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ABSTRACT 
Jean Morlet was a French geophysicist who used an intuitive approach, based on 

his knowledge of seismic processing algorithms, to propose a new method of time-
frequency analysis.  Geophysicists did not at first recognize the originality of Morlet’s 
work, but mathematicians did, and his method was re-named the Continuous Wavelet 
Transform, or CWT, and lead to a new branch of mathematics. In this article, we will re-
visit Morlet’s classic papers and show why his work was so original and important. we 
will also show a modern application of the CWT to seismic data analysis. 

INTRODUCTION 

Jean Morlet was a geophysicist who worked for Total in France. In 1982 he and 
three co-authors published two papers in Geophysics (Morlet et al., 1982 I and II) 
proposing a new approach to time-frequency analysis (Cohen, 1995) based on wavelets. 
The key ideas that make Morlet’s work so original were as follows:  

1. First, he used the Gabor wavelet, a sinusoidally-modulated Gaussian function,
as his wavelet of choice.

2. Second, he used the Heisenberg uncertainty principle to keep the product of
the time and frequency widths of the wavelets constant.

3. Third, he defined the width of the of the wavelet envelope as an integer times
the dominant period of the sinusoid, introducing a shape factor.

4. Fourth, he used a logarithmic increment in the frequency domain, introducing
what now is called scale.

5. Finally, he cross-correlated each of his wavelets with the input seismic trace to
analyze the frequency content of the trace.

In the following discussion, we will derive Morlet’s approach by analyzing each 
of the above steps, then descibe the modern formulation of the CWT and its applications 
to seismic data analysis.  But we will start by going further back to the work of Dennis 
Gabor on communication theory that was the inspiration for Morlet’s work (Gabor, 
1946).  This seminal paper has inspired much of the research in time-frequency analysis 
since its publication (e.g., see Cohen, 1995). 

GABOR’S ELEMENTARY SIGNAL 

Before summarizing the work of Morlet et al. (1982 I and II) it is instructive to go 
back and look at the pioneering work of Gabor (1946), which was the starting point for 
Morlet’s work.  Russell (2013) discusses the impact of Gabor’s work on modern seismic 
data analysis.  
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Dennis Gabor was a quantum physicist who turned his attention to information 
theory.  He is most famous for winning  the 1971 Nobel Prize in Physics for his invention 
holography.  Gabor (1946) applied Heisenburg’s uncertainty principle to the time-
frequency Fourier pair to define what he called his “elementary signal”.  Recall that the 
uncertainty principle in quantum mechanics is written as 

 

2


≥∆∆ px ,     (1) 

where ∆x is uncertainty in position, ∆p  is uncertainty in momentum and 
π2
h

= is 

Planck’s constant divided by 2π.  That is, the product of the uncertainties in position and 
momentum can never get below the value 2/ .  In a similar way for time signals, Gabor 
(1946) proposed that the product of the uncertainty in the time signal and the frequency 
signal can never get below one-half, which can be written 
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where ∆t is uncertainty in time, ∆f  is uncertainty in frequency.  Gabor then designed an 
“elementary signal” for which the product given in equation 2 is exactly equal to one-
half.  Gabor (1946) writes the time domain signal as 
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where α defines the sharpness of the pulse, t0 its centre, f0 its dominant frequency, φ its 
initial phase and ( ) ( ) ( )φπφπφπ +++=+ tfitftfi 000 2cos2cos2exp , where 1−=i .  Note 
that this is the same formulation as the “wave packet” used by quantum physicists 
(McWeeny, 1972). 
 

Gabor (1946) then computed the Fourier transform of the signal in equation (3), 
finding it to be 
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To make sure that the product in equation (2) is equal to 1/2, Gabor (1946) 

sets
α

π 1
2

=∆t  and
π

α
2

=∆f .   He also defines the term α as the bandwidth f2-f1 of the 

ideal band-pass filter defined by 
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where f2 and f1 are the cutoff points of the filter.  Equations (3) and (4) define what we 
would now call a Gabor wavelet, in time and frequency respectively. 
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Figure 1, from Gabor (1946), shows the envelopes of the time and frequency 
signals defined in equations (3) and (4).  
 

 
Figure 1: The envelopes of the time and frequency forms of the Gabor wavelets given in 
equations (3) and (4) (from Gabor, 1946). 

Figure 2 shows the Gabor wavelet itself.  As shown in Figure 2, the Gabor 
wavelet involves the multiplication of a Gaussian window, shown in the top part of the 
figure, by a sinusoidal wave, shown in the middle part of the figure. The wavelet itself is 
shown at the bottom of the figure.  In Figure 2 both the cosine, or zero-phase, sinusoid 
(shown by the red line) and the sine, or -90o sinusoid (shown by the blue dotted line) have 
been shown, which, as shown in equation (3), are the real and imaginary parts of the 
wavelet.  The wavelets shown at the bottom of Figure 2 have their Gaussian envelope 
superimposed to illustrate the effect of the modulation on the real and imaginary parts. 

 
 
Figure 2: The basic Gabor wavelet, where the Gaussian envelope is shown at the top, the 
sinusoidal components shown in the middle (red line = cosine, blue dotted line = sine), and the 
final wavelet (with amplitude envelope) shown at the bottom of the figure.  Note that the real 
component of the wavelet (the red line) is a zero-phase wavelet and the imaginary component 
(blue dotted line) is at -90o phase.  
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MORLET’S EXTENSION OF GABOR’S WORK 
 

Let us next see how Morlet re-expressed the Gabor wavelet and extended the 
concept to create the continuous wavelet transform, or CWT.  Referring back to equation 
(3) and Figure 2, note that the Gabor wavelet can be expressed as 

 
)()()( tstgt =ψ ,     (6) 

 
where g(t) is the Gaussian window and s(t) is the sinusoidal component.  If we assume 
that the phase component of equation (3) is equal to zero, we can express the sinusoidal 
component as 
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where period. mean  andfrequency  mean  , 22  ,1 00
0
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T

fi ππω   Figure 3 

shows a sinusoid with period T
0
, where the cosine function starts on a peak (or  zero 

phase) and the sine function is a -90o phase shifted cosine.   
 

 
Figure 3: A pure sinusoid function, with period T0.(red line = cosine, blue dots = sine). 

 
Note that the theoretical sinusoid shown in Figure 3 is infinite in extent.  Thus, the effect 
of a Gaussian window is to restrict the sinusoid to a reasonable length. 

 
Next, let us consider the Gaussian envelope function, as shown in Figure 4. 

Morlet et al. (1982, II) rewrote the Gabor version of the wavelet that was shown in 
equation (3) as 
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where envelope. Gaussian of  width andfrequency angular  mean  0 =∆= tω   
 

Thus, instead of defining 
t∆

=
1

2
πα , as Gabor (1946) does, Morlet et al. (1982, II) 

define the width as 
t∆

=
2ln2α .  The reason for this change in the definition of α is best 
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seen in Figure 4. Referring to Figure 4, if we define the time width of the Gabor wavelet 
as the difference between the two times at which the envelope is one-half its maximum 
amplitude, note that by substituting into equation 8 we get 

[ ] 5.02lnexp)()( 11 =−=−= tgtg .  

  
Figure 4: The time domain Gaussian envelope function, which reaches half its maximum at ∆t.  

 

The complete Gabor wavelet, as shown earlier in Figure 3, can thus be written as 
the product of equations 7 and 8, or 
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Morlet et al. (1982, II) then compute the Fourier transform of the Gabor wavelet 

and showed that it is equal to: 
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As seen in Figure 5, we can next define a the angular frequency width ∆ω as the 
difference between the angular frequency values of the Fourier transform of the wavelet 
reach an amplitude of on-half of the maximum, or the angular frequencies given by 

2/01 ωωω ∆−= and 2/02 ωωω ∆+= . 
 

 
Figure 5: The frequency domain Gaussian envelope function reaches one-half of its maximum 
symmetrically around ω0 at a width of ∆ω.  
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From Figure 5, we can therefore compute the equivalent Heisenberg uncertainty 

rule for the Morlet et al. (1982, II) version of the Gabor (1946) wavelet.  First, we set the 
ratio of the spectra from equation (10) at either ω1 and ω0  or ω2 and ω0 to 1/2, or  
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Next, taking logarithms we get 

2ln64
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2ω∆∆
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Simplifying, this gives the angular frequency x time width as 
 

2ln8=∆∆ tω , 
 

or the frequency x time width as 
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2
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π
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Note that this value is slightly larger than Gabor’s value of 0.5.   
 

Figure 6, taken from Morlet et al. (1982, Part II), shows a representative wavelet 
and its Fourier transform, where the time and frequency widths have been annotated.  
Note that we could have called this a Gabor wavelet, but since Morlet’s conventions have 
been used in building this wavelet, we will call it a Morlet wavelet.  This nomenclature 
will be even more convincing when we introduce the concept of the “shape ratio” in the 
next paragraph. 

 

 
 

Figure 6: A representative Morlet wavelet Fourier pair (from Morlet et al., 1982, part II). 
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Another way in which Morlet et al. (1982, Part II) differ from Gabor (1946) is 
that they define the time width of the wavelet as a function of the dominant period (or 
dominant frequency) rather than the frequency bandwidth.  This is done by defining a 
“shape ratio” k, which relates the Gaussian time width at half-amplitude to the mean 
period using the equation  

∆t = kT0.     (12)   
 
Note that this also means, from equation (11), that the frequency width is given by 

k
f

kTkT
f 0
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Referring back to Figure 6 (and Figure 3) note that k = 2 in this example.  Since 

T0 = 0.02 sec, this means that ∆t = 0.04 sec, f0 = 50 Hz and ∆f = 22 Hz, as shown in the 
figure. 

 
Figure 7 shows the effect of three different shape ratios (1, 2 and 4) for a constant 

dominant period of T0 = 20 ms.  Notice that higher shape ratios have more side lobes. In 
modern applications of the CWT, the shape ratio appears to be fixed at a value of 2, but 
from Figure 7 it would appear that there are advantages to being able to change the shape 
ratio. 

 

 
Figure 7: The effect of different values of k on the shape of the Morlet wavelet. 

 
Next, let us look at the effect of keeping the shape ratio fixed and varying the 

dominant period of the Morlet wavelet.  This is shown in Figure 8, where we have used 
dominant periods of 10, 20 and 40 ms (equivalent to dominant frequencies of 100, 50 and 
40 Hz, respectively, or Gaussian time widths of 20, 40 and 80 ms, respectively).  Note 
that this has the interesting effect of stretching while preserving shape as the stretching 
proceeds. 
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Figure 8: The effect on the shape of the Morlet wavelet of keeping k = 2, but varying the dominant 
period. 

 
To illustrate this effect in more detail, Figure 9 decomposes two Morlet wavelets 

into their Gaussian envelope and sinusoidal components for different values of dominant 
frequency, similar to what was done in Figure 2.  Note that as the frequency of the 
sinusoidal component goes up, the width of the Gaussian shape decreases, which 
preserves the shape of the final wavelet.  

 

 
Figure 9: A pictorial representation of the effect of keeping the shape of the Morlet wavelet 
constant, as shown in Figure 8. 

 
Since complex signals have a discontinuity at zero, Morlet et al. (1982, Part II) 

next introduced the extended Gabor expansion, which involved using a logarithmic 
frequency scale in octaves to define the wavelets. This was probably the most original of 
the ideas introduced in their papers.  Morlet et al. (1982, Part II) did not write down the 
math for doing this and instead only supplied a figure, which is reproduced here as Figure 
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10. You have to look carefully to notice that the scale is logarithmic!  This feature is now
called the wavelet scale. 

Figure 10: The concept of the extended Gabor transform, in which the wavelet spectral shapes 
are defined in logarithmic increments (Morlet et al., 1982, Part II).  

To understand the mathematics behind the concept of logarithmic scaling, Figure 
11 shows one octave of Morlet wavelets, from f0 to f0/2. Since we have used four 
wavelets per octave in Figure 11 (the same interval used by Morlet et al. (1982, Part II), 
although any number of increments can be used) we can express the ∆ term as:

4
2ln

4
)2/ln()ln( 00 =

−
=∆

ff . (13) 

Figure 11: An expansion of Figure 10, in which a single frequency octave is divided into four 
logarithmic increments. 

This can be expanded to as many octaves as we want.  For example, if we have n 
frequency increments, each new frequency increment can be written as 
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2ln)4/()ln()ln( 0 nffn −= .    (14) 

 
 
Equation 14 can also be expressed as: 
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Equation 15 has therefore introduced the scale parameter for four steps per 

octave, s = 2n/4, but this can be generalized to s = 2n/m, where n is the number of steps 
below the starting frequency and m is the number of wavelets per octave. Using the scale 
parameter s and the shape parameter k allows us to re-write both the time and frequency 
forms of the wavelet using only one other parameter, the dominant frequency ω0.  The 
time domain form is given as 
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and the frequency domain form is 
 































−−








=Ψ

2

00

1
2ln2

1exp
2ln

),,(
ω
πω

ω
ππω sksksk .  (17) 

 
Now we get to the final step, which involves cross-correlating each wavelet ψt 

with the seismic trace st  to obtain its wavelet transform. Recall that the discrete 
correlation formula is given as follows where, since we are dealing with a complex 
wavelet, we must first take the complex conjugate of the wavelet (indicated by the 
asterisk on ψk*): 
 

 ),1(,),1(,)(
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−
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− NMsc
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k
kks τψτ τψ   (18) 

 
where ( ) ( ).,,,  and  ,,,,, 1102/02/ −− == MtNNt ssss  ψψψψ    
 

A faster approach is to apply frequency domain correlation.  In the frequency 
domain, correlation involves multiplication of the complex conjugate of the frequency 
domain wavelet with the Fourier transform of the seismic signal, or 
 

)()()( * ωωω SCGS Ψ= ,    (19) 
 
where [ ]tsFS =)(ω  and F is the forward Fourier transform.  To obtain the time domain 
cross-correlation, we simply apply the inverse Fourier transform to the frequency domain 
cross-correlation:  
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[ ])()( 1 ωτψ Ss CFc Ψ
−= , (20) 

where ransform. Fourier tinverse  theis 1−F  This is the procedure used in the 
implementation of the CWT in the final example in this paper. 

THE MODERN FORMULATION OF THE CWT 

The modern mathematical formulation of the continuous wavelet transform (e.g. 
Daubechies, 1992) is written: 
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.03.1 and  , where 00 == aaa m  The term a is the scale, and ψ(t) is called the “mother” 
wavelet, defined by: 
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2ln

2 where 0 =ω  

Although the concept of scale has been preserved in the above formulation, and 
the method has been improved by the addition of an overall  scaling term, the concept of 
shape has been lost as well as any physical intuition about the process.  This is the 
forumulation which we will use in the next two examples, one a synthetic and one a real 
data example.  However, as stated earlier, the correlation will be done in the frequency 
domain. 

SYNTHETIC EXAMPLE 

Figure 12  shows a synthetic trace consisting of a 20Hz cosine wave, a 100Hz 
Morlet atom at 0.3 s, two 30Hz Ricker wavelets at 1.1 s and three other frequency 
components.    
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Figure 12: A synthetic trace consisting of a 20Hz cosine wave, a 100Hz Morlet atom at 0.3 s, two 
30Hz Ricker wavelets at 1.1 s and three other frequency components (Han and van der Baan, 
2013). 

Figure 13 shows the amplitude spectrum of the synthetic trace, where the 
individual components cannot be discerned. 

Fig
ure 13: The amplitude spectrum of the synthetic trace of the trace shown in Figure 12. 

Figure 14(a) shows The application of the short-time Fourier transform, with a 
170 ms sliding window. Because of the fixed time-frequency resolution of this STFT, it 
can’t distinguish between the two Ricker wavelets.  
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Figure 14: The application of the (a) short-time Fourier transform with a 170 ms sliding window, 
and (b) the CWT, using a starting frequency of 200 Hz and 325 scales (Han and van der Baan, 
2013).. 

 
In Figure 14(b), we apply the CWT, using a starting frequency of 200 Hz and 325 

scales. Note the better separation of the components and frequency resolution.  In the 
next, and final, section we will apply the STFT and CWT to a real data example from 
Alberta. 

REAL DATA EXAMPLE FROM ALBERTA 
 

Next, we will look at a field data example, where the 2D section is shown in 
Figure 15. There are Cretaceous meandering channels at 0.42 s between common 
midpoints (CMPs) 75 and 105 and CMPs 160 and 180, respectively. An erosional surface 
is located between CMPs 35 and 50 around 0.4 s. The data also contain evidence of 
migration artifacts (smiles) at the left edge between 0.1 s and 0.6 s (Han and van der 
Baan, 2013).  

 

  
Figure 15: A CDP stack from an Alberta example.  Note the erosional surface and channel 
features visible on the stack (Han and van der Baan, 2013). 

 
Figure 16 shows an extracted trace from the seismic section in Figure 15, at CMP 

81.  Note that this trace intersects one of the channels at a time of 0.42 s. 
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Figure 16: An extracted trace from the seismic section in Figure 15, at CMP 81, which intersects 
one of the channels at a time of 0.42 s (Han and van der Baan, 2013). 

 

Figure 17(a) shows the application of the short time Fourier transform (STFT) to 
CMP 81 from Figure 16.  Figure 17(b) shows the application of the continuous wavelet 
transform (CWT) to CMP 81 from Figure 16.  Note the improvement in resolution on the 
CWT, especially at the channel event at 0.42 s. 

 

  
(a)                                                                           (b) 

Figure 17: The application of: (a) the short time Fourier transform, or STFT, and (b) the 
continuous wavelet transform, CWT, to CMP 81, as shown in Figure 16 (Han and van der Baan). 

The STFT of the complete seismic section from Figure 15 is shown in Figure 
18(a). The CWT of the complete seismic section from Figure 15 is shown in Figure 
18(b).  The colour scales are given in Hz.  Again, note the improvement in resolution of 
the channels on the CWT over the STFT. 
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Figure 18: The application of: (a) the STFT (Han and van der Baan) and (b) the CWT (Herrera et 
al., 2014) to the complete seismic section shown in Figure 15.  The colour scales are in Hz. 

CONCLUSIONS 

In this report, we have shown how Morlet formulated a new approach to seismic 
frequency analysis in his classic 1982 papers.  Morlet took a number of concepts that 
were familiar to geophysicists at the time, such as wavelets, the Fourier transform, 
logarithmic bandwidth and cross-correlation, and put them together in a totally new way.  
His conceptual approach was then formalized by mathematicians into a comprehensive 
new theory called the continuous wavelet transform, or CWT.  Although the new theory 
was much more complete than Morlet’s original theory, it was also much less rooted in 
physical intuition.  

In the last two sections of the report, we applied the CWT to both a synthetic 
dataset and a seismic section recorded in Alberta, and compared the results to the short 
time Fourier transform, or STFT.  In both cases the resolution improvement of the CWT 
over the STFT was apparent. 
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