,q(~x) =
γnγpγq
4πρα3r

, (6)

gSnp,q(~x) =
(δnp − γnγp)γq

4πρβ3r
. (7)

P-waves from a moment tensor point source have a typical dipolar radiation patterns,
while S-waves have torodial (doughnut-shaped) radiation patterns (Madariaga, 2007). Fig-
ure 2 displays P- and S-wave radiation pattern, as well as the radiation pattern of SV- and
SH-waves, for a few moment tensor sources. See Appendix B for more explanation on how
these radiation patterns have been coded. Note, the SV- and SH-waves do not exist for an
isotropic homogeneous layer and its only upon propagation on layering media that SV- and
SH-waves come to exist. Nevertheless, as wave propagation in a homogeneous medium
has been used to understand and analyze the wave propagation in more complicated media,
the SV- and SH radiation patterns are also presented in Figure 2.

MOMENT TENSOR INVERSION

Moment tensor inversions use seismic radiation patterns to calculate the Mpq and there-
fore seismic source mechanism. There are three main techniques for moment tensor inver-
sion, a) first-arrival polarity methods, b) amplitude methods, and c) full-waveform methods.
Eyre and van der Baan (2015) presents a good overview of the basic and fundamentals of
these techniques for microseismic application. We use an amplitude technique to inves-
tigate the effect of receiver’s geometry on the resolvability of the moment tensor and a
simple full-waveform technique to first extract source-time function and then the moment
tensor, while not examining the first-arrival polarity technique.

Regardless of which moment tensor inversion technique is used, results of the inversion
will be more reliable if sensor locations allow for a good sampling of the focal sphere (e.g.,
Eaton and Forouhideh, 2011; Rodriguez et al., 2011; Eyre and van der Baan, 2015). While
numerous sensors are available in earthquake application making the full moment tensor
solvable by having enough sampling of the wavefield, restrictions in microseismic acquisi-
tion geometry is a considerate challenge for the applications of moment tensor inversions.
The most common practice configuration in microseismic monitoring is the single-well
approach which all the receivers observe the microseismic event from a single azimuth
view. Next we examine the resolvability of the full moment tensor for data acquired during
microseismic monitoring surveys using both single and multiple vertical/surface receiver
arrays. We present a proper resolvability analyses assessing if using a given acquisition
geometry the full moment tensor can be accurately retrieved from an inversion.

CREWES Research Report — Volume 28 (2016) 5



Mahmoudian and Innanen

M
om

en
tt

en
so

r
R

ad
ia

tio
n

Pa
tte

rn

 1
0

0
0

0
0

0
0

0 

 0
1

0
1

0
0

0
0

0 

 −2
0

0
0

1
0

0
0

1 

FI
G

.2
:P

-a
nd

S-
w

av
es

ra
di

at
io

n
pa

tte
rn

s
fo

rt
he

m
om

en
tt

en
so

rs
ou

rc
e

sh
ow

n
th

e
fa

rl
ef

t.

6 CREWES Research Report — Volume 28 (2016)



Moment tensor inversion

RECEIVER GEOMETRY EFFECT

Our resolvability analysis is based on the linear relation between radiated P- and S-
wave amplitudes and theMpq elements (equations 4 and 5). The 3C P- and S-wave far-field
displacement amplitudes, can be used to construct a linear system of equations, to solve for
full moment tensor, as (see Appendix B for the derivation)



u
(1)
p1

u
(1)
p2

u
(1)
p3

...
u
(N)
p1

u
(N)
p2

u
(N)
p3

u
(1)
s1

u
(1)
s2

u
(1)
s3
...

u
(N)
s1

u
(N)
s2

u
(N)
s3



= AB



(1) γ31 γ1γ22 γ1γ33 2γ1γ2γ3 2γ21γ3 2γ21γ2
γ2γ21 γ32 γ2γ23 2γ22γ3 2γ2γ1γ3 2γ22γ1
γ3γ21 γ3γ22 γ33 2γ23γ2 2γ23γ1 2γ3γ1γ2

...
...

...
...

...
...

(N) γ31 γ1γ22 γ1γ33 2γ1γ2γ3 2γ21γ3 2γ21γ2
γ2γ21 γ32 γ2γ23 2γ22γ3 2γ2γ1γ3 2γ22γ1
γ3γ21 γ3γ22 γ33 2γ23γ2 2γ23γ1 2γ3γ1γ2

(1) γ1 − γ31 −γ1γ22 −γ1γ23 −2γ1γ2γ3 γ3 − 2γ21γ3 γ2 − 2γ21γ2
−γ2γ21 γ2 − γ32 −γ2γ23 γ3 − 2γ22γ3 −2γ2γ1γ3 γ1 − 2γ22γ1
−γ3γ21 −γ3γ22 γ3 − γ33 γ2 − 2γ23γ2 γ1 − 2γ23γ1 −2γ3γ1γ2

...
...

...
...

...
...

(N) γ1 − γ31 −γ1γ22 −γ1γ23 −2γ1γ2γ3 γ3 − 2γ21γ3 γ2 − 2γ21γ2
−γ2γ21 γ2 − γ32 −γ2γ23 γ3 − 2γ22γ3 −2γ2γ1γ3 γ1 − 2γ22γ1
−γ3γ21 −γ3γ22 γ3 − γ33 γ2 − 2γ23γ2 γ1 − 2γ23γ1 −2γ3γ1γ2


6N×6


M11

M22

M33

M23

M13

M12


6×1

,

(8)
where the superscripts are associated with receivers number (1) to (N), blue and red
colours indicate P- and S-wave data respectively, and
AB =

(
A(1) A(1) A(1) . . . A(N) A(N) A(N) B(1) B(1) B(1) . . . B(N) B(N) B(N)

)
. Equa-

tion 8 can be written in the simple form of

D = GM, (9)

whereD is data vector consist of the observed P- and S-wave amplitudes, the first two picks
after the first arrivals, (in the fashion of data vector in equation 8), G is called the geometry
matrix, and M = (M11,M22,M33,M23,M13,M12)

T is the vector of model parameters to
be inverted for. We solved equation 9 using a damped least-squares method, which the
damping factor is decided based on the ratio of the maximum to minimum singular value
of the geometry matrix (G).

Synthetics microseismic data

We tested the moment tensor inversion on 3C synthetics seismograms for a homoge-
neous isotropic medium with P-velocity α = 3000 m/s, S-velocity β = 2000 m/s , and
density ρ = 2000 Kg/m3. We generated our synthetics in two ways, (1) (modelled data 1)
convolving a source-time function with the P- and S-wave radiation patterns (equations 4
and 5), (2) (modelled data 2) using a 3D anisotropic elastic finite-difference modelling
software called TIGER. TIGER is capable of producing 3C synthetics data for arbitrary
acquisition geometry and employing a general source moment tensor. Appendix discusses
the accuracy of synthetics data generated by TIGER when a general moment tensor source
is used. Examining the receiver geometry effect, we used modelled data 1.

CREWES Research Report — Volume 28 (2016) 7
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Inversion results

We generated 3C synthetics data recorded at multiple borehole/surface arrays and used
the data in the moment tensor inversion described above. For all of our tests, a point source
with the source moment tensor of  1 6 0.5

6 −2 −1
0.5 −1 4

 , (10)

has been used. We examined the resolvability of the full moment tensor under single and
multiple vertical/surface receiver array geometries. Figure 3 shows the the receiver array
configuration, the estimated Mpq, the resolution matrix, and the singular values of the ge-
ometry matrix (G in equation 9), using P-wave data only and simultaneous P- and S-wave
data.

We analyze the resolvability of the inverse problem by using a model resolution ma-
trix (e.g., Rodriguez et al., 2011; Mahmoudian et al., 2015). The product R = GTG is
defined as model resolution matrix (Menke, 1985). The resolution matrix becomes identity
matrix when all the model components are linearly independent and accurately determined.
For example, the existence of non-zero off-diagonal components (Rij 6= 0) implies a lin-
ear correlation between model parameters mi and mj . Therefore, the resolution matrix
provides important information on the resolvability of the model elements.

The Figure 3 shows the moment tensor inversion, for a single vertical borehole array,
a single surface array, two vertical receiver arrays, and two surface arrays, in which the
array of receivers is resided within a principal plane containing the source point. By a prin-
cipal plane, we mean that the plane contains two axes of the reference coordinate system
centred at the source. Employing only P-wave amplitudes in the moment tensor inversion,
Figure 3 (middle column) shows that (a) Having a single vertical or surface array, only
(M11,M33,M13) elements will be resolved and there exists three null singular values (Fig-
ure 3 a-b). (b) Having two vertical or surface array, the (M11,M22,M33,M23,M13,M12)
elements will be resolved and only M12 is unresolvable. There exists only one zero sin-
gular value (Figure 3 c-d). (c) The resolvability of the model parameters is insensitive
to the distance between the array of receivers and the source. Employing P- and S-wave
amplitudes simultaneously in the moment tensor inversion, Figure 3 (right column) shows
that (a) Having a single vertical or surface array, all elements but the M22 will be resolved
and there exists only one null singular values (Figure 3 a-b). (b) Having two vertical or
surface array, the full moment tensor will be resolved (Figure 3 c-d). (c) The resolvability
of the model parameters is insensitive to the distance between the array of receivers and the
source.

Next, we present the moment tensor inversion results when the observation plane is not
aligned with two axes of the source reference system. The Figure 4 shows the moment
tensor inversion, for a single vertical borehole array, a single surface array, two vertical
arrays, and two surface arrays which the receivers’ array is placed outside the source prin-
cipal planes. This will construct a reality receiver configuration, as we never know about
the source reference system in advance. Employing only P-wave amplitudes in the moment

8 CREWES Research Report — Volume 28 (2016)
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Receiver array MT inversion using MT inversion using
configuration P-wave data only P- and S-wave data

(a)

(b)

(c)

(d)

FIG. 3: Moment tensor inversion when the two axes of the source reference system constrained to the
observation plane (a) A single borehole array. (b) A single surface array. (c) Two borehole receiver arrays.
(d) Two surface receiver arrays. Left column is the receiver configuration, middle column is the moment
inversion results using P-wave data only, and right column shows the moment tensor inversion results using
P- and S-wave data simultaneously. In the inversion results for each case, the resolution matrix (its rows and
columns are related to (M11,M22,M33,M23,M13,M12) respectively, the estimated moment tensor, and the
singular values.
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tensor inversion, Figure 4 (middle column) shows that (a) Having a single or two vertical
arrays, none of elements but the M33 will be resolved, although there still exists three and
one null singular values (Figure 4 a-b) respectively, which is similar to the above example
that receivers located in the principal planes. This indicates that the resolution matrix is a
better quantity to investigate the resolvability problem rather than the singular values or the
condition number †. (b) Having a single surface array, none of elements will be resolved,
although there still exists three null singular values (Figure 4 a-b). (c) Having two vertical
or surface array, only M33 will be resolved, although there exists only one zero singular
value (Figure 4 c-d). (d) The resolvability of the model parameters is insensitive to the
distance between the array of receivers and the source. For the receivers’ array outside
the principal planes, employing P- and S-wave amplitudes simultaneously in the moment
tensor inversion, Figure 3 (right column) shows that (a) Having a single vertical or surface
array, non of the moment tensor elements will be resolved although there exists only one
null singular values (Figure 3 a-b). (b) Having two vertical or surface array, the full mo-
ment tensor will be resolved (Figure 3 c-d). This is consistent with results of the two arrays
located on the principal planes above.

Using only P-wave amplitudes for the full moment tensor to be resolved, three different
receiver arrays are required (Vavryc̆uk, 2007). Figure 5 shows the moment tensor inversion
results for arbitrary three vertical/surface arrays. The arrays do not require to be aligned
with the source reference system and they could be completely arbitrary, as long as they
constitute three different azimuths. Also, the inversion results are insensitive to the distance
between the source and receiver arrays, similar to the results presented earlier. It is clear
that the three receiver arrays configuration will resolve the full moment tensor when using
P- and S-wave amplitude simultaneously as well.

In this section using numerical experiments we tried to show the theoretically predicted
results in Vavryc̆uk (2007) for resolvability of the moment tensor using moment tensor in-
version of multi borehole data. Also, our results are consistent with the results presented in
Rodriguez et al. (2011) which they also showed using numerical experiments investigating
single vertical well monitoring geometries. Rodriguez et al. (2011) investigated the full
moment tensor resolvability by examining the resolution matrix for different combinations
of source-receivers horizontal distance and azimuths of the borehole receiver array. Eaton
and Forouhideh (2011) examined the resolvability of the moment tensor and demonstrated
that the solid angle subtended by the receiver array, as viewed from the source location,
plays a fundamental role. Our results for the sufficiency of two vertical/surface arrays in
resolving the full moment tensor is just confirming Eaton and Forouhideh (2011) solid
angle requirement.

As most of the microseismic monitoring are based on a single well configuration, we
suggest to use receiver arrays in a deviated well which receivers are laid out in both vertical
and nearly horizontal part of the well. This monitoring configuration would be similar to
the two receiver arrays configuration above. Hence a simultaneous amplitude inversion,
using data from a deviated well should satisfy the resolvability of full moment tensor. This

†Condition number is the ratio of the max-to-min singular values
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Receiver array MT inversion using MT inversion using
configuration P-wave data only P- and S-wave data

(a)

(b)

(c)

(d)

FIG. 4: Moment tensor inversion when the two axes of the source reference system are not
constrained to the observation plane, with the same description as of Figure 3.

CREWES Research Report — Volume 28 (2016) 11
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Receiver array MT inversion using
configuration P-wave data only

(a)

(b)

FIG. 5: Moment tensor inversion results when having three arbitrary (a) vertical or (b)
surface receiver arrays, with the same description as of Figure 3.

deviated well configuration was suggested by Rodriguez et al. (2011). Figure 4 shows a
deviated well, with receivers in both vertical and horizontal part of the well, that all six
moment tensor elements are retrievable.

In this report the efficiency of the moment tensor inversion is tested on noise-free nu-
merically generated data. In near future, we shall investigate the stability and robustness of
the inversion by repeating the inversion on synthetics data contaminated by random noise.
Also for this report, we assumed accurate microseismic source location and an accurate
velocity model to single out the receiver geometry configuration in the resolvability of the
moment tensor. Presented above, the amplitude data were picked from synthetics noise-free
seismograms, we ignored all the complexity in picking the P- and S-wave first arrivals. For
real data, first arrival amplitude picking is a cumbersome task and normally performed on
data after being rotated into radial and transverse components. Additionally, knowing the
source-time function that was used in generating the numerical modelled data, we applied
the accurate scalar to remove the effect of source-time function. However, knowledge of
the source-time function is never achieved in real data prior to the moment tensor inversion.
Next following Vavryc̆uk and Kühn (2012), we apply a waveform inversion to first estimate
the source-time function and second estimate the full moment tensor in a time-frequency
approach. No amplitude picking is required for a waveform inversion.
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Receiver array MT inversion using
configuration P- and S-wave data

FIG. 6: Moment tensor inversion for a deviated well configuration.

MOMENT TENSOR INVERSION OF WAVEFORMS

Vavryc̆uk and Kühn (2012) presented a waveform inversion and yet linear for comput-
ing time-dependent moment tensors. Their method is performed in two steps and combines
inversions in time and frequency domains. First, the inversion for the source-time func-
tion is performed in the frequency domain. Second, the time-domain inversion for moment
tensor is performed using the source-time function calculated in the first step.

Step 1: Frequency-domain waveform inversion for source-time function

The displacement wavefield in frequency domain, taking Fourier transform of equa-
tion 1, transforms to

un(~x, ω) = mpq(w)gnp,q(~x, ω). (11)
Defining the functions Gij(ω)(i = (1, 2, 3), j = (1, 2, 3, 4, 5, 6)), each Fourier transformed
of the function Gij in Appendix B, equation 11 can be expressed as a linear system of
equations:


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33 (ω) G
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(N)
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(N)
36 (ω)



m11(w)
m22(w)
m33(w)
m44(w)
m55(w)
m66(w)

 (12)

Or in a simple form of
d = Gm. (13)

For each frequency ω, this equation is solved for
m = (m11(w),m22(w),m33(w),m44(w),m44(w),m66(w)). Once, solved for all the fre-
quencies, it will result into a (nω × 6)‡ matrix of m(ω). Then taking Fourier transform of

‡nω is the number of frequencies.
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each column of this m(ω) matrix will result in the m(t) matrix with the six time-dependent
moment tensor vectors, m(t) = (m11(t),m22(t),m33(t),m23(t),m13(t),m12(t)). Vasco
(1989) took the singular value decomposition of this m(t) matrix, then showed that the
eigenvector associated with the largest singular value is the source-time function (equa-
tion 2). At this point it is not clear to us why this decomposition will results in the source
function and we shall put more thought into this in near future.

We applied this method on TIGER generated data from two receiver’s array configu-
ration and obtained a source-time function. Knowing the initial wavelet which we input
to TIGER software, Figure 7 presented a comparisons of the initial wavelet and the esti-
mated source-time function. There is a very good match between the estimated source-time
function and the second derivative of the initial wavelet used in the modleing. Based on
equations 4 and 5, we were expecting such a match for the first derivative of the initial
wavelet. It is unclear to us, how actually TIGER software deals with the wavelet genera-
tion. This is a matter to be addressed in near future.

Step 2: Time-domain waveform inversion for moment tensor

Now that the source-time function is estimated, it will be taken out of the displacement
wavefield. In this regard, the elementary seismograms and their spacial derivatives are
defined as

Enp(~x, t) = S(t) ∗ gnp(~x, t), (14)

Enp,q(~x, t) = S(t) ∗ gnp,q(~x, t). (15)

Substituting the elementary functions into equation 1, the displacement components be-
come

un(~x, t) =MpqEnp,q(~x, t). (16)

With the same fashion as we practised in defining the 18 Gij functions (see Appendix
B), these elementary functions can be treated to obtain 18 Eij functions. An an example
Figure 10 displays the E22 function. By constructing the Eij functions, a linear system of
equation can be set up to solve for Mpq as follows:
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(17)
This time-domain linear inversion is done using a damped least-squares method. The inter-
esting thing about it is that its a waveform inversion, with no need of picking P- and S-wave
arrival amplitudes, and yet applied in a linear fashion.

We applied this time-domain waveform inversion on the TIGER data, inverting for the
source moment tensor, and obtained promising results but not the exact moment tensor that
we used in the modelling. Retrieving the exactMpq is expected for such noise free data with
accurate source location and velocity model, which requires more research at this point.

CONCLUSIONS AND FUTURE WORK

This research focused on retrieving an accurate seismic moment tensor from the ampli-
tude inversion of 3C microseismic data. Our research consisted of two parts. Part 1, linear
inversion of P- and S-wave first-arrival amplitudes in the time domain, and part 2 inversion
of the seismic waveform in both the time and frequency domains.

In part 1, we used linear amplitude inversion of P- and S-wave first-arrival amplitudes,
to investigate the optimal microseismic acquisition that resolves the full moment tensor. To
remain consistent with previous research results on this topic by Vavryc̆uk (2007); Eaton
and Forouhideh (2011); Rodriguez et al. (2011) we found that any two vertical or surface
receiver arrays, or any combination of them, as long as they constitute different azimuths
with respect to the source, are appropriate acquisition configurations. Importantly for a
single well geometry, the most common practiced microseismic acquisition geometry, by
having receiver arrays in both vertical and horizontal part of the deviated well, the seis-
mic moment tensor is fully resolvable. In this investigation, we assumed accurate source
location and velocity model, so as to investigate the effect of receiver geometry only.

In part 2, to avoid picking of P- and S-wave arrival amplitudes, we investigated a seis-
mic waveform inversion proposed by Vavryc̆uk and Kühn (2012) with two steps. In step 1,
we estimated the source-time function using a frequency domain inversion followed by the
principal decomposition method (Vasco, 1989). In step 2, we formulated a linear waveform
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(a)

(b)

(c)

FIG. 7: Comparison of the estimated source-time function with (a) initial wavelet with the
dominant frequency of 150HZ, (b) the first derivative of the initial wavelet. (c) the second
derivatives of the initial wavelet.

inversion at all time samples, and used the source-time function calculated at step 1 in a
linear waveform inversion forMpq in the time domain. We were able to accurately estimate
the source time function, but the accurate estimation of Mpq requires further research and
will be addressed in near future. We shall also investigate the effect of errors in the source
location and in the velocity model, including the possible effect of the anisotropy. Our ulti-
mate goal is to apply a full seismic waveform inversion for the velocity model and moment
tensor simultaneously.
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APPENDIX A
Moment tensor decomposition

This appendix presents some terminology related to moment tensor decomposition,
although the decomposition procedure is not presented in this report and shall be used for
future research.

The pair of force couples (Mpq,Mqp) is termed a double-couple (DC) force (Fig-
ure 8(b)). The pure DC component is associated with shear faulting. For example, M12

is associated to the vertical fault as in Figure 9 (left), because M12 = M21, is also the
representative of the vertical fault as in Figure 9 (right). Then, its moment tensor becomes

MDC =

 0 M0 0
M0 0 0
0 0 0

 , (18)

where M0 is scalar seismic moment defining the associated earthquake magnitude. In gen-
eral there are two fault planes that are consistent with distant seismic observation in the DC
model (Shearer, 1999).

(a) (b) (c)

FIG. 8: (a) Force couples, M11 and M12. (b) Double couple (M12 and M21). (c) The CLVD
of equation 21.

The moment tensor for an explosive source, is called isotropic and it has the simple
form of

MISO =

M0 0 0
0 M0 0
0 0 M0

 . (19)

A linear dipole source is represented by a moment tensor with a single non-zero diagonal
element, for example

MLD =

M0 0 0
0 0 0
0 0 0

 . (20)
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FIG. 9: These two faults have the same moment tensor representation and radiation pat-
tern (Shearer, 1999).

The compensated linear vector dipole (CLVD) has a double-strength force couple along
one axis, which are compensated by two unit strength force couples in the direction of two
perpendicular directions (Lay and Wallace, 1995), for example (Figure 8c)

MCLV D =

−M0 0 0
0 −M0 0
0 0 2M0

 . (21)

The symmetric moment tensor can be diagonalized by computing its eigenvalues and
eigenvectors. For example, the representative moment tensor of shear faults in Figure 8 in
the coordinate system aligned with its eigenvectors becomes

MDC =

M0 0 0
0 −M0 0
0 0 0

 . (22)

When a source moment tensor diagonalized, its trace is a measure of volume associated
with that source. For example, the volume change that accompany the faults in Figure 8
is zero (equation 22), also true for any other shear faulting, DC source. In contrast, the
volume change of an isotropic explosive source is positive (equation 19). A CLVD source
produces no volume change (equation 21),.

Once a moment tensor diagonalize, it can be further restructured to form three basic
types: the isotropic, double-couple, and CLVD (e.g., Dziewonski et al., 1981; Jost and
Hermann, 1996; Vavryc̆uk, 2015)

M =MISO +MDC +MCLV D. (23)

APPENDIX B
P- and S-wave radiation pattern and Green’s function

In this appendix, we explain the simplified version of the radiation patterns and Green’s
function, for a homogenous isotropic medium, that is used in our MatLab codes for the
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moment tensor inversion. Starting by P-wave, equation 4, we rewrite the nth component of
the P-wave radiation pattern as

F P
n (~x) = Aγn

(∑
p

γp
∑
q

Mpqγq

)
, (24)

where the indexes p and q are (1, 2, 3), and A = 1/4πρα3r is written for simplicity. This
has the form of matrix multiplication, hence the three-component P-wave radiation pattern
can be written using matrix multiplication as followF P

1

F P
2

F P
3


3×1

= A

γ1γ2
γ3


3×1

[
γ1 γ2 γ3

]
1×3

M11 M12 M13

M21 M22 M23

M31 M32 M33


3×3

γ1γ2
γ3


3×1

. (25)

The radiation pattern (equation 24), or the displacement at first place (equation 4), is a
linear function of Mpq. Hence expanding equation 25 further, the 3C of P-wave radiation
pattern can be written as linear functions of the six independent Mpq as

FP
1

FP
2

FP
3

 = A

 γ31 γ1γ
2
2 γ1γ

3
3 2γ1γ2γ3 2γ21γ3 2γ21γ2

γ2γ
2
1 γ32 γ2γ

2
3 2γ22γ3 2γ2γ1γ3 2γ22γ1

γ3γ
2
1 γ3γ

2
2 γ33 2γ23γ2 2γ23γ1 2γ3γ1γ2


3×6


M11

M22

M33

M23

M13

M12


6×1

. (26)

We used this linear expression to code up the P-wave radiation pattern. In a simple form,
equation 26 can be equivalently written as:

F P = GPM. (27)

As stated before, the Green’s functions are just the radiation patterns without the source
moment tensor term. To obtain the Green’s functions, following Vavryc̆uk and Kühn
(2012), we reduce the pair of indices in gnp,q (equation 6) and define the Gkj(k = 1 :
3 and j = 1 : 6) functions as

Gk1 = gk1,1, Gk2 = gk2,2, Gk3 = gk3,3,

Gk4 = gk2,3 + gk3,2, Gk5 = gk1,3 + gk3,1, Gk6 = gk1,2 + gk2,1.
(28)

There are 18 of such defined P-wave (Gkj) functions. T hey are in fact reduced forms of the
special derivatives of the Green’s functions with only two indexes. Then, it can be easily
shown that the values of newly defined Gij functions, at P-wave arrival time, are element
of matrix GP in equation 27:[

G11 G12 G13 G14 G15 G16
G21 G22 G23 G24 G25 G26
G31 G32 G33 G34 G35 G36

]
= A

[
γ31 γ1γ22 γ1γ33 2γ1γ2γ3 2γ21γ3 2γ21γ2
γ2γ21 γ32 γ2γ23 2γ22γ3 2γ2γ1γ3 2γ22γ1
γ3γ21 γ3γ22 γ33 2γ23γ2 2γ23γ1 2γ3γ1γ2

]
. (29)

Similarly for the S-wave radiation pattern, we rewrite the S-wave radiation pattern
(equation 5) as

F S
n (~x) = B

(∑
p

δnp
∑
q

Mpqγq − γn
∑
p

γp
∑
q

Mpqγq

)
, (30)
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where B = 1/4πρβ3r is written for simplicity. Then using the matrix multiplication, the
S-wave radiation pattern reads into

1

B

F S
1

F S
2

F S
3

 =

1 0 0
0 1 0
0 0 1


3×3

M11 M12 M13

M21 M22 M23

M31 M32 M33


3×3

γ1γ2
γ3


3×1

−

γ1γ2
γ3


3×1

[
γ1 γ2 γ3

]
1×3

M11 M12 M13

M21 M22 M23

M31 M32 M33


3×3

γ1γ2
γ3


3×1

. (31)

Further it can equivalently be written as:

1

B

[
FS

1

FS
2

FS
3

]
=

[
γ1 − γ31 −γ1γ22 −γ1γ23 −2γ1γ2γ3 γ3 − 2γ21γ3 γ2 − 2γ21γ2
−γ2γ21 γ2 − γ32 −γ2γ23 γ3 − 2γ22γ3 −2γ2γ1γ3 γ1 − 2γ22γ1
−γ3γ21 −γ3γ22 γ3 − γ33 γ2 − 2γ23γ2 γ1 − 2γ23γ1 −2γ3γ1γ2

]
3×6


M11
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M23
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
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(32)
We used this linear expression to code up the S-wave radiation patterns. The values of
Gkj(~x, t) functions at S-wave arrival times will similarly be as following:[
G11 G12 G13 G14 G15 G16
G21 G22 G23 G24 G25 G26
G31 G32 G33 G34 G35 G36

]
= B

[
γ1 − γ31 −γ1γ22 −γ1γ23 −2γ1γ2γ3 γ3 − 2γ21γ3 γ2 − 2γ21γ2
−γ2γ21 γ2 − γ32 −γ2γ23 γ3 − 2γ22γ3 −2γ2γ1γ3 γ1 − 2γ22γ1
−γ3γ21 −γ3γ22 γ3 − γ33 γ2 − 2γ23γ2 γ1 − 2γ23γ1 −2γ3γ1γ2

]
.

(33)

For a homogeneous isotropic medium, the above 18 Gkj functions could be considered
as time series with their defined values at P-wave arrival time (tp = r/α) and S-wave
arrival time (ts = r/β). As an example the time-dependent G22(~x, t) function is shown in
Figure 10(a).

(a) (b)

FIG. 10: (a) The function G22(~x, t) for a receiver point at ~x, where γi =
(~x− ~xs)i

r
and r is

source-receiver distance as defined before. Note, the G22 contains the elements indexed
(2, 2) of the Green function matrix in equations 29 and 33. (b) The elementary function
E22, the convolution of the G22 function and the source-time function.
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APPENDIX C
Generating synthetics microseismic data using TIGER

This appendix presents some details on how to generate synthetics microseismic data
using TIGER, a 3D anisotropic elastic finite-difference modelling software from SINTEF
Petroleum Research. The finite-difference code is capable of generating accurate seismic
datasets with minimal dispersion. TIGER is able to generate 3C data for 3D anisotropic
models. The code is developed to simulate seismic modelling for transverse-isotropy media
with tilted symmetry axis. However we only run it for a homogeneous isotropic medium
for the purpose of this report. The wave propagation can be initiated by a general source
moment tensor in TIGER. Also, the software has been implemented for general source and
receiver geometries. Hence, TIGER is capable of modelling microseismic activities. Here
we examine the accuracy of TIGER produced data when the wave propagation is initiated
by a source moment tensor.

To produce microseismic synthetics data, we used several borehole and receiver arrays.
Figure 11 displays the TIGER interface when generating data recorded at a single vertical
receiver array, for a buried point source with the moment tensor M as in equation 10. The
interface contains displays of the velocity/density model, the source-time function, and
source and receiver locations.

FIG. 11: The six moment tensor wavelets (shown in the red box) input in TIGER; from top
to bottom they are associated withM11,M22,M33,M23,M13,M12 respectively. The source-
time function (shown in pink box) has the dominate frequency of 150HZ. The source is
buried at a depth, and the vertical array receiver’s are shown in the green box.

TIGER accepts six different input wavelets which each directly represents the compo-
nents of M matrix. We used a Ricker wavelet with a dominate frequency of 150 HZ as
the source-time function, to mimic the high frequency content of microseismic data. This
source-time function is then scaled using each Mpq value to create the required six mo-
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ment tensor wavelets. Generating the wavelets is done outside the TIGER and then the six
wavelets are input in the "Load wavelet" tab in TIGER interface (Figure 11) .

Next we examined the accuracy of TIGER produced synthetics data. The expected
theoretical values are calculated using 3C P- and S-wave displacement values using equa-
tions 4 and 5. It is expected that TIGER data have the same radiation pattern as this theoret-
ical values. Also, we convolve the source-time function with the calculated Green’s func-
tion and generated the expected 3C synthetics (called modelled data 1) and compared it to
TIGER generated synthetics; see Appendix D on how to calculate the Green’s functions for
a homogenous isotropic medium. For a vertical receiver array located at azimuth 45◦§ to
the source (with respect to the reference coordinate system), we generated the 3C TIGER
data. The source is located at (400m, 400m, 300m), the shallowest receiver is located at
(150m, 150m, 225m), the receiver interval is 10m, and the borehole receiver array contains
the total of 15 receivers (the lowest receiver is located at (150m, 150m, 365m). Figure 12
shows the 3C TIGER synthetics in red blue, and the modelled data 1 in red color. There
is very good agreement between the modelled data 1 and the TIGER data conforming
the accuracy of the TIGER data for a general moment tensor source. Figure refdisplace-
ment shows the theoretical 3D displacement P- and S-wave amplitudes generated using
equations 4 and 5.

FIG. 12: 3C synthetics data generated by TIGER using the seismic moment tensor as in
equation 10. Note each panel has been scaled differently.
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