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ABSTRACT 
This study is an expansion of the work from last year where it was demonstrated that 

oil sands viscosity could be predicted directly from standard well logs within 13% error (or 
0.72 of one standard deviation) using a real viscosity dataset from Donor Company. This 
work has been expanded by: normalizing the well logs, using seismic properties calculated 
from well logs to predict viscosity, adding NMR logs as predictors, improving the viscosity 
training model, and including reservoir depth as a predictor. 

Multi-attribute analysis enables a target attribute (viscosity) to be predicted using other 
known attributes (the well logs). The top well logs for predicting viscosity were: resistivity, 
gamma ray, SP, NMR Total Porosity, NMR Free Porosity, and S-wave sonic. They 
successfully predicted viscosity with an average validation error of 69,000cP (or 0.69 of 
one standard deviation). The top seismic properties for predicting viscosity were: P-wave 
velocity and P-Impedance. They predicted viscosity with an average validation error of 
94,000cP (or 0.94 of one standard deviation). The well logs modeled more viscosity 
variations than the calculated seismic properties did, and in most cases including depth as 
a predictor improved the prediction. 

INTRODUCTION 
The fluid property with the greatest impact on oil sands productivity and recovery is 

viscosity (Batzle et al 2006). The more viscous the oil, more energy needs to be injected 
into the system to reduce the viscosity to allow it to flow. Conventional oil viscosity can 
range from 1 centipoise (cP) [0.001 Pa*s] which is the viscosity of water, to about 10 cP 
[0.01 Pa*s]. Viscosity of heavy and extra-heavy oils can range from 10 cP [0.01 Pa*s] to 
10,000 cP [10 Pa*s]. The most viscous hydrocarbon, bitumen, is a solid at room 
temperature and softens readily when heated. Viscosity of bitumen can range from 10,000 
cP [10 Pa*s] to more than 1,000,000 cP [1,000 Pa*s] (Alboudwarej et al 2006). Figure 1 
shows the logarithmic scale of viscosity subdivided by the grade category of oil, and 
compares it to the viscosities of typical items found in our kitchen. Figure 1 also illustrates 
the temperature-dependence of viscosity. Clearly, increasing reservoir temperature 
decreases the viscosity. 

Figure 2 shows core plug measurements from the oil sands about 50 km south-southwest 
of Fort McMurray, Alberta (Kato et al. 2008). The measurements show that both Vp and 
Vs decrease with increasing temperature (or decreasing viscosity).   
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FIG. 1. Oil viscosities by grade category, compared to typical kitchen items. Note that viscosity 
has a logarithmic scale (ConocoPhillips Oil Sands website). 

FIG. 2. P-wave and S-wave velocities of oil sands core plugs as a function of temperature at a 
constant pore pressure of 700 psi and confining pressure 900 psi (Kato et al. 2008). 
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In addition to its temperature dependence, measurements from Alberta oil sands 
operations suggest that viscosity also increases with reservoir depth. Figure 3 shows a 
depth-viscosity plot from ConocoPhillips’s Surmont SAGD project, which is located only 
10km south of the study area that this report is largely based on. It is not fully understood 
why bitumen viscosity increases with reservoir depth, but one of the proposed mechanisms 
is the increased biodegradation near the base of the reservoir due to the bottom-water 
(ConocoPhillips 2015). 

FIG. 3. Core sample viscosity measurements of the McMurray formation from ConocoPhillips’s 
Surmont SAGD oil sands operation, located only 10km south of the study area. This data shows 
that bitumen viscosity increases with depth in the McMurray formation (ConocoPhillips 2015).  

Goal of this study 
Donor Company has generously provided viscosity measurements from one of their 

major oil sands projects, with multiple measurements per well. The goal of this study is to 
establish a correlation between the measured viscosity values, and all of the available well 
log curves using multi-attribute analysis.  

In a previous CREWES report (Rops & Lines 2015b), it was demonstrated that viscosity 
can be predicted directly from a standard suite of well logs with a prediction error of 13% 
of the total measured viscosity range. 

This report expands on last year’s viscosity prediction work by: normalizing the well 
logs, using seismic properties calculated from logs, adding in NMR logs, improving the 
viscosity training model, and including reservoir depth as a predictor.  
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THEORY – MULTI ATTRIBUTE ANALYSIS 
The theory of multi-attribute analysis is explained in detail in a previous CREWES 

report from last year (Rops & Lines 2015a). A very brief summary is outlined here, with 
an additional section about the convolutional operator. 

Figure 4 illustrates the basic multi-attribute problem, showing the target log and, in this 
case, three attribute logs to be used to predict the target attribute (Hampson-Russell 2013). 

FIG. 4. The basic multi-attribute regression problem showing the target log and in this example, 
the 3 attributes to be used to predict the target (Hampson-Russell 2013).   

To lay out the theory of multi-attribute prediction, let us assume that the target log is P-
wave velocity, attribute 1 is bulk density, attribute 2 is gamma-ray, and attribute 3 is 
resistivity. The goal in this example is to predict P-wave velocity (in the depth domain) 
from the bulk density, gamma-ray, and resistivity curves.  

We can write the fundamental equation for linear prediction as: 

𝑉𝑉𝑉𝑉(𝑧𝑧) = 𝑤𝑤0 + 𝑤𝑤1𝐷𝐷(𝑧𝑧) + 𝑤𝑤2𝐺𝐺(𝑧𝑧) + 𝑤𝑤3𝑅𝑅(𝑧𝑧)  (1) 

where Vp(z) is P-wave velocity in m/s, D(z) is bulk density in kg/m3, and R(z) is resistivity 
in ohm*m. The regression coefficients w1, w2 …wn, can be solved for using least squares, 
and the best predictor attributes can be determined using a statistical method called step-
wise regression (Russell 2004). Next, a method called cross-validation is used to determine 
how many attributes should be used to predict the target log (Russell 2004). 

Please refer to Rops & Lines (2015a) for a more complete explanation of the theory 
behind multi-attribute analysis for log prediction. 
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The convolutional operator 
The multi-attribute analysis explained so far correlates each target depth sample with 

the corresponding sample on each log attribute (as in Figure 4). By using a convolutional 
operator, each target sample is predicted using a weighted average of a group of samples 
on each attribute as shown in Figure 5 (Hampson-Russell 2013). For example, if the 
operator length is set to 5, then each target log sample will be predicted using weighted 
values of 5 neighboring samples on the attributes.  

FIG. 5. Illustration of a 5-point convolutional operator, where 5 points for each attribute are 
averaged for every single point on the target attribute (Hampson-Russell 2013). 

Instead of using Equation 1 to predict the target attribute, using a convolutional operator 
modifies the equation for linear prediction to look like: 

𝑉𝑉𝑉𝑉(𝑧𝑧) = 𝑤𝑤0 + 𝑤𝑤1 ∗ 𝐷𝐷(𝑧𝑧) + 𝑤𝑤2 ∗ 𝐺𝐺(𝑧𝑧) + 𝑤𝑤3 ∗ 𝑅𝑅(𝑧𝑧)  (2) 

where “*” represents convolution by an operator (Hampson-Russell 2013). 

Using the convolutional operator is like adding more attributes, it will always improve 
the prediction error, but the validation error may not improve and the danger of over-
training is increased (Rops & Lines 2015a). Figure 6 shows a validation error plot where 5 
different operator lengths are used to predict P-wave velocity (Hampson-Russell 2013). In 
this example the validation error is minimized when a 7-point operator is used with 6 
attributes, and using a 9-point operator over-trains the data. 
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FIG. 6. Validation Error plot for 5 different operator lengths (Hampson-Russell 2013). 

PROJECT DATA 
The viscosity measurements used for this study were provided by Donor Company from 

one of their major SAGD (steam-assisted gravity drainage) oil sands projects. Figure 7a 
shows a regional map of where the project is located. The wells each had cores taken from 
the McMurray formation. The bitumen was extracted from the cores by a 3rd party 
laboratory and the kinematic viscosities were measured at 35oC, 55oC, and 75oC. The 
measurements at 35oC were used for this study which most closely resembles reservoir 
conditions. Viscosity was measured at multiple depths, ranging from 2 to 8 depth samples 
per well. The majority of wells had 3 viscosity measurements. 

Figure 7b shows a zoomed-in view of the project location. There are 40 wells in this 
area with viscosity measurements which have all of the well log attributes available in LAS 
format. Figure 8 shows the distribution of the viscosity measurements. The viscosities 
(measured at 35oC) range from 9,000 cP to 550,000 cP, with an average measured viscosity 
of 121,000 cP, and standard deviation of 100,000cP. Note that the virgin reservoir 
conditions would be closer to about 10oC, and the viscosities much higher. 

In order to train a multi-attribute relation to predict viscosity from other logs, we need 
to have viscosity “logs” in the Hampson-Russell Emerge® database. Viscosity logs were 
manually created for each well by linearly interpolating the viscosities between each 
measurement point, and nulling the log everywhere outside of the reservoir interval. This 
is shown in a type well in Figure 9, where the three viscosity measurements are denoted by 
the red points, and the black curve is the interpolated target viscosity log.  
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FIG. 8. Distribution of all the laboratory viscosity measurements throughout the study area. 

FIG. 7a. Location map of Donor Company’s   
SAGD project (Google Earth®). 

FIG. 7b. Zoomed-in view of the project area. All of 
the study wells are located within the red circle. 
Image from geoSCOUT®. 
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FIG. 9. Type well of the project area. The red dots in the left track are the provided viscosity 
measurements and the black curve is the interpolated target viscosity log. The viscosity is 
presented on a logarithmic scale from 10,000 cP to 1,000,000 cP. The gold zones highlight the 
training intervals (with mud barriers being avoided). There is bottom-water present at the base of 
the reservoir, based on the low resistivity, high porosity, and high sand content. 

The expected trend of increasing viscosity with depth is also apparent. The gold-colored 
zones highlight the training intervals (ie. reservoir sands). Note that the mud barriers had 
to be avoided when selecting the training intervals. The low-permeability shale intervals 
act as barriers and do not contain bitumen, if they were included in the training it would 
result in highly erroneous viscosity predictions. 

Figure 9 also nicely illustrates the presence of bottom-water below the bitumen, which 
is believed to be a factor causing viscosity to increase with reservoir depth. 

WELL LOG NORMALIZATION PROCESS 
Well log normalization identifies and removes systematic errors from well log data so 

that reliable results may be obtained for reservoir evaluation, solving difficult correlation 
and quantitative problems (Shier 2004). Reasons for tool inaccuracies include varying 
borehole conditions from well to well, improper wellsite tool calibrations, or using 
different logging companies in the same area (Shier 2004).  

There are a number of methods for normalizing logs in a cluster of wells. For this study 
the “Big Histogram Method” was used, which adjusts the logs within a zone of interest to 
have the same average and standard deviation value from well to well. Figure 10 illustrates 
this concept for the gamma ray logs. The histogram shows the distribution of gamma ray 
values for all wells from top to base of the gross bitumen interval. 
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FIG. 10. Distribution of the gamma ray values for all wells from top to base of the gross bitumen 
interval. Each color represents a different well.  

FIG. 11. What the normalized logs look like (red) versus the un-normalized logs (blue). The 
normalization was focused from top to base of the gross bitumen interval. The gold zones highlight 
the bitumen intervals.  

The gamma ray logs for each well were then adjusted so that the average and standard 
deviation values match the global average (44.07 API and 15.52 API respectively) using 
the normalization equation at each depth sample:  

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑖𝑖) =
𝐿𝐿𝐿𝐿𝐿𝐿(𝑖𝑖) − 𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷    (3) 

where Average and StdDev represent the average and standard deviation values of the log 
for a specific well, and DesiredStdDev and DesiredMean represent the global values that 
each well is to adjusted to match.  

Figure 11 shows an example well of how the normalized logs (red) compare to the un-
normalized logs (blue). The normalized logs resemble bulk shifted versions of the original 
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logs to match the global average, with some slight character changes to match the global 
standard deviation. To normalize the resistivity logs, the logarithm of resistivity was 
normalized and converted back to ohm*m units, since resistivity has a logarithmic scale.  

VISCOSITY PREDICTION RESULTS 
We will now use the multivariate procedure described in Rops & Lines (2015a) to 

predict new pseudo-viscosity logs in the project area (using the Hampson-Russell 
Emerge™ prediction software). The wells having all the necessary well logs available in 
LAS format (40 wells) were used to train the train the relationship between viscosity and 
the well log attributes. The deep and shallow resistivity logs were omitted since the medium 
resistivity log was the most consistent, and to avoid duplication of resistivity predictors. 

A number of approaches were tried in predicting viscosity, which are outlined in this 
section. 

Predicting linear viscosity versus log10(viscosity) from standard logs 
Since viscosity is a logarithmic variable (with respect to temperature), it was attempted 

to predict both linear viscosity and log10(viscosity). Table 1 and Table 2 show the top 
predicting attributes for viscosity and log10(viscosity), respectively. Adding more 
attributes than shown in the tables over-trains the data (ie. the validation error stops 
decreasing), which is why the tables are truncated and four and three attributes. The 
log10(viscosity) predictions from Table 2 were converted back to linear space so that the 
result could be compared against the linear viscosity prediction. This comparison is shown 
in Figure 12 for 3 example wells, which has the viscosity predictions overtop the true 
viscosity in the left track. The other tracks contain the well logs used for the viscosity 
prediction.  

Target (cP) Attribute Units Validation Error (cP) 
1 Viscosity 1 / (Medium Resistivity) 1 / (ohmm) 79,100 
2 Viscosity (Gamma Ray)1/2 (API)1/2 75,900 
3 Viscosity 1 / (P-wave sonic) 1 / (μs/m) 73,700 
4 Viscosity ln |Resistivity Separation| ln|ohmm| 72,000 

Table 1. Predicting viscosity directly. Emerge™ prediction attributes with their associated 
validation errors. All of the well logs from the 40 project wells were used. Note that each row in 
the list corresponds to a particular multi-attribute transform and includes all the attributes above it. 

Target (unitless) Attribute Units Validation Error 
(unitless) 

1 log10(Viscosity) ln |Medium Resistivity| ln|ohmm| 0.226 
2 log10(Viscosity) Gamma Ray API 0.211 
3 log10(Viscosity) 1 / (P-wave sonic) 1 / (μs/m) 0.203 

Table 2. Predicting log10(viscosity). Emerge™ prediction attributes with their associated 
validation errors. All of the well logs from the 40 project wells were used. Note that each row in 
the list corresponds to a particular multi-attribute transform and includes all the attributes above it. 
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FIG. 12. Predicting viscosity from standard logs. Validation results for three example wells. Each of the 40 wells were systematically left-out and 
predicted from the remaining 39 wells. The black curves in the viscosity tracks are the true (interpolated) viscosities, the red curves are the predicted 
linear viscosities and the green curves are the predicted log10(viscosities) converted back to linear space. The logs used to predict viscosity are also 
plotted. The gold zones highlight the training intervals. Credit: Hampson-Russell Emerge™ 
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     Qualitatively it appears the log10(viscosity) prediction is more accurate at the top of the 
bitumen zone, and less accurate at the base of the bitumen zone.  

     Figure 13 shows a histogram of the log10(viscosity) errors for all 40 wells converted 
back to linear space. Quantitatively, the average error is improved from 72,000cP to 
49,600cP if we predict log10(viscosity) instead of linear viscosity. 

FIG. 13. Log10(viscosity) prediction errors converted back to linear space. 

It is speculated that the log10(viscosity) predictions have greater errors in the base 
reservoir interval because there are less data points constraining the prediction to those 
high viscosity values. Therefore, the apparent improved prediction error from predicting 
log10(viscosity) is likely more skewed towards the upper bitumen zone, which has more 
data points than the lower bitumen zone.  

In summary, Medium Resistivity, Gamma Ray, P-wave Sonic, and Resistivity Separation 
were the top viscosity predictors with an average validation error of 72,000 cP (13% of 
total range, or 0.72 of one standard deviation). The un-normalized logs were used since the 
normalized logs resulted in slightly higher error, which was surprising. A range of operator 
lengths from 1 to 21 were tried, and they resulted in incremental improvements (a 21-point 
operator improved the average error from 72,000cP to 70,500cP). These were not 
significant improvements, so this report focuses on the results from 1-point operators to 
keep the process straightforward.    

Predicting viscosity from calculated seismic properties 
It would be immensely valuable for oil sands projects if one day seismic is proven to be 

able to estimate the viscosity variations within a reservoir. To test this idea in the well 
logging world, a full suite of seismic properties were calculated from the density, Vp, and 
Vs logs: Bulk Modulus, Shear Modulus, P-Impedance, S-Impedance, Vp/Vs, Young’s 
Modulus, Poisson’s Ratio, P-Elastic Impedance, PS-Elastic Impedance, and Extended 
Elastic Impedance. Figure 14 shows the type well with all the calculated seismic properties 
which were used to predict the target viscosity (left track). Table 3 shows the top seismic 
properties for predicting viscosity from Emerge™. The validation error levels off after 
using five attributes, adding more over-trains the prediction. 
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FIG. 14. Type well of the project area with calculated seismic properties. The red dots in the left 
track are the provided viscosity measurements and the black curve is the interpolated target 
viscosity log. The viscosity is presented on a logarithmic scale from 10,000 cP to 1,000,000 cP. 
The gold zones highlight the training intervals (with mud barriers being avoided). 

Target (cP) Attribute (normalized) Units Validation Error (cP) 
1 Viscosity Bulk Modulus [Pa] 85,800 
2 Viscosity 1 / Density 1 / [kg/m3] 85,200 
3 Viscosity 1 / (PS-Elastic Impedance) [m/s * g/cc]-1 85,400 
4 Viscosity (Young’s Modulus)1/2 [Pa]1/2 84,000 
5 Viscosity P-Elastic Impedance [m/s * g/cc] 83,300 

Table 3. Predicting viscosity from calculated seismic properties. Emerge™ prediction attributes 
with their associated validation errors. All of the well logs from the 40 project wells were used. 
Note that each row in the list corresponds to a particular multi-attribute transform and includes all 
the attributes above it.  

     Similar to the previous section, these same seismic properties were used to predict the 
log10 of viscosity and converted back to linear space to see if that gets us closer to the 
measured values. Figure 15 shows the predicted viscosity (red) and log10 of viscosity 
converted back to linear space (green) overtop the true viscosity in the left track for the 
three example wells. The other tracks show the seismic properties used for the prediction. 

     The seismic properties viscosity predictions (Figure 15) are less dynamic than the 
standard well log viscosity predictions (Figure 12). The seismic properties estimate 
viscosity reasonably well in the upper reservoir intervals, but greatly underestimate in the 
bottom reservoir intervals. There is little noticeable difference between the linear and log10 
viscosity predictions, however the log10 viscosity prediction is slightly more accurate in 
the upper intervals, and slightly less accurate in the lower intervals. 
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FIG. 15. Predicting viscosity from calculated seismic properties. Validation results for three example wells. Each of the 40 wells were systematically 
left-out and predicted from the remaining 39 wells. The black curves in the viscosity tracks are the true (interpolated) viscosities, the red curves are 
the predicted linear viscosities and the green curves are the predicted log10(viscosities) converted back to linear space. The logs used to predict 
viscosity are also plotted. The gold zones highlight the training intervals. Credit: Hampson-Russell Emerge™.
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     In summary, Bulk Modulus, Density, PS-Elastic Impedance, Young’s Modulus, and P-
Elastic Impedance were the top viscosity predictors with an average validation error of 
83,000 cP (16% of total range, or 0.83 of one standard deviation). The normalized logs 
were used to calculate the seismic properties because they yielded more stable predictions 
with a lower error than using the un-normalized logs. 

Adding NMR logs as viscosity predictors 
Unlike conventional logging measurements (ie. acoustic, density, and resistivity), which 

respond to both the rock matrix and fluid properties and are strongly dependent on 
mineralogy, NMR-logging measurements respond to the presence of hydrogen protons, 
which primarily occur in pore fluids. NMR (nuclear magnetic resonance) provides 
information about the quantities of fluids present, the properties of these fluids, and the 
pore size distributions containing these fluids (Rider & Kennedy 2011).  

The NMR measurement is extremely sensitive and complex, who’s full explanation is 
well beyond the scope of this report but can be found in Ellis & Singer (2007). The heart 
of the measurement involves measuring the characteristic decay time of protons, called the 
T2 relaxation time, by emitting a sequence of electromagnetic pulses at the correct Larmor 
frequencies.  

Figure 16 shows a typical display of NMR data. The right track shows the T2 distribution 
as a function of depth. The left track shows three porosities calculated from the T2 
amplitudes. The rightmost curve is the sum of amplitudes greater than 33μs (ie. free fluid 

FIG. 16. NMR T2 distributions as a function of depth are shown in the right track. The left track 
shows the free-fluid, capillary-bound, and clay-bound porosities calculated from the T2 amplitudes 
(Ellis & Singer 2007).  
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porosity). Between this lower limit and the middle dotted line, shaded in light grey is the 
additional contribution between 3 and 33 µs (ie. capillary bound fluid). The dark shaded 
region beyond corresponds to the porosity with T2 less than 3 μs (ie. clay bound fluid). 

In bitumen settings, since the viscosity is extremely large, the T2 decay times are so low 
to the point where NMR cannot see the bitumen at all (Ellis & Singer 2007). The simplest 
way to find bitumen is to compare the density porosity log (which sees all porosity), to the 
NMR total porosity (which does not see the bitumen), as shown in Figure 17.   

Figure 17 shows an example well in the study area, with the NMR total, NMR free, and 
moveable water porosities plotted. The dark grey area represents the bitumen in the 
smallest pores and capillaries (not seen by the NMR). The magenta area represents 
hydrocarbon in small pores and capillaries with poor mobility that the NMR can see. The 
green represents free (moveable) hydrocarbon in the small to medium pores, and cyan 
represents free, moveable fluids in the larger pores (Bob Everett, retired Schlumberger 
petrophysicist, personal communication, November 2016).  

FIG. 17. Oil sands well in the study area with NMR data. The density porosity and NMR total 
porosity curves overlap above and below the hydrocarbon zones, but separate in the bitumen 
zones. The grey filled area is bitumen, the filled magenta area is hydrocarbon in small pores and 
capillaries (seen by NMR), the filled green area is free hydrocarbon in medium pores (seen by 
NMR), and filled blue is free fluids in the larger pores (seen by NMR).  
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Note however that these are not true representations of moveable porosities because NMR 
does not see most of the hydrocarbon porosities in bitumen settings. 

It is already known that NMR T2 distributions can be used to estimate oil viscosity. Sun 
et. al. (2007) demonstrated that the apparent hydrogen index (HI), which is calculated from 
the T2 distribution, shows robust empirical correlations with oil viscosity samples. The 
goal for this study was to see if combining the NMR data with the standard well logs would 
improve the data-driven viscosity prediction of this study. 

Donor company has generously provided all of their wells in the study area that have 
NMR data. Unfortunately, none of the 25 NMR wells provided have viscosity 
measurements. Therefore, the 25 NMR wells were used the find the best NMR prediction 
model from standard well logs. The prediction model was then used to blindly predict the 
NMR logs in each of the 40 viscosity wells to see if the predicted NMR logs improve the 
viscosity prediction. Quite an ambitious and possibly laughable task.  

Table 4, Table 5, and Table 6 show the Emerge™ top predicting attributes for NMR 
total porosity, NMR free porosity, and NMR moveable water, respectively. Note that each 
row corresponds to a particular multi-attribute transform and includes all the rows above 
it.  

Target (%) Attribute Validation Error (%) 
1 NMR Total Porosity 1 / (Medium Resistivity) 3.47 
2 NMR Total Porosity (P-wave sonic)1/2 3.23 
3 NMR Total Porosity ln |Gamma Ray| 2.96 

Table 4. Emerge top predicting attributes for NMR Total Porosity. 

Target (%) Attribute Validation Error (%) 
1 NMR Free Porosity 1 / (Medium Resistivity) 3.53 
2 NMR Free Porosity (P-wave sonic)2 3.28 
3 NMR Free Porosity Gamma Ray 3.09 

Table 5. Emerge top predicting attributes for NMR Free Porosity. 

Target (%) Attribute Validation Error (%) 
1 NMR Moveable Water 1 / (Medium Resistivity) 3.45 
2 NMR Moveable Water (Density)1/2 3.17 
3 NMR Moveable Water 1 / (Neutron Porosity) 2.93 
4 NMR Moveable Water (P-wave sonic)2 2.79 

Table 6. Emerge top predicting attributes for Volume Moveable Water. 

     Figure 18 shows the predicted NMR porosities plotted overtop of the measured NMR 
porosities for 2 example wells. The prediction model was trained using all 25 NMR wells 
from the top to base bitumen interval.  

Overall, the raw logs did a slightly better job at predicting the NMR curves than the 
normalized logs, with an average validation error of 3%. NMR free porosity was the least 
detailed prediction, but the overall trend was usually still there. Normalizing the NMR logs 
before predicting them made the prediction more unstable, so the results were normalized 
after they were predicted. 



Rops and Lines 

18 CREWES Research Report — Volume 28 (2016) 

FIG. 18. Predicting NMR porosities from Medium Resistivity, P-wave sonic, Gamma Ray, and Neutron Porosity. Validation results for two example 
wells are shown. Each of the 25 NMR wells were systematically left-out and predicted from the remaining 24 wells. The black curves are the measured 
NMR porosities, the red curves are the predicted NMR porosities using normalized logs, and the green curves are the predicted NMR porosities using 
the un-normalized (raw) logs. Credit: Hampson-Russell Emerge™ 



Predicting oil sands viscosity from well logs 

CREWES Research Report — Volume 28 (2016) 19 

     These multi-regression prediction models were then used to blindly predict the NMR 
porosity logs in each of the 40 viscosity wells. However, before we test if using the 
predicted NMR logs improves the viscosity prediction, we will first set up an improved 
viscosity training model. 

Improving the viscosity training model 
The results so far have involved training the prediction model to best match a target 

“pseudo viscosity log,” which is just a linear interpolation through the actual measured 
viscosities (shown in Figure 9). This assumes that viscosity varies linearly between each 
measurement point, which is a significant oversimplification. A more certain method is to 
train the prediction model at only the known viscosity measurement depths with the known 
values. 

Figure 19 shows the new viscosity training model. The left track shows the old target 
viscosity log in black. The updated target viscosity log is red which is nulled everywhere 
except around a 100cm window centered at the true measurement depths with the true 
values. In cases where the measurement depth plotted in a shale interval, it was moved to 
the nearest clean reservoir interval. Note also that the predicted NMR logs are shown in 
the porosity track, as described in the previous section.  

FIG. 19. Updated Viscosity Training Model. In the left track, the black curve is the old (interpolated) 
target viscosity log. The red curve is the new target viscosity log, with a 1-meter training window 
centered around the true measurement depth (shown by the gold zones). The viscosity is presented 
on a logarithmic scale from 10,000 cP to 1,000,000 cP. The predicted NMR porosity logs are also 
shown, with the shaded grey area indicating the presence of bitumen from the density porosity and 
NMR total porosity separation. 
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New viscosity predictions from the updated training model 
Table 7 shows the top viscosity predicting attributes from implementing the new 

training model using standard well logs and the predicted NMR logs. Table 8 shows the 
top viscosity predicting attributes using calculated seismic properties on the new training 
model.  

Target (cP) Attribute (normalized) Units Validation Error (cP) 
1 Viscosity 1 / (Medium Resistivity) 1 / [ohmm] 84,200 
2 Viscosity ln |Gamma Ray| ln |API| 77,300 
3 Viscosity 1 / (SP) 1 / [mV] 74,800 
4 Viscosity (NMR Total – NMR Free)2  [decimal]2 71,600 
5 Viscosity (NMR Total Porosity)2 [decimal]2 71,200 
6 Viscosity 1 / (S-wave sonic) 1 / [µs/m] 69,500 

Table 7. Predicting viscosity from standard logs and predicted NMR logs, with new training 
model: Emerge™ prediction attributes with their associated validation errors. All of the well logs 
from the 40 project wells were used. Note that each row in the list corresponds to a particular 
multi-attribute transform and includes all the attributes above it.  

Target (cP) Attribute (normalized) Units Validation Error (cP) 
1 Viscosity 1 / (P-wave sonic) 1 / [μs/m] 95,700 
2 Viscosity 1 / (P-Impedance) [m/s * g/cc]-1 93,600 

Table 8. Predicting viscosity from calculated seismic properties, with new training model: 
Emerge™ prediction attributes with their associated validation errors. All of the well logs from the 
40 project wells were used. Note that each row in the list corresponds to a particular multi-
attribute transform and includes all the attributes above it.  

Figure 20 and Figure 21 show the new viscosity prediction results in two example wells, 
using the attributes from Table 7 and Table 8. The left side of the figures show the 
predictions using the well logs, and the right side shows the predictions using calculated 
seismic properties. The gold zones highlight the reservoir intervals. The magenta colored 
area is the separation between the predicted NMR Total and NMR Free porosity logs, 
which came up as the 4th top predictor (Table 7). This separation represents hydrocarbon 
contained in small pores and capillaries with poor mobility (Bob Everett, retired 
petrophysicist, personal communication, November 2016). 

The well from Figure 20 has bitumen that extends 20m above the shallowest viscosity 
measurement. Both predictions (using well logs and calculated seismic properties) show 
good validation agreement with the known viscosities, and they both predict a smooth trend 
of decreasing viscosity to the top of the bitumen reservoir. The spikes in the predicted 
viscosity logs occur in non-reservoir intervals, which makes sense because the prediction 
was only calibrated at the measurement points, which are all in reservoir intervals. There 
is relatively little difference between the old and new viscosity predictions in this well. 

The well from Figure 21 shows more dynamic behavior of the modeled viscosity. On 
the left side (prediction using well logs), the new viscosity prediction shows more variation 
than the old prediction. The new model shows a shallow decreasing viscosity profile from 
410m to 420m, and two separate profiles of increasing viscosity in two reservoir intervals 
separated by a more shaley zone (440m to 460m). On the right side, the viscosity prediction 
from calculated seismic properties shows less variation, and does not see the same trends. 
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FIG. 20. Predicting viscosity from standard logs and NMR (left side), and calculated seismic properties (right side). Validation results for an example 
well are shown. The two outermost tracks show the true viscosity measurements (350C) in black, with the new prediction in red overtop the old 
prediction in blue. The viscosity tracks are presented on logarithmic scales from 10,000cP to 1,000,000cP. The gold zones highlight the bitumen 
intervals. The magenta colored area is the separation between the predicted NMR Total and NMR Free porosity logs, which represents hydrocarbon 
contained in small pores and capillaries with poor mobility. Credit: Hampson-Russell Emerge™ 
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FIG. 21. Predicting viscosity from standard logs and NMR (left side), and calculated seismic properties (right side). Validation results for an example 
well are shown. The two outermost tracks show the true viscosity measurements (350C) in black, with the new prediction in red overtop the old 
prediction in blue. The viscosity tracks are presented on logarithmic scales from 10,000cP to 1,000,000cP. The gold zones highlight the bitumen 
intervals. The magenta colored area is the separation between the predicted NMR Total and NMR Free porosity logs, which represents hydrocarbon 
contained in small pores and capillaries with poor mobility. Credit: Hampson-Russell Emerge™ 
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In summary, from implementing the updated viscosity training model (Figure 19) and 
including predicted NMR logs, the top viscosity predictors were: Medium Resistivity, 
Gamma Ray, SP, (NMR Total Porosity – NMR Free Porosity), NMR Total Porosity, and 
S-wave sonic. The normalized versions of these logs were used because they had lower 
validation error, and more stable predictions. The average validation error was 69,500 cP 
(13% of total range, or 0.69 of one standard deviation), an improvement of 2,500cP from 
using the old, “interpolated viscosity log” training model from Figure 9. The new 
prediction modelled greater viscosity variation than the old prediction, and more unstable 
behavior outside of the bitumen intervals.  

From implementing the new training model on the calculated seismic properties, the top 
viscosity predictors were: P-wave sonic and P-Impedance. The normalized logs were used 
to calculate the properties because they yielded more stable predictions with a lower error 
than using un-normalized logs. The average validation error was 93,600 cP (18% of total 
range, or 0.94 of one standard deviation), which is 10,300cP worse than using the old, 
“interpolated viscosity log” training model. The new prediction from seismic properties 
did show slightly more viscosity variation than the old prediction did, but not nearly as 
much variation as seen by the well logs.  

Adding depth as a viscosity predictor 
Given the convincing evidence of a depth-viscosity relationship from the 

ConocoPhillips Surmont project (Figure 3), a similar graph was made for the project area 
and is shown in Figure 22. A rough logarithmic viscosity trend with depth is apparent. 

FIG. 22. Reservoir depth vs. viscosity plot. All the viscosity measurements from the 40 study wells 
are plotted. 
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Following this line of thinking, base bitumen tops were picked for each of the 40 study 
wells to generate logs called height above bitumen base (depth). The depth logs were then 
added to the multi-attribute viscosity prediction workflow to see how including depth 
improves the prediction. Table 9 and Table 10 show to top predicting attributes from well 
logs and calculated seismic properties, respectively. 

Target (cP) Attribute (normalized) Units Validation Error (cP) 
1 Viscosity ln |HeightAboveBitumenBase| ln |m| 70,300 
2 Viscosity 1 / (SP) 1 / [mV]| 70,000 
3 Viscosity 1 / (Log10 Medium Resistivity) 1 / [ohmm] 67,700 
4 Viscosity 1 / (Gamma Ray) 1 / [API] 65,900 
5 Viscosity (NMR Free Porosity)2 [decimal]2 64,100 
6 Viscosity (NMR Total – NMR Free)1/2 [decimal]1/2 63,500 

Table 9. Predicting viscosity from standard logs, predicted NMR logs, AND depth: Emerge™ 
prediction attributes with their associated validation errors. All of the well logs from the 40 project 
wells were used. Note that each row in the list corresponds to a particular multi-attribute 
transform and includes all the attributes above it.  

Target (cP) Attribute (normalized) Units Validation Error (cP) 
1 Viscosity ln |HeightAboveBitumenBase| ln |m| 70,300 
2 Viscosity 1 / (P-wave sonic) 1 / [μs/m] 69,600 

Table 10. Predicting viscosity from calculated seismic properties AND depth: Emerge™ prediction 
attributes with their associated validation errors. All of the well logs from the 40 project wells were 
used. Note that each row in the list corresponds to a particular multi-attribute transform and 
includes all the attributes above it.  

Figure 23 shows how using depth (height above bitumen base) influences the viscosity 
prediction for three example wells. For each well, the black blocked curves are the true 
viscosity measurements, and the green logarithmic curves are the predictions using only 
depth. In the left tracks, the viscosity predictions from logs are plotted in blue, and the 
predictions from logs and depth combined are plotted in red. In the right tracks, the 
viscosity predictions from calculated seismic properties are plotted in blue, and the 
predictions from seismic and depth combined are plotted in red. 

For the left and middle wells, depth alone predicts the viscosity trends almost perfectly! 
Also, combining depth with both the logs and seismic properties improves the prediction 
instead of using the well logs alone. However, the well on the right has a low measured 
viscosity near the bitumen base (66,000cP at 440m depth). The depth predictor is not 
calibrated the predict low viscosities at the reservoir base. As a result, including depth in 
the prediction overestimates the viscosity at the base, whereas using only the well logs 
(blue curves) get closer to the true viscosity. 

In summary, using depth (height above bitumen base) improved the average validation 
error from 69,500cP to 63,500cP. In most cases it improves the accuracy of the prediction, 
however it removes some of the dynamic variations and will always overestimate viscosity 
if the base of the reservoir has a low viscosity. 
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FIG. 23. Influence of depth as a viscosity predictor for three example wells. For each well, the black blocked logs are the true viscosity measurements, 
and the green logarithmic curves are the predictions using only depth. In the left tracks, the viscosity predictions from logs are plotted in blue, and the 
predictions from logs and depth combined are plotted in red. In the right tracks, the viscosity predictions from calculated seismic properties are plotted 
in blue, and the predictions from seismic and depth combined are plotted in red. all viscosity tracks are presented on logarithmic scales from 10,000cP 
to 1,000,000cP. The gold zones highlight the bitumen intervals. Credit: Hampson-Russell Emerge
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Comments about the well logs used to predict viscosity 
A number of log types kept re-occurring as viscosity predictors throughout this study: 

resistivity, gamma ray, SP, predicted NMR Total Porosity, predicted NMR free porosity, 
P-wave sonic, and S-wave sonic. 

Resistivity logs are sensitive to changing reservoir fluid types, so it makes sense that 
resistivity came up as a viscosity predictor, although the exact mechanism is not known. 
The degree of bitumen saturation in the reservoir (So = 1 - Sw) might also play a role in 
predicting viscosity in which case the resistivity of the formation water (Rw), which can 
change vertically and laterally, would become important. There is also a relationship 
between Vp and resistivity, first given by Faust (1953): 

𝑽𝑽𝒑𝒑 = 𝜸𝜸 �𝒁𝒁
𝑹𝑹𝟎𝟎
𝑹𝑹𝒘𝒘

�
𝟏𝟏/𝟔𝟔

 (4) 

where Vp is P-wave velocity in the fluid saturated rock in ft/s, γ is a constant, Z is depth in 
feet, R0 is the resistivity of 100% water saturated rock in ohm*m, and Rw is the formation 
water resistivity in ohm*m.  

Gamma ray was another common viscosity predictor. The gamma ray log measures the 
natural radioactivity of the formation, and is commonly used to calculate shale volumes 
and differentiate between sand units and shale units (Rider & Kennedy 2011). A physical 
reason why the gamma ray log would be related to viscosity is unclear, perhaps some 
unique bug deposits or uranium variations?  

The SP log routinely came up as a second or third predictor after it was normalized. SP 
is sensitive to large changes in permeability (Rider & Kennedy 2011), so perhaps it could 
respond to viscosity variations as well. 

It is known that both Vp and Vs decrease with increasing temperature (Figure 2). Since 
temperature and viscosity are closely related, it follows for Vp and Vs to be sensitive to 
viscosity variations as well. However, it is surprising that the shear sonic log did not appear 
more, because viscous bitumen has a non-zero shear modulus compared to conventional 
hydrocarbons, which the shear sonic should detect. It could be a result of the questionable 
quality of the shear sonic data in the project area. With better shear sonic data, the viscosity 
predictions would likely be improved further. 

Finally, it is well known that NMR signals can be correlated to viscosity (Sun et. al. 
2007). However, none of the viscosity wells in the project had NMR data, so the NMR logs 
had to be blindly predicted in the viscosity wells by training prediction equations using 25 
nearby NMR wells. The fact that the NMR (total – free) porosity separation came up as a 
predictor is very encouraging. If the viscosity wells had real NMR data, the predictions 
would almost certainly have been improved further.  
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CONCLUSIONS 
This study demonstrated that multi-attribute analysis of well logs can successfully be 

used to predict viscosity, given sufficient lab viscosity measurements to train the model. 
Viscosity estimates within about 70,000cP should now be able to be made on any well in 
the studied reservoir assuming it has a reliable standard suite of well logs. Note that this 
model estimates a lab measured viscosity controlled at 35oC, whereas virgin reservoir 
viscosities are on the order of millions of cP, at around 10oC.  

Initially, training the model to an interpolated target viscosity log was done. However, 
it was found that training the prediction model at only the known viscosity measurement 
depths with the known value gives more accurate predictions and reveals more viscosity 
variations. Table 11 summarizes how all the different predictions compared.  

Table 11. Comparison of viscosity prediction results from using the updated training model. 

Normalizing the logs and including predicted NMR logs as viscosity predictors resulted in 
lower validation errors and more stable predictions.  

     The calculated seismic properties were less accurate and less dynamic viscosity 
predictors than the well logs were. However, they still were within 100,000cP most of the 
time. With improved shear sonic logs, the seismic properties likely would have been more 
accurate. To extend viscosity prediction into the seismic world, a thick reservoir would be 
needed for resolution, and very high frequency prestack seismic data to extract out the 
required elastic properties which would hopefully detect the large viscosity variations 
throughout the reservoir. 

Estimating viscosity ultimately adds value to any heavy oil or oil sands development 
project because it is used as a main criterion in selecting the recovery method, and it is the 
most important parameter influencing production and development (Batzle et. al. 2006). 
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