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ABSTRACT

Five-Dimensional interpolation has become a very popular method to pre-condition
data for migration. Many different implementations have been developed in the last decade,
most of them sharing a similar dataflow and principles, which is applying sparseness to a
transform and mapping back to a new seismic geometry. In this report, I explore three
different ways to implement the mapping between data and model in the context of Fourier
transforms. These three methods are multidimensional Fast Fourier transform, Discrete
Fourier Transforms, and Non-Equidistant Fast Fourier transforms. I incorporate the three
operators inside the same inversion algorithm, to be able to perform a fair comparison be-
tween them. By keeping all the same, we can focus on the actual performance differences.
In addition, I discuss some the implementation details, similarities and differences.

INTRODUCTION

Five-Dimensional interpolation has become a very popular method to pre-condition
data for migration. Most implementations have a similar dataflow and principles, which is
applying sparseness to a transform and mapping back to a new seismic geometry. Applying
the sparseness to the transform has an effect of filtering out sampling artifacts, because
these are, by the definition of the transform, non-sparse. Looking from this high level
of generality, all these different implementations are very similar. This similarity extends
also to other dataflow details like overlapping five dimensional windows. Usually some
version of either a conjugate gradient inversion or an anti-leakage inversion are applied
to enforce the sparseness constraint. So what do all these implementations differ on? The
most important difference among them is on the transformation to connect data and models,
in other words, how they represent the data and which basis functions are utilized. Some
implementations use Fourier transforms, some use Hankel transforms, others curvelets,
frames, Radon, Prediction Filters (Fxy) and Green functions based on modeling/migration
operators.

Many implementations used in the industry are based on Fourier transforms. Since
much work in science has been done on the development of transformations, and many
of them have properties that make them more appropriate for the representation of seis-
mic events, we must ask why is Fourier still the most attractive tool for this job, at least
from the practical point of view. Fourier transforms are very efficient, and in the presence
of good sampling they can be inverted very easily. Although some of the other transfor-
mations mentioned above are better representations of the geometrical shape of seismic
events, sometimes also tend to have difficulty to represent small details of the data and
therefore may produce more artificial-looking interpolated data. One interesting example
is the case of Green functions which is used in Least Squares Migration. Although prob-
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ably the best of all the approximations of the physics of seismic, the uncertainties related
to the weighting of the transformation lead to complex scenarios where some events suf-
fer overshooting in amplitude, and some others undershooting, which creates a complex
convergence pattern. Other transforms, for example multidimensional Radon transforms,
are computationally more expensive to apply than multidimensional Fourier transforms.
Transforms based on multi-resolution, like curvelets and frames, contain highly redundant
information that increases the dimensionality of the model and therefore makes the inverse
more expensive. Hankel transforms have also become quite popular for its capability to
attenuate noise, although are less capable than Fourier transforms for handling very large
windows. Fxy transforms, although the most efficient to handle aliasing, have difficulties
to work in very sparse 4D spatial grids.

Another factor that strongly influences the efficiency and flexibility of all these trans-
forms is whether they use exact input spatial locations or some approximation achieved
by multi-dimensional binning, either direct or with some intermediate interpolation. When
using exact locations, these transformations become computationally expensive to invert.
When using binning these transformations are efficient and can handle large window sizes
and gaps, but lose precision and flexibility to adapt to narrow azimuths and long offsets.
When binning 5D data from standard geometries, the resulting grids turn to be very sparse.
What is interesting about Fourier transforms, and maybe the reason why they are still used
the most in industry, is that they seem to adapt well for either approach. The subject of this
paper is to explore how Fourier interpolation performs in one or the other case. I compare a
five-dimensional interpolation with three different operators applying the three approaches
mentioned above, binning, exact locations, and approximated with intermediate approxi-
mations. Special care is taken of using the same inversion and dataflow for the three cases,
leaving differences strictly confined to the differences in operators. A similar comparison
but using also other operators different from Fourier will be addressed in a future paper.

Sparse least squares inversion and operators

The two key concepts in this paper are sparse least squares (LS) inversion and operators.
The general philosophy for sparse least squares inversion is explained in Claerbout (1992);
Sacchi and Ulrych (1996) and Trad et al. (2003). A detailed description of the sparse
algorithm I use in this work is in Liu and Sacchi (2004) and Trad (2009).

Given a transformation of some model m to some data d through some mathematical
operator L,

d = Lm. (1)
we can approximately solve the inverse problem of recovering the model that produced
the data by inverting the operator in a least squares sense. The meaning of the different
components of equation (1) depends on the details of the operator and are often associated
with well-known transformations. For the case of interpolation L contains some form of a
transform that maps data at their exact or binned locations to a domain where continuous
reflections and diffractions appear condensed to as few as possible elements of the model.
Also, to be used in interpolation, we need sampling artifacts, like discontinuities and irreg-
ularities of the data, to map to many elements on the model, that is in a non-sparse manner.
However, the transform must be able to represent details of the data that, although chang-
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ing quickly, may represent signal that we want to preserve. If possible we want to have
unwanted coherent events, for example ground-roll, to map to different parts of the model
than reflections or diffractions, so we can filter them out from the model; or if they don’t,
then they should be properly interpolated as well, like multiples, so they can be predicted
and subtracted by other means. Usually it is not possible to achieve all these goals at the
same time, so we often give up some of them and try to remove or attenuate these events
before interpolation.

In this paper L is a synthesis of the data in terms of plane waves (Fourier transform).
The other operators mentioned in the introduction are not plane waves but some other
choice of basis functions. In all cases, the interpolation L contains a sampling operator that
represents the signature of the seismic acquisition. In general, we are trying to eliminate
this signature by deconvolving L by least squares inversion. If there is no acquisition signa-
ture, the Fourier transform is trivial to invert and amounts simply to apply inverse Fourier
transform, since the adjoint of regularly sampled Fourier transform is also the inverse.

To invert operators, we define a cost or objective function, that is a mathematical ex-
pression that measures the undesired characteristics of the model. The most common is to
find a model that honors the data in a least error sense, measure on some norm, and has
a minimum of information not required by the data. This statement of goals is commonly
presented as

minimize ‖Wmm‖pp
subject to ‖Wd(d− Lm)‖qq = φd (2)

where φd is some estimate of the noise level in the data plus a residual due to the failure
of the proposed model to explain the data. p and q indicate that different norms can be
applied to measure the norm of vectors. Wd could be a matrix or vector of data weights,
often a diagonal matrix containing the inverse of the standard deviation of the data, but
more generally it could be any kind of filter that leaves out bad data. For the case of
interpolation, for example, Wd should nullify any information from unrecorded traces,
otherwise the model is forced to predict zeroes on those traces (honoring the empty traces).
Wm is a matrix of model weights that we can design to enhance our preference regarding
the model, for example resolution or smoothness.

We can now set the misfit and undesired characteristics of the solution in a cost function
and, by minimizing it, obtain the model that better approximates the desired solution. Thus,
the model can be found by solving the system of equations

(λWT
mWm + LTWT

dWdL)m = LTWT
dWdd . (3)

where λ is the second trade-off hyper-parameter that will allow a different weight to be
assigned to the misfit and model constraints. The system of equations (3) is usually solved
iteratively by fixing the model weights to some previous estimation (like the spatial spectra
from the previous temporal frequency) and applying a linear minimization by conjugate
gradient algorithm (CG).

In practice equation (3) is not solved directly because it contains a parameter λ that
requires estimation and has the potential for a zero division when the model weight goes
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to zero (zero model). An easier way to implement this formulation is to incorporate these
weights and filters into the general operator L, which is just a change of variables in the
fundamental equations. By applying a right preconditioning, the modeling equation (1)
becomes

d = LW−1
m Wmm (4)

and the optimization problem (2) is now

minimize ‖m̃‖pp
subject to ‖Wd(d− LW−1

m m̃)‖qq = φd (5)

where m̃ = Wmm. The minimization of the cost (5) produces the following system of
equations

(λI + W−T
m LTWT

dWdLW
−1
m )m̃ = W−T

m LTWT
dWdd . (6)

Hence, the effect of the Wm, also known as right preconditioning, is to set the model
weights as part of the modeling rather than a penalizing factor in the cost function. The
system (6) can then be solved by setting λ = 0 (no regularization) and letting the number
of internal iterations in the CG algorithm play the role of regularizer. Notice equation 6 is
very simple if we consider a new operator L̃ = WdLW

−1
m and a new model m̃. This new

operator contains a data filter (selection filter) and a model filter that enforces sparseness.

OPERATOR IMPLEMENTATION

The are several possible operator choices for multidimensional interpolation. In this
report, I will discuss only Fourier transformations, because they are the most commonly
applied in the industry. The three most common choices are:

• Fast Fourier transform (FFT) with multidimensional binning and grid adaptation.

• Discrete Fourier transform (DFT) using exact spatial locations

• Non-Equidistant Fast Fourier transform (NFFT) using interpolation plus FFT.

To make sure differences are solely due to the operators and no other details of the im-
plementation, I have written one 5D interpolation module including the three operators. By
using an Object-Oriented Programming approach I encapsulate all aspects of the algorithm
in common classes. Each operator is implemented as a separate class, and a simple param-
eter switch allows one to change from one to another implementation. In the following I
explain each operator.

Fast Fourier transform operator

As described in Liu and Sacchi (2004) and Trad (2009) a multidimensional FFT can be
applied on each frequency slice but carefully binning is required because FFT algorithms
assume data are regular. In multi-dimensions, binning is not trivial for several reasons as
explained in Trad (2014). A complete 5D grid implies a data set acquired with line interval
equal to group interval, which is never done in real seismic. Therefore, when binning real
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data on a 4D spatial grid, the data can only fill a minor percentage, typically between 1 to
5 percent, leaving for the algorithm to infill 99 to 95 % of the remainder of the data.

Binning along inline crossline directions is relatively straightforward, being a sensible
choice the bin size, which is usually calculated to match the Fresnel zone size after migra-
tion. On the other hand, binning along offset and azimuth, or inline crossline offsets can
be quite complicated, depending on the fold of the data, the shot patch pattern, the offset
range, the presence of gaps, and the distance to the border of the survey. Doing the right
binning is critical for the FFT approach. Coarse binning introduces time jitering that affects
sparseness in the Fourier space, and creates a problem with traces that fall into the same
bins. Fine binning makes the model size larger and therefore harder to solve. For example,
reducing binning by half in one direction forces interpolation to infill twice as many grid
cells, and reducing the bin size by half on each direction makes the problem 16 times larger.

Although it is very difficult to automatically consider all these details, an industrial ap-
plication of this algorithm has to adjust the binning size to deal with these issues. One way
to account for the geometry is to adjust the offset and azimuth binning according to the fold
and the offset range. For example, in my implementation the user pre-defines the percent-
age of alive traces required, usually 3% for wide azimuth data or 5% for narrow azimuth
data. With this information, the algorithm calculates the optimal size of the offset/azimuth
binning intervals to achieve this target. More sophisticated schemes are possible, but this
simple scheme helps to adjust the grid with the data fold, as the interpolation works on
different areas of the survey. Another aspect of binning is how to adjust the intervals such
that there are no extrapolated traces, but instead new traces are created only inside the re-
gion of support of the acquisition. For example, the azimuth range can be made automatic,
depending of the actual coverage. The minimum/maximum offsets along inline/crossline
directions can be made to adjust the patch size in the input data.

Discrete Fourier transform

Perhaps the simplest way to calculate the Fourier transform of irregular data is to use
the mathematical definition, which for 1D is:

Uj =
xmax∑
xmin

exp (−ikjxi)× ui (7)

In this equation ui is the value of the sample at position xi and Uk is the value of the DFT
at wavenumber kj . Because the k axis is usually made regular, the kj value is replaced by
an index j times a ∆k interval. For 5D interpolation, ki, ui become 4D vectors ki,ui. The
summation in equation 7 becomes four nested summations.

Uj =
x1max∑
x1min

x2max∑
x2min

x3max∑
x3min

x4max∑
x4min

exp (−ikjxi)× ui (8)

Because of the four nested loops, this formulation is very slow in multi-dimensions
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and requires large amounts of memory. In practice, although eliminates the need for a
complicated binning scheme, the DFT method may not necessarily be the best choice for
wide azimuth data. To speed up this algorithm we can reduce the operator to calculate
only the wavenumbers inside the FK volume with physical significance. At each temporal
frequency ω the model is calculated only between a minimum and maximum wavenumber
given by the maximum slope the requested by the user. A simple way to define these
boundaries is to specify the temporal frequency at which we want the wavenumbers to be
full. Some other computational tricks are required to make this formulation practical. It
helps if memory is available, to pre-calculate the operator or use sin-cos tables. In addition,
careful alignment of memory allocations, loop vectorization, and multi-threading, help to
make the algorithm feasible. Possible the best way to implement this method is using GPUs
or Xeon Phi processors, both approaches that we are currently investigating.

Parameterization for this approach is very similar to the binning approach. Although in
principle there is no sampling interval to specify, in practice we need to specify them just
the same as in the binning approach, so the algorithm can calculate the Nyquist frequency
on each spatial dimension. However, the algorithm has more flexibility to adjust to the
spatial ranges, being much easier to adjust for example for streamer acquisitions where the
azimuth range changes continuously from near to far offsets. To understand the significance
of this last statement, consider for example streamer data, where every inline is sampled
only at one crossline offset. The DFT can handle this situation, but for the FFT approach,
this is clearly insufficient, since the 4D spatial grid requires each inline bin to have all the
crossline offset values.

Non-Equidistant Fast Fourier transform

As explained above, the DFT approach, although flexible and precise, is computation-
ally very expensive when working in multidimensions. A more efficient approach of cal-
culating the Fourier spectrum of irregular sampled data is to use some intermediate, cheap,
and localized interpolation to move the traces to the bin centers in the 4D spatial grid, and
then apply a multi-dimensional FFT.

To put all the operators in the same context, we can think of the binning + FFT method
described first as a zero-order interpolation (nearest neighbor) plus FFT. A more sophis-
ticated approach would be, for example, to use a higher order polynomial interpolation
instead of zero order. In this work, I have used the method called Non-equidistant Fast
Fourier transform (Duijndam and Schonewille, 1999). In particular, I have used the li-
braries from the Technical University of Chemnitz (Keiner et al., 2009).

In this approach, the irregular data are convolved with a smoothing window to relocate
the samples onto a regular grid. Notice this is an irregular multi-dimensional convolution,
so implementation is a bit different from traditional convolution where both signals are
regular with identical sampling interval. A multidimensional FFT is applied to map the
resulting regular convolved (bandpass filtered) signal to the Fourier domain. The effect of
the window can be removed by deconvolution, which can be done in the Fourier domain
since all samples are now in regular locations. Figure 1, taken from Gulati and Fergusson
(2009), shows the flow chart calculation for the NFFT spectrum. Basically, the NFFT
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perform a similar calculation as a Riemann NDFT summation, except that the data are first
convolved with a window g(x) to transform it into a regularly sampled signal. The FFT
can then be applied for the spectrum with efficiency N log(N). Then the window g(x)
can be deconvolved in the Fourier domain 1/G(m). This produces only an approximated
spectrum, but by fine tuning the window parameters and length of the FFTs it is possible to
reduce the error to negligible values.

One problem with this algorithm is that it uses significant memory space to store the
multidimensional window parameters pre-calculated at front for efficiency. This makes
this algorithm less suitable to use multithreading to simultaneously process several groups,
like it can be done for the FFT. Although a multithreaded version of this library exists, in
practice it does not seem to improve much efficiency in my testing. Another issue is that the
library has some constraints for the window parameterization: it requires polynomials with
an even number of parameters, and a minimum oversampling factor for these windows.
This requires careful calculation of padding factors, and research is still ongoing to obtain
a general an optimal parameterization. In addition, spatial dimensions are always specified
with ranges between 0-1, which makes zero padding a bit more complicated than the other
cases.

Notes on parallelization

All these operations are computationally expensive, so normally interpolations are run
using computer clusters. Parallelization is usually better when is coarse-grained because
it leads to less communication through the network. Because of that, the most efficient
parallelization for interpolation is to process different windows (zones) in different nodes,
which is possible with all the three operators. However, there is a difference among the
three approaches on how to use more efficiently multithreading on each node. For FFT,
where memory requirement is not too high, it is more efficient to use different threads to
interpolate different windows. This is because multithreaded FFT is not as efficient (factors
of only 2 or 3 are common when using several threads). For DFT, memory requirements
are much higher because of the pre-computing of the Fourier operator, so running different
windows in different threads is usually not feasible. However, for the DFT algorithm multi-
threading at the outer summation level is very efficient, so using one window per node is the
best approach, giving accelerations close to the number of threads. For NFFT, the situation
is more similar to FFT, where efficiency improvements are not very high. Unfortunately,
memory requirements are high because of the pre-computation of the multi-dimensional
windows, so it is often not possible to process more than one group per node. This makes
efficiency improvements for NFFTs not as high as expected. There is, however, another
reason why NFFT performs more efficiently than FFTs: the NFFT grid does not need to be
reduced as much since binning errors are decreased by the algorithm. This factor gives the
NFFT the potential to be more efficient, as well as more precise. The actual improvements
depend on the geometries and implementations.
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Output geometries

All these operators are recalculated for every new input group because they depend
on the input and output coordinates. A slightly different situation occurs depending on
whether input and output coordinates are the same (infilling) or not (regularization). To
make the examples clear, since they illustrate all the different cases, I proceed to explain
first what these cases are.

There are several ways to classify interpolation. At the top of the list we can talk
either about infilling or regularization. For infilling the goal is to create new seismic
traces without changing or altering the existing survey. On the other hand, regularization
attempts to replace an existing survey with a different one containing the same geophysical
information. Both approaches have advantages and disadvantages. The most important
advantage of infilling is that it is reliable since original traces are kept, and easier to evaluate
because new traces are inserted in between existing traces and visual inspection is easier.
When infilling a survey, it is natural to stay close to the original illumination pattern of the
acquisition. New traces are rarely far from the original data, except for the case of gaps,
which are easy to detect. It is possible to smoothly control the amount of interpolation,
for example by applying a discarding threshold on the acceptable average distance between
new and original traces. The drawback is that we do not completely solve the acquisition
pattern since irregularities on the original survey may produce artifacts on the migration
algorithm.

Regularization, on the other hand, requires the practitioner to make sure the new ge-
ometry illumination do not depart significantly from the original. This is less of a problem
if the same type of geometry is used, for example, orthogonal to orthogonal, or streamer
to streamer, which is more natural when surface consistent, acquisition type of geometries
are used. These surveys are designed starting from shot and receivers with a given illu-
mination patter. On the contrary, surveys designed starting from midpoints with a regular
grid of offset/azimuth or inline/crossline offsets (flooding type), may easily deviate from
original illumination patterns, so they require careful control. See Trad (2009, 2014) for
more detailed discussions.

Since the industry is moving towards Reverse time migration algorithms (RTM), it is
important to emphasize that flooding type of geometries cannot be used for RTM. These
and similar algorithms require to have surface consistent geometries because they operate
shot by shot or using plane-waves calculated from shots. For RTM the optimal design is a
hybrid that keeps the same shots in the same locations without increasing their number, but
instead regularize the receivers to make line interval close to group interval and therefore
make finite difference algorithms more precise.

Whichever the approach adopted to create the output geometry, from the algorithmic
point of view, infilling and regularization share the same algorithm to estimate the Fourier
spectra (model), but they differ on the final step of creating new traces. In regularization,
the operator used to create the new traces is different from the operator used to estimate the
spectrum, whether infilling uses the same operator. This has a bigger impact for the DFT
and NFFT operators, because of the time it takes building these operators and their memory
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FIG. 1. Diagram showing NFFT calculation (Gulati and Fergusson, 2009)

requirements. For the FFT approach, only the binning part of the operator changes.

EXAMPLES

As a first example, Figure 2 shows a test for regularization when the input traces are all
populated and the goal is only to move the traces to regular intervals. This test is intended
to detect differences between binning, exact or approximated locations. In purpose, I did
not apply normal moveout correction (NMO), to illustrate the behaviour for curved events.
We see that the three operators succeed in regularizing the data and binning errors are
not visible. Figure 3 shows a similar example but this time the input data contains only
25% of alive traces. In this more demanding conditions there start to appear some minor
differences between the three operators, but overall the three results are reasonable. As
expected FFT was the fastest, DFT the slowest, and NFFT in between. However, for this
small example(2D data, 3D interpolation) the differences are negligible.

In both regularization examples I used shot/receiver coordinates as the dimensions to
regularize to. This is feasible in simple cases, for example 2D geometries. In real 3D
geometries, usually acquisition coordinates (i.e. shot x/y, receiver x/y) are not adequate for
interpolation because acquisition lines are set too far apart. The most common approach is
to use midpoints x/y, and either offset xy or offset azimuths, as in the following examples.

As a very different test, we compare the three operators in a difficult situation simu-
lating Horizontal Transverse Isotropy (HTI). Figure 4a shows the locations of shots and
receivers that contribute to an inline/crossline window on a problematic area of a real ge-
ometry. Figure 4b shows the locations of shots and receivers that are created when using
flooding regularization. Because this type of geometries is created from uniform coverage
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on midpoint/offset/azimuth, shots and receivers are not distributed on regular patterns and
there are as many of them as traces. Figure 4c shows the coverage for input and output on
the offset x/y domains. Because the flooding option was designed in polar coordinates, all
output cdps have the same number of offsets for each azimuth. This is particularly well
suited to study patterns along offset/azimuth. The input on the other hand, is distributed
across all the domain, but localized between -180 and -22 degrees. I reduce the operator
azimuth range to contain only the azimuth range in input to avoid extrapolation. This trun-
cation of the azimuth coverage makes the test much harder for the FFT approach than for
the other operators, and we will see its effect on the results. Figure 4d shows the coverage
on the midpoint X/Y domain. Again, we see the uniform coverage from the output com-
pared to the input. However, the midpoint coverage is quite optimal, and the difficulty of
the test comes only from the azimuth truncation and amplitude variation.

Figure 5a shows a super CDP (3 cdps) on the original survey, for offsets between 0-
1500 meters. Figure 5b shows the corresponding central CDP (only one) from the flooding
geometry regularized using the FFT4 operator. Because of the polar nature of the geometry,
it is possible to see clearly the azimuth pattern. However, the pattern has truncation between
cycles, because they do not cover the 360 degrees but only half the circle. One of the
azimuths cannot be predicted because there are no original traces to sample it (as seen
in Figure 4c). The algorithm is struggling to follow the variations because of the poor
sampling. Figure 5c shows the result using the DFT operator. The results have improved,
probably because the DFT manages to accommodate the irregular nature of the azimuth
in the input data a bit better (no binning). Figure 5d is the equivalent using the NFFT
algorithm, and is quite comparable to the DFT result.

In terms of running time, the FFT approach took 4 minutes (1 thread), the DFT approach
14 minutes (10 threads) and the NFFT took 12 minutes (1 thread). As mentioned before
the DFT algorithm is more expensive but it does a better use of multithreading so the time
difference is not significant on this example. However, in practice, the FFT algorithm would
be able to run 10 groups simultaneously, so when comparing running time for a survey the
difference would be around 20 times. The NFFT, would be a bit better than the DFT but
not as much since it requires too much memory to run simultaneously many groups in the
same node.
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FIG. 2. Comparison of operators for regularization (offset values at the top of each window). There
are no major differences, showing that binning does not introduce visible errors for typical running
parameters, even for curved events.
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FIG. 3. Similar comparison but this time input data has been randomly decimated to 25% (1 alive
every 4 traces)
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FIG. 4. Input and output geometries for the case of flooding regularization. a) contributing shots
and receivers from a window on a challenging area of a real geometry, b) shots and receivers
generated when flooding is applied. c) OffsetX/Y for input and output. d) midpoints X/Y for input
and output
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FIG. 5. Near offset comparison for a sparse geometry with azimuth truncation. a) Super-cdp in
input (3 cdps). b),c),d) regularized single cdp using FFT4D, DFT and NFFT operators
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The final test is a comparison of the three operators for a real data set from Brooks,
Alberta (CO2 sequestration project). The geometry is orthogonal, with 100 meters line
spacing and 10 meter group spacing (5x5 bin size) as seen in Figure 6. The data are not
structured, which unfortunately make the test a bit limited, but it will serve to illustrate
some differences between these methods in the context of very sparse surveys after remov-
ing some receiver lines.

For real 3D data, we usually have to use large windows in terms of inline/crossline to
be able to deal with large minimum offsets in between lines. This makes computational
differences more significant than in the previous synthetic tests. I eliminated from the
input every second receiver line, making now the spacing 200m (or 40 bins). To allow
each window to cover a full box I set the window size to 40 inlines × 40 crosslines. For
the other dimensions, I use 20 offsets and 8 azimuths, with intervals of 50 meters and
45 degrees. Actually, these intervals are too large, but I let the program to handle this
issue. Figure 7a shows one input group located at the center of the survey. We see the two
large gaps from two missing receiver lines (data sorted by receiver location). Figure 7b,c,d
shows the interpolations done with the FFT, DFT and NFT respectively. The three have
some deficiencies, but overall the three results look reasonable. Let us now inspect more
closely by selecting one of the removed receiver lines and compare with the original data
not included in the interpolation.

Figure 8a shows a window into the original data without decimation, with all traces
belonging to a removed receiver line (none of these traces where in the input). Figure
8b shows the corresponding created traces using the FFT algorithm. We can identify the
same reflectors in both, although the FFT result is a bit cleaner as expected. Some fine
details may be missing in the interpolated traces because of the large offset/azimuth binning
interval, although the FFT algorithm has reduced this grid automatically by a factor a 2
in both offset and azimuth directions. Figure 8c contains the created traces for the DFT
algorithm. The main difference with the FFT result is stronger filtering, because of the
slower convergence of the algorithm with DFT (all tests used 30 iterations). See Trad
(2009) for a discussion about this. Also, because of the high memory requirement of the
DFT operator for these large windows I was forced to reduce by half the DFT Nyquist
frequency for inlines and crosslines, which may explain some of the additional filtering
(but not all since the data is quite flat). Figure 8d shows the result for the NFT algorithm.
This result is a bit unexpected, because there is some low frequency energy that does not
exist in the original traces. That may be explained by insufficient numerical regularization
at low frequencies. During the FFT algorithm, most frequencies under 9Hz didn’t reach
30 iterations, indicating insufficient signal in the data to do so, but for the DFT and NFFT
these frequencies were calculated. These results suggest perhaps they should not have.

Figure 9 shows the statistics for the central group coming from the FFT algorithm.
These values illustrate how the automatic gridding works. First line tells us that for the
target coverage of the 4D spatial grid (3%) we only need 7680 alive traces, but the window
has 42347. Because there are enough traces the program will reduce the offset and azimuth
intervals by 2 giving new values of 25meters and 22.5 degrees. After doing that, the code is
using 99% of the traces. The remainder 1% (315 traces) fall on the same 4D bins as other
traces, so the program does not use them (but it will pass them to the output unchanged).
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FIG. 6. Input and output geometries for Brooks data set, and one interpolation window

Of these traces in repeated bins, however, 62 are both new and therefore only one will
be created. This leaves the output with missing 62 new traces. These can be changed by
making them exactly equal to the new 62 traces created. During the processing of this
group, 11682 were created for receiver lines 400 and 600. The values ndim and ldim show
the length along each dimension before and after zero padding. We see we have now 40
offsets and 16 azimuths instead of the original settings of 20 and 8 respectively. The output
traces are quite reasonable and would help during migration.

Figure 10 show some information coming from the NFFT libraries, indicating that the
algorithm used polynomials of degree 3 to interpolate, but the FFT inside each dimension
used 52, 52, 26, and 10 points respectively. A very small oversampling was used, close to
1.1 to reduce computation time and memory usage. The time to calculate the plan was of
11 seconds which is not significant. Each frequency took approximately the same time to
calculate, close to 27 seconds. This is different from the DFT approach where frequencies
take increasingly more time with frequency because of the cone shape of the multidimen-
sional Fourier spectra.

The computational time for the FFT approach was only 8 minutes, the DFT approach
took 3hours, the NFFT approach took 50 minutes. In these tests, I limited the frequencies
to a maximum of 60Hz, but these differences would become larger as going to higher fre-
quencies since the FFT approach has constant effort with frequency, but the DFT becomes
slower. For the DFT to be efficient in a production environment, windows must be smaller,
like in the previous tests. Alternatively, it is possible to implement DFTs in GPUs or Xenon
Phi processors. For this test the best results have come from the FFT approach, but that is
influenced by the large window size, and the simple structure of the data tests. For more
complex environments, as suggested by the previous synthetic tests differences may be in
favour of the DFT or NFFT approaches. Further tests for complex environments will be
followed in a future paper.
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FIG. 7. Comparison for one zone of 40 inlinex × 40 crosslines, whith offsets between 0-1000
meters. Traces sorted by receiver location. a) Input with missing receiver lines, b) FFT, c) DFT, d)
NFFT
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FIG. 8. Comparison between an original receiver line, absent from the calculation, and the created
receiver line using the three operators.
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FIG. 9. Log information illustrating how the automatic gridding works for FFT

FIG. 10. Log information illustrating how the NFFT algorithm works.
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CONCLUSIONS

In this paper, we have discussed how three different Fourier operators behave during
5D interpolation. By implementing one program with the three options this work attempts
to make a fair comparison by keeping all the same except the mapping between data and
model. The first operator, standard multidimensional FFT with binning, seems to work
quite well as long as binning is carefully implemented to adjust to differences in fold across
different areas of a survey and offset ranges. DFT operator is more precise and flexible but
computationally very expensive. This operator is however a good benchmark tool to un-
derstand how approximations to exact locations affect the other operators. NFFT operator
is a compromise in terms of speed of flexibility. Although very promising in the synthetic
examples, it seems to have some complications for very large windows and it needs some
fine tuning. When very large windows are required, like in the case of sparse orthogonal
geometries, the efficiency and performance of the FFT operator is still very superior to the
other two. This conclusion however may not hold for very structured data, as the synthetics
with HTI anisotropy showed. This paper represents just a first step in understanding how
different operators compare, and further investigation with other data sets and non-Fourier
operators will be necessary to complete the conclusions in this work.
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