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ABSTRACT

Seismic wave propagation in fractured reservoirs exhibits anisotropy and attenuation
that are related to fracture properties (e.g. fracture density) and fluid parameters (e.g., fluid
moduli and viscosity). Based on the linear slip theory, we derive stiffness parameters for
fractured and attenuative rocks, and present the integrated attenuation factors involving
both host rock intrinsic attenuation and fracture-induced attenuation. Using the simplified
stiffness parameters, we derive a linearized reflection coefficient in terms of fracture weak-
nesses and integrated attenuation factors. A two-step inversion approach is proposed, which
involves an iterative damped least-squares algorithm to predict P- and S-wave moduli using
angle gathers at the azimuthal angle approximately equal to fracture orientation azimuth,
and a Bayesian inversion method to estimate fracture weaknesses and integrated attenuation
factors from seismic amplitude differences among the data at different azimuthal angles.
Tests on synthetic data confirm the proposed approach makes a stable inversion for fracture
weaknesses and integrated attenuation factors in the presence of moderate data noise. The
proposed approach is further confirmed on a fractured carbonate real data set, within which
we observe that reasonable parameters (P- and S-wave moduli, fracture weaknesses and
integrated attenuation factors) are determined. We conclude that the proposed inversion
approach can provide reliable parameters for prediction of natural fractures and discrimi-
nation of fluid type.

INTRODUCTION

Natural fractures play an important role in migration and storage of hydrocarbons in
reservoirs. The linear slip theory describes the effect of fractures on elastic parameters
using fracture weaknesses or compliances (Schoenberg and Douma, 1988; Schoenberg and
Sayers, 1995; Gurevich, 2003). The rock with a set of vertical and rotationally invariant
fractures is equivalent to a horizontal transversely isotropic (HTI) medium, and its stiffness
matrix is expressed in terms of the normal and tangential fracture weaknesses ∆N and ∆T.
Combining the penny-shaped crack model Hudson (1980) and linear slip theory, Bakulin
et al. (2000) related the normal and tangential fracture weaknesses to fracture properties
(fracture density, fracture aspect ratio and fillings). Chen et al. (2017b) studied how the
normal and tangential fracture weaknesses change in the case of water and oil saturated
rocks, which shows that the normal fracture weakness difference between water and oil
fractured rocks is relatively small. It indicates that the normal fracture weakness in not a
sensitive indicator to discriminate water and oil saturated fractures. Hence, in the present
study, we will involve the attenuation factor as an additional factor for fluid identification.

The inverse quality factor 1/Q related to seismic attenuation in rocks can be used to de-
termine the type of fluid in reservoirs (Wu and Aki, 1989; Klimentos and McCann, 1990;
Dvorkin et al., 1995; Gautam, 2003; Mavko et al., 2009; Rubino and Holliger, 2013; Vinci
et al., 2014; Chen and Innanen, 2017). Intrinsic attenuation in the host rock and induced
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attenuation exist while seismic wave propagates in porous rocks with fractures and cracks.
Much work has been done to study how the attenuation affects the rock property and seis-
mic wave propagation characteristic. Hudson et al. (1996) studied the effect of connection
between cracks and pores on the overall property of a cracked rock, and they proposed two
frequency-dependent response quantities related to fluid parameters (fluid bulk modulus
and viscosity). Pointer et al. (2000) discussed how the distribution and saturation of cracks
affect the response quantity, and modeled the influence of fluid parameters on seismic wave
attenuation. In the case of equant porosity, Chapman (2003) developed a theory to incorpo-
rate meso-scale fractures into the analysis of frequency-dependent anisotropy. Brajanovski
et al. (2006) analyzed P-wave attenuation in fluid saturated rocks with different values of
normal fracture weakness, and studied the relationship between the inverse quality factor
and frequency in case of low, intermediate and high frequencies, respectively. Based on
the linear slip theory, Chichinina et al. (2006) proposed the complex normal and tangential
fracture weaknesses that related to Q anisotropy. Using the complex fracture weaknesses,
Chichinina et al. (2009) implemented the estimation of velocity and attenuation anisotropy
from physical modeling data. However, the effect of intrinsic attenuation on the stiffness
matrix of fracture porous rock and seismic wave propagation modeling and interpretation
is being ignored.

In HTI media, azimuthal amplitude variation with offset (AVO) data are used to esti-
mate Thomsen (1986) anisotropic parameters. Rüger (1997, 1998) derived an approximate
expression of PP- wave reflection coefficient as a function of anisotropic parameters for
HTI media. Shaw and Sen (2004, 2006) demonstrated a method to utilize a scattering func-
tion and perturbation in stiffness matrix to derive linearized reflection coefficients for weak
anisotropic media. Using PP-wave approximate reflection coefficient, fracture prediction
from observed seismic data has been implemented based on the azimuthal AVO (Bachrach
et al., 2009; Downton and Roure, 2010; Chen et al., 2014a; Downton and Roure, 2015).
In order to improve the accuracy of fracture weakness inversion, there are some studies
focusing on utilization of different types of input data (e.g, azimuthal elastic impedances,
Chen et al. 2014b, 2017a) or new parameterization of fracture weaknesses (e.g., relative
changes in fracture weaknesses, Pan et al. 2017). Chen et al. (2017b) proposed to use am-
plitude differences among azimuthal data to implement seismic inversion, which can lead
to a stable of estimation of the normal and tangential fracture weaknesses.

In this study, we first derive stiffness parameters that involve the intrinsic attenuation
of the host rock and the fracture-induced attenuation based on the linear slip theory; then
under the assumptions of small fracture weaknesses (Chen et al., 2017a) and low-loss me-
dia (i.e., 1/Q � 1, Moradi and Innanen 2015), we simplify the derived stiffness param-
eters, and express perturbations in the simplified stiffness parameters in the case of an
interface separating two anisotropic and attenuative media. Using the perturbations and
a scattering function, we derive a linearized PP- wave reflection coefficient as a function
of integrated attenuation factors and fracture weaknesses. Finally we propose a two-step
inversion method to estimate elastic parameters (P- and S-wave moduli), integrated attenu-
ation factors and fracture weaknesses from azimuthal seismic data. Synthetic tests indicate
that the integrated attenuation factors and fracture weaknesses can be estimated stably in
the case of seismic traces containing moderate noise/error, and a test on real data acquired
over a fractured carbonate reservoir demonstrates that the proposed approach can estimate
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reasonable parameters for fracture prediction and fluid discrimination.

THEORY AND METHOD

Stiffness parameters related to fracture weaknesses and attenuation

The elastic stiffness matrix of a homogeneous isotropic and elastic medium containing
a set of parallel fractures with normals parallel to the x1-axis is given by (Schoenberg and
Douma, 1988; Schoenberg and Sayers, 1995)

C =


M(1−∆N) λ(1−∆N) λ(1−∆N) 0 0 0
λ(1−∆N) M(1− χ2∆N) λ(1− χ∆N) 0 0 0
λ(1−∆N) λ(1− χ∆N) M(1− χ2∆N) 0 0 0

0 0 0 µ 0 0
0 0 0 0 µ(1−∆T) 0
0 0 0 0 0 µ(1−∆T)

 ,
(1)

where M = λ + 2µ, χ = λ/M = 1 − 2g, g = µ/M , λ and µ are Lamé constants of the
homogeneous isotropic and elastic host rock, and ∆N and ∆T are the normal and tangential
fracture weaknesses.

Involving the intrinsic attenuation of the host rock and the fracture-induced attenuation,
we present the complex stiffness matrix in terms of the complex normal and tangential
fracture weaknesses and the complex moduli of the isotropic and attenuative background

C̃ =



M̃(1− ∆̃N) λ̃(1− ∆̃N) λ̃(1− ∆̃N) 0 0 0

λ̃(1− ∆̃N) M̃(1− χ̃2∆̃N) λ̃(1− χ̃∆̃N) 0 0 0

λ̃(1− ∆̃N) λ̃(1− χ̃∆̃N) M̃(1− χ̃2∆̃N) 0 0 0
0 0 0 µ̃ 0 0

0 0 0 0 µ̃(1− ∆̃T) 0

0 0 0 0 0 µ̃(1− ∆̃T)


,

(2)
where M̃ and µ̃ are the complex compressional and shear moduli of the isotropic and
attenuative background, λ̃ = M̃ − 2µ̃, and χ̃ = λ̃/M̃ . The complex normal and tangential
fracture weaknesses, ∆̃N and ∆̃T, are given by (Chichinina et al., 2006, 2009)

∆̃N =∆N − i∆Im
N

∆̃T =∆T − i∆Im
T

, (3)

where ∆N and ∆T, and ∆Im
N and ∆Im

T represent the real and imaginary parts of fracture
weaknesses, respectively, and the imaginary parts of fracture weaknesses are rewritten in
terms of inverse quality factors

∆Im
N =

1

QN

(1−∆N)

∆Im
T =

1

QT

(1−∆T)

, (4)
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where 1/QN and 1/QT are fracture-induced inverse quality factors related to P- and S-wave
attenuation in the direction perpendicular to fracture planes.

Substituting equation 4 into equation 2, we obtain the complex fracture weaknesses in
terms of fracture-induced inverse quality factors

∆̃N =∆N − i
1

QN

∆N

∆̃T =∆T − i
1

QT

∆T

. (5)

Hudson et al. (1996) presented a viscous cracked model to study the influence of cracks
on the overall property of a cracked and porous rock. Pointer et al. (2000) proposed explicit
expressions of two complex crack parameters related to crack properties (crack density and
aspect ratio) and fluid parameters (fluid viscosity and moduli). Chichinina et al. (2006)
expressed the complex normal and tangential fracture weaknesses as

∆̃N =
4e

3g(1− g)

1

1 + Ψ̃(ω)

∆̃T =
16e

3(3− 2g)

1

1 + Ω̃(ω)

, (6)

where e is fracture density, and Ψ̃(ω) and Ω̃(ω) are frequency-dependent quantities related
to fluid parameters (See Appendix A). Pointer et al. (2000). demonstrated that at the low
frequency (e.g. the seismic frequency range from 1-100Hz), Ω̃(ω) is approximately equal
to zero. In this study, we set ∆̃T to be real and 1/QT to be zero in the case of seismic
frequency range.

We next re-express the complex compressional and shear moduli M̃ and µ̃. Under the
assumption of low-loss viscoelastic host rock (i.e., P- and S-wave inverse quality factors
1/QP and 1/QS are much smaller than unity), Moradi and Innanen (2015) proposed the
complex P- and S-wave velocities α̃ and β̃

α̃ = αE

(
1 + i

1

2QP

)
β̃ = βE

(
1 + i

1

2QS

), (7)

where αE and βE are P- and S-wave velocities. The inverse quality factors 1/QP and 1/QS

are related to P- and S-wave attenuation while propagating in the isotropic and attenuative
background.

Using the complex P- and S-wave velocities, we express the compressional and shear
wave moduli neglecting high order terms of 1/QP and 1/QS under the assumption of low
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loss medium

M̃ = ρ(α̃)2 ≈M

(
1 + i

1

QP

)
µ̃ = ρ(β̃)2 ≈ µ

(
1 + i

1

QS

). (8)

Substituting equations 5 and 8 into equation 2 yields a new expression of the complex
stiffness matrix

C̃ =



C̃11 C̃12 C̃12 0 0 0

C̃12 C̃33 C̃23 0 0 0

C̃12 C̃23 C̃33 0 0 0

0 0 0 C̃44 0 0

0 0 0 0 C̃55 0

0 0 0 0 0 C̃66


, (9)

where

C̃11 =

(
M −

M

QPN

)
(1−∆N) + i

(
M

QP

+
M

QN

)
(1−∆N),

C̃12 =

(
λ−

M

QPN

+
2µ

QSN

)
(1−∆N) + i

(
M

QP

−
2µ

QS

+
λ

QN

)
(1−∆N),

C̃23 =λ(1−∆N) + 2λgΓ1∆N + 2λgΓ2

1−∆N

QN

−M
1−∆N

QPN

+ 2MgΓ1

1−∆N

QPN

− 2MgΓ2

∆N

QP

+ 2µ
1−∆N

QSN

− 4µgΓ1

1−∆N

QSN

+ 4µgΓ2

∆N

QS

+ i

λ
1−∆N

QN

− 2λgΓ1

1−∆N

QN

+ 2λgΓ2∆N +M
1−∆N

QP

+ 2MgΓ1

∆N

QP

+2MgΓ2

1−∆N

QPN

− 2µ
1−∆N

QS

+ Γ1∆N − 4µgΓ2

1−∆N

QSN

 ,
C̃33 =M(1−∆N) + 4MgΓ1∆N + 4MgΓ2

1−∆N

QN

− 4Mg2Γ 2
1 ∆N − 8Mg2Γ1Γ2

1−∆N

QN

+ 4Mg2Γ 2
2 ∆N − 4MgΓ2

∆N

QP

+ 4MgΓ1

1−∆N

QPN

− 4Mg2Γ 2
1

1−∆N

QPN

+ 8Mg2Γ1Γ2

∆N

QP

+ 4Mg2Γ 2
2

1−∆N

QPN

+ i


M

1−∆N

QN
+ 4MgΓ2∆N − 4MgΓ1

1−∆N

QN
+ 4Mg2Γ 2

1

1−∆N

QN
− 8Mg2Γ1Γ2∆N

−4Mg2Γ 2
2

1−∆N

QN
+M

1−∆N

QP
+ 4MgΓ1

∆N

QP
+ 4MgΓ2

1−∆N

QPN
− 4Mg2Γ 2

1

∆N

QP

−8Mg2Γ1Γ2
1−∆N

QPN
+ 4Mg2Γ 2

2

∆N

QP
+M

1−∆N

QPN

 ,

C̃44 = µ+ i
µ

Qs

,
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C̃55 = µ(1−∆T) + i
µ

Qs

(1−∆T), (10)

and where g = µ/M , Γ1 =

(
1 +

1

QPQS

)
/

(
1 +

1

Q2
P

)
, Γ2 =

(
1

QS

−
1

QP

)
/

(
1 +

1

Q2
P

)
.

The quantities
1

QPN

=
1

QP

1

QN

and
1

QSN

=
1

QS

1

QN

, which are P- and S-wave integrated

attenuation factors, respectively.

We next study how the parameters Γ1 and Γ2 vary in the case of small P- and S-wave
inverse quality factors in the background (i.e. 1/QP � 1 and 1/QS � 1). We employ an
experimental formula given by Mavko et al. (2009) to compute 1/QS

1/QP

1/QS

=
µ

M

[
4

3
+

5

4

(M/µ− 2/3)(M/µ− 4/3)2

M/µ− 8/9

]
. (11)

We plot variations of Γ1 and Γ2 with the P-wave inverse quality factor 1/QP and the
moduli ratio g, as shown in Figure 1.
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FIG. 1. Variations of Γ1 and Γ2 with P-wave inverse quality factors and the moduli ratio.

We observe that in the case of small inverse quality factors, Γ1 is approximately equal
to unity, and Γ2 is approximately equal to zero. Also, under the assumption of small frac-
ture weaknesses, we neglect the term proportional to ∆N/QP, ∆N/QS and ∆T/QS. The
simplified complex stiffness parameters are given by

C̃11 ≈M −
M

QPN

−M∆N + i

(
M

QP

+
M

QN

−
M

QN

∆N

)
,

C̃12 ≈ λ− λ∆N −
M

QPN

+
2µ

QSN

+ i

(
M

QP

−
2µ

QS

+
λ

QN

−
λ

QN

∆N

)
,
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C̃23 ≈λ(1−∆N) + 2λg∆N −
M

QPN

+ 2Mg
1

QPN

+ 2µ
1

QSN

− 4µg
1

QSN

+ i

[
λ

1−∆N

QN

− 2λg
1−∆N

QN

+ 2λgΓ2∆N +M
1

QP

− 2µ
1

QS

+ ∆N

]
,

C̃33 ≈M(1−∆N) + 4Mg∆N − 4Mg2∆N + 4Mg
1

QPN

− 4Mg2 1

QPN

+ i

[
M

1−∆N

QN

− 4Mg
1−∆N

QN

+ 4Mg2 1−∆N

QN

+M
1

QP

+M
1

QPN

]
,

C̃44 = µ+ i
µ

Qs

,

C̃55 ≈ µ− µ∆T + i
µ

Qs

. (12)

Derivation of real P-to-P linearized reflection coefficient

Using the derived and simplified complex stiffness parameters (equation 12), we first
express perturbations in stiffness parameters for the case of a reflection interface separat-
ing two fractured and attenuative layers. Chen and Innanen (2017) demonstrated that the
imaginary part of the reflection coefficient is much smaller than the real part. Hence, in the
present study, we focus on the derivation of the real part of P-to-P reflection coefficient.
The real parts of perturbations in the complex stiffness parameters are given by

∆C̃11 = ∆M −
∆M

QPN

−M∆
1

QPN

−∆M∆N −Mδ∆N
,

∆C̃12 = ∆λ−∆λ∆N − λδ∆N
−

∆M

QPN

−M∆
1

QPN

+
2∆µ

QSN

+ 2µ∆
1

QSN

,

∆C̃23 =∆λ−∆λ∆N − λδ∆N
+ 2g∆λ∆N + 2λgδ∆N

+ (2g− 1)∆M
1

QPN

+ (2g− 1)M∆
1

QPN

+ (2− 4g)∆µ
1

QSN

+ (2− 4g)µ∆
1

QSN

,

∆C̃33 =∆M −∆M∆N −Mδ∆N
+ (4g− 4g2)∆M∆N + (4g− 4g2)Mδ∆N

+ (4g− 4g2)∆M
1

QPN

+ (4g− 4g2)M∆
1

QPN

,

∆C̃44 = ∆µ,

∆C̃55 = ∆µ−∆µ∆T − µδ∆T
, (13)

where ∆M is perturbation in the compressional modulus across the interface, ∆λ and ∆µ
are changes in Lamé constants across the interface, δ∆N

and δ∆T
are changes in the normal

and tangential fracture weaknesses across the interface, and ∆(1/QPN) and ∆(1/QSN) are
changes in the integrated attenuation factors.
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Under the assumptions of small fracture weaknesses and small changes in LamÃl’ con-
stants across the interface, we neglect the term proportional to ∆λ∆N, ∆µ∆N and ∆µ∆T

to simplify the perturbations in stiffness parameters

∆C̃11 ≈ ∆M −
∆M

QPN

−M∆
1

QPN

−Mδ∆N
,

∆C̃12 ≈ ∆λ− λδ∆N
−

∆M

QPN

−M∆
1

QPN

+
2∆µ

QSN

+ 2µ∆
1

QSN

,

∆C̃23 ≈∆λ− λδ∆N
+ (2g− 1)∆M

1

QPN

+ (2g− 1)M∆
1

QPN

+ (2− 4g)∆µ
1

QSN

+ (2− 4g)µ∆
1

QSN

,

∆C̃33 ≈∆M −Mδ∆N
+ (4g− 4g2)Mδ∆N

+ (4g− 4g2)∆M
1

QPN

+ (4g− 4g2)M∆
1

QPN

,

∆C̃44 = ∆µ,

∆C̃55 ≈ ∆µ− µδ∆T
. (14)

Shaw and Sen (2004, 2006) proposed a method to use the scattering function involving
perturbation in stiffness matrix to derive linearized reflection coefficients. The relationship
between the P-to-P reflection coefficient and the scattering function is given by

RPP =
1

4ρ cos2 θ
S, (15)

where θ is P-wave incidence angle, ρ is the density of the elastic isotropic background, and
S is the scattering function that is given by

S =∆ρcos2θ + ∆C11ξ11 + ∆C12(ξ12 + ξ13 + ξ21 + ξ31)

+ ∆C23(ξ23 + ξ32) + ∆C33(ξ22 + ξ33) + ∆C44ξ44 + ∆C55(ξ55 + ξ66),
(16)

where ∆ρ is the perturbation in density across the interface, and the elements of ξ are given
by Shaw and Sen (2006)

ξ11 =
ρsin4θcos4φ

M
, ξ12 =

ρsin4θsin2φcos2φ

M
, ξ13 =

ρsin2θcos2θcos2φ

M
,

ξ21 = ξ12, ξ22 =
ρsin4θsin4φ

M
, ξ23 =

ρsin2θcos2θsin2φ

M
,

ξ31 = ξ13, ξ32 = ξ23, ξ33 =
ρcos4θ

M
,

ξ44 =
− 4ρsin2θcos2θsin2φ

M
, ξ55 =

− 4ρsin2θcos2θcos2φ

M
, ξ66 =

4sin4θsin2φcos2φ

α2
,

(17)
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where φ is the azimuthal angle between the fracture symmetry axis and the source-receiver
line. It is important to stress that both the incidence and azimuthal angels are the phase
angles. Combining equations 13-17, we obtain the linearized P-to-P complex reflection
coefficient

RPP(θ, φ) = Riso−elastic
PP (θ) +Rani−visco

PP (θ, φ), (18)

where Riso−elastic
PP (θ) is the reflection coefficient only related to the elastic properties of the

isotropic and elastic background, and Rani−visco
PP (θ, φ) is the reflection coefficient involving

the effects of attenuation and fractures, and where

Riso−elastic
PP (θ) = PM(θ)

∆M

M
+ Pµ(θ)

∆µ

µ
+ Pρ(θ)

∆ρ

ρ
, (19)

Rani−visco
PP (θ, φ) =PQPN

(θ, φ)∆
1

QPN

+ PQSN
(θ, φ)∆

1

QSN

+ P∆N
(θ, φ)δ∆N

+ P∆T
(θ, φ)δ∆T

,

(20)

in which

PM(θ) =
1

4
sec2θ, Pµ(θ) = −2gsin2θ, Pρ(θ) =

cos2θ

4cos2θ
,

PQPN
(θ, φ) =

1

4
sec2θ

[
−sin4θcos2φ(1 + sin2φ) + 2sin2θcos2θ(2gsin2φ− 1)

+4g(1− g)(sin4θsin4φ+ cos4θ)

]
,

PQSN
(θ, φ) =gsin2θ(tan2θsin2φcos2φ+ 1− 2gsin2φ)

P∆N
(θ, φ) =−

1

4
sec2θ[1− 2g(sin2θsin2φ+ cos2θ)]2,

P∆T
(θ, φ) =gsin2θcos2φ(1− tan2θsin2φ).

(21)

The quantities
∆M

M
,

∆µ

µ
and

∆ρ

ρ
are reflectivities of P- and S-wave moduli and density,

∆(1/QPN) and ∆(1/QSN) are changes in the integrated attenuation factors across the in-
terface, δ∆N

and δ∆T
are changes in the normal and tangential fracture weaknesses across

the interface.

Estimation of integrated attenuation factors from seismic data

We proceed to the method to estimate the integrated attenuation factors and fracture
weaknesses from observed seismic data. In the present study, we propose a two-step in-
version approach to use azimuthal seismic amplitudes to predict elastic parameters (P- and
S-wave moduli M and µ), integrated attenuation factors (1/QPN and 1/QSN) and fracture
weaknesses (∆N and ∆T). Figure 2 plots the workflow of the two-step inversion approach.

We first use seismic data along fracture orientation azimuth to estimate the elastic pa-
rameters. Using the reflection coefficient Riso−elastic

PP (θ) in equation 19, we express the
generation of seismic data in matrix for the case of k incidence angle and n reflection
interface

d = Gm, (22)
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FIG. 2. Workflow of two-step inversion approach

where

d =

s(θ1)
...

s(θk)


kn×1

, G =

WPM(θ1) WPµ(θ1) WPρ(θ1)
...

...
...

WPM(θk) WPµ(θk) WPρ(θk)


kn×3n

, m =

RM

Rµ

Rρ


3n×1

,

RM =


∆M1

M1...
∆Mn

Mn


n×1

, Rµ =


∆µ1

µ1
...

∆µn

µn


n×1

, Rρ =


∆ρ1

ρ1
...

∆ρn

ρn


n×1

, W =


w1 0 0 . . .

w2 w1 0
. . .

w3 w2 w1
. . .

... . . . . . . . . .


n×n

,

s =

s1
...
sn


n×1

, PM =

PM(θ)
. . .

PM(θ)


n×n

, Pµ =

Pµ(θ, g1)
. . .

Pµ(θ, gn)


n×n

,

Pρ =

Pρ(θ) . . .
Pρ(θ)


n×n

, (23)

where s is a sample in the input seismic data set, and the quantity wl is the lth element of a
vector containing the source wavelet.
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The inverse problem is solved by the iterative damped least-squares algorithm

m = mmod + (GTG + σ2)−1GT(d−Gm), (24)

where mmod is the initial model, GT is the transpose of G, and σ2 is the damping factor
related to the signal-to-noise ratio (SNR).

We next employ seismic amplitude differences among the input data at different az-
imuthal angles to estimate the integrated attenuation factors and fracture weaknesses. The
seismic amplitude differences in the case of five azimuthal angles (i.e. φ1, φ2, φ3, φ4 and
φ5), k incidence angle and n reflection interface are given by

B = AX, (25)

where

B =


b(φ2)− b(φ1)
b(φ3)− b(φ1)
b(φ4)− b(φ1)
b(φ5)− b(φ1)


4kn×1

, X =


RQPN

RQSN

R∆N

R∆T


4n×1

, b(φ) =



b1(θ1, φ)
...

bn(θ1, φ)
...

b1(θk, φ)
...

bn(θk, φ)


kn×1

,

RQPN
=


(∆

1

QPN

)1

...

(∆
1

QPN

)n


n×1

, RQSN
=


(∆

1

QSN

)1

...

(∆
1

QSN

)n


n×1

, R∆N
=

δ1
∆N...
δn∆N


n×1

, R∆T
=

δ1
∆T...
δn∆T


n×1

,

A =

AQPN(φ2)−AQPN(φ1) AQSN(φ2)−AQSN(φ1) A∆N(φ2)−A∆N(φ1) A∆T(φ2)−A∆T(φ1)
AQPN(φ3)−AQPN(φ1) AQSN(φ3)−AQSN(φ1) A∆N(φ3)−A∆N(φ1) A∆T(φ3)−A∆T(φ1)
AQPN(φ4)−AQPN(φ1) AQSN(φ4)−AQSN(φ1) A∆N(φ4)−A∆N(φ1) A∆T(φ4)−A∆T(φ1)
AQPN(φ5)−AQPN(φ1) AQSN(φ5)−AQSN(φ1) A∆N(φ5)−A∆N(φ1) A∆T(φ5)−A∆T(φ1)


4kn×4n

,

AQPN
(φ) =

aQPN
(θ1, φ)
...

aQPN
(θk, φ)


kn×n

, AQSN
(φ) =

aQSN
(θ1, φ)
...

aQSN
(θk, φ)


kn×n

, A∆N
(φ) =

a∆N
(θ1, φ)
...

a∆N
(θk, φ)


kn×n

,

A∆T
(φ) =

a∆T
(θ1, φ)
...

a∆T
(θk, φ)


kn×n

, aQPN
(θ, φ) =

PQPN
(θ, φ, g1)

. . .
PQPN

(θ, φ, gn)


n×n

,

aQSN
(θ, φ) =

PQSN
(θ, φ, g1)

. . .
PQSN

(θ, φ, gn)


n×n

,
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a∆N
(θ, φ) =

P∆N
(θ, φ, g1)

. . .
P∆N

(θ, φ, gn)


n×n

,

a∆T
(θ, φ) =

P∆T
(θ, φ, g1)

. . .
P∆T

(θ, φ, gn)


n×n

. (26)

In order to solve the inverse problem, we employ the Bayesian theorem to make a prob-
abilistic estimation of the unknown parameter vector X involving the integrated attenuation
factors and fracture weaknesses from the input data (i.e. seismic amplitude differences be-
tween the data at different azimuthal angles) and a priori information. The posterior prob-
ability distribution function (PDF), P (X|B) , of the unknown parameter vector is given
by

P (X|B) ∝ P (B|X)P (X), (27)

where P (B|X) and P (X) are the likelihood function and prior information PDF.

Assuming uniform uncorrelated Gaussian noise included in observed seismic data, we
express the likelihood function as

P (B|X) =
1√

2πσ2
noise

exp

[ − (B−AX)T(B−AX)

2σ2
noise

]
, (28)

where σ2
noise is the variance of the noise.

We assume the prior information to follow the Cauchy distribution, which can generate
much sparse values that are helpful to produce high-accuracy inversion results (Alemie and
Sacchi, 2011; Chen et al., 2017a)

P (X) =
1√

2πσ2
X

exp

[
−ln

(
1 +

X2

2σ2
X

)]
, (29)

where σ2
X is the variance of the unknown parameter vector.

Combining equations 5 and 29 yields the posterior PDF

P (B|X) =
1√

2πσ2
noise

1√
2πσ2

X

exp[−J(X)], (30)

where

J(X) =
(B−AX)T(B−AX)

2σ2
noise

+ ln

(
1 +

X2

2σ2
X

)
, (31)

In order to obtain the maximum posterior probability, we should minimize the function
J(X). The objective function is given by

∂J(X)

∂X
= 0. (32)
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After some algebraic operations, we rewrite equation 32 asATA +
4σ2

noise

1 +
X2

2σ2
X

X = ATB. (33)

Equation 33 is nonlinear. In this study, we employ an iterative approach to obtain the
inversion result

Xi+1 = Xi +

ATA +
4σ2

noise

1 +
Xi

2

2σ2
Xi


−1

AT(B−AXi), (34)

where Xi+1 is the calculated result based on the ith solution Xi, which is reserved as the
final inversion result. In addition, X1 is the initial solution of the unknown parameter
vector, which is constructed using the inversion results of P- and S-wave moduli.

RESULTS

Synthetic examples

P- and S-wave moduli and density of a well log model are plotted in Figure 3a. Using
the relationship between P-wave inverse quality factor and velocity given by Haase and
Stewart (2004), we first compute the P-wave quality factor and then calculate the S-wave
quality factor using equation 11. The calculated P- and S-wave quality factors are used as
the integrated quality factors of the well log model, as shown in Figure 3b. Given a fracture
density curve, we calculate the normal and tangential fracture weaknesses in the case of
assuming Ψ̃(ω) and Ω̃(ω) to be zero, as plotted in Figure 3c.

Given the incidence angle θ range 2◦-40◦, we first use a 35 Hz wavelet and the elas-
tic parameters (P- and S-wave moduli and density) of the well log model to generate
the isotropic and elastic part of synthetic seismic data, and given five azimuthal angles
(φ1 = 0◦, φ2 = 30◦, φ3 = 60◦, φ4 = 90◦ and φ5 = 120◦), we use the inverse quality factors
and fracture weaknesses of the model to generate the anisotropic and attenuative part of
synthetic data. We also add Gaussian random noise with different SNRs (SNRs of 5 and 2)
into two parts of the synthetic seismic data respectively. Figure 4a plots the isotropic and
elastic part of the synthetic data, and Figure 4b shows differences among synthetic data of
different azimuthal angles.

Using the iterative damped least-squares algorithm as outlined in the previous section,
we first estimate P- and S-wave moduli from the isotropic and elastic part of synthetic data.
Comparisons between the estimated results and true values for the case of SNRs of 5 and 2
are shown in Figures 5a and 5b. In Figure 5c, we plot the relative difference R(m) between

the estimated result and the true value (i.e.
mestimated −mtrue

mtrue

).
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FIG. 3. A well log model involving P- and S-wave moduli ( M and µ), density (ρ), calculated inverse
quality factors (1/QP and 1/QS), given fracture density (e), and computed fracture weaknesses (∆N

and ∆T).
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the red color represents the SNR of 2.
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FIG. 5. Comparisons between the estimated results and the true values. Figures (a) and (b) plot
the comparisons between the estimated results (red) and true values (blue) for the case of SNRs of
5 and 2, respectively, and green lines represent initial models that are constructed smoothing the
true values. Figure (c) shows the comparison between the relative difference for the case of SNR
of 5 (blue) and that for the case of SNR of 2 (red).
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We observe that the presented iterative damped least-squares algorithm makes a stable
estimation of P- and S-wave moduli in the presence of moderate data error/noise (the SNR
of 2). From the seismic amplitude differences as shown in Figure 4b, we see that seismic
amplitude differences at the small incidence angles are relatively weak. Hence, we choose
the seismic amplitude differences at the middle and large incidence angles (80 400) to im-
plement the inversion for the integrated attenuation factors and fracture weaknesses using
the proposed approach in the previous section. Figure 6 plots comparisons between the in-
version results and true values of the inverse quality factors and fracture weaknesses again
for the case of SNRs of 5 and 2.

From the comparison between the inversion result and the true value, we observe that
the proposed approach can make a reasonable estimation of integrated attenuation factors
and fracture weaknesses. From the difference between the inversion result and the true
value, we observe that the accuracy of 1/QPN inversion is relatively higher than that of
1/QSN inversion, and the accuracy of ∆N inversion is also relatively higher than that of ∆T

inversion.

Inversion of real data

We next utilize a real dataset acquired over a fractured carbonate rock reservoir, which
is respectively processed in offset and azimuth domains, to further verify the proposed
two-step inversion approach. The azimuthal angles for this dataset are φ1 = 10◦, φ2 = 50◦,
φ3 = 90◦, φ4 = 130◦ and φ5 = 170◦, and AVO and AVOA-compliant processing have
been implemented for this dataset. In addition, the data set has been transformed from the
offset domain to the incidence angle domain for each azimuthal sector. In order to estimate
P- and S-wave moduli, we first determine the approximate azimuthal angle of the fracture
orientation. Figure 7 plots the main orientation of faults and fractures in this work area.

We observe that the main fracture orientation azimuth is approximately 15◦. Hence,
we choose the seismic data at the azimuthal angle 10◦ to estimate P- and S-wave moduli.
Figure 8a plots examples of seismic angles gathers at the azimuthal angle 10◦, and Figure
8b plots seismic data stacked using the angle gathers. The time-integrated P-wave velocity
curve from well logging data has been spliced. We observe that there is a strong reflection
in the location of fractured reservoir (around 2080 ms), as marked by the ellipse, and the
P-wave velocity shows a relatively low value in the location of the reservoir.

Prior to the first-step inversion, we employ a commercial software package to extract
seismic wavelet and roughly predict P- and S-wave moduli and density, and the smoothed
version of the roughly estimated results are used as initial models in the iterative damped
least-squares inversion. Figure 9 plots the initial models of P- and S-wave moduli for the
time window 2050-2150 ms.

Using the extracted wavelet, we implement the iterative damped least-squares inversion
for P- and S-wave moduli from seismic angle gathers at the azimuthal angle 10◦, as shown
in Figure 10.

We observe that P- and S-wave moduli show relatively low values in the location of the
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FIG. 6. Comparisons between the inversion results and the true values. Figures (a) and (b) plot
the comparisons between the inversion results (red) and true values (blue) of the integrated atten-
uation factors and fracture weaknesses for the case of SNRs of 5 and 2, respectively, and green
lines represent initial models that are constructed smoothing the true values. Figure (c) shows
the comparison between the relative differences R(1/QPN) and R(1/QSN), the differences D(∆N)
and D(∆T) again for the case of SNRs of 5 and 2. The difference D(∆N) is calculated using the
equation ∆Nestimated −∆Ntrue.

fractured reservoir. We next use seismic amplitude differences to implement the second-
step inversion for the integrated attenuation factors and fracture weaknesses. Figure 11
plots examples of angle gather amplitude differences and stacked seismic amplitude differ-

18 CREWES Research Report — Volume 29 (2017)



Estimating fracture weaknesses and integrated attenuation factors

30

210

60

240

90

270

120

300

150

330

180 0

FIG. 7. Main orientation of subsurface faults and fractures in this work area.

ences among the data at different azimuthal angles. We observe that there is still a relatively
strong seismic reflection in the location of the fractured reservoir.

We proceed to the construction of initial models for the integrated attenuation factors
and fracture weaknesses. Using the inversion results of P- and S-wave moduli, we first
employ the experimental equation proposed by Haase and Stewart (2004) to calculate P-
wave inverse quality factor roughly, and then calculate S-wave inverse quality factor using
equation 11. The smoothed version of the estimated results of P- and S-wave inverse quality
factors are using as initial models of the integrated attenuation factors. Given a fracture
density, we use the inversion results of P- and S-wave moduli to calculate the normal and
tangential fracture weaknesses roughly, and then construct the initial models for fracture
weaknesses using the roughly calculated results. Figure 12 plots the constructed initial
models of integrated attenuation factors and fracture weaknesses.

Using the Bayesian inversion as presented in the previous section, we implement the
iterative inversion for the integrated attenuation factors and fracture weaknesses. Figure 13
plots the inversion results of integrated attenuation factors and fracture weaknesses.

From Figure 13, we observe that there is a good match between P-wave velocity curve
and the inversion result. In the location of the fractured reservoir, the integrated attenuation
factors and fracture weaknesses show relatively high values. From the inversion results of
integrated attenuation factors, we see that the distinction between the fractured reservoir
and non-fractured areas is clearer. We conclude that combining the inverted integrated at-
tenuation factors and the inverted fracture weaknesses, we may delineate a fractured reser-
voir more reliably. However, there are some areas in the inversion results exhibiting high
values of fracture weaknesses and integrated attenuation factors, which will require further
determination using well-logging and core data.

CONCLUSIONS

We begin with the derivation and simplification of stiffness parameters for fractured
and attenuative rocks, and present the integrated attenuation factors involving the intrinsic
attenuation of the host rock and fracture-induced attenuation. Using perturbations in stiff-
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mic angle gathers, and (b) Seismic profile stacked using the angle gathers. The curve represents
the time-integrated P-wave velocity.
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FIG. 10. Inversion results of P- and S-wave moduli. The ellipse represents the location of the
fractured reservoir.

ness parameters for the case of an interface separating two fractured and attenuative media,
we derive a linearized reflection coefficient in terms of P- and S-wave moduli, integrated
attenuation factors and fracture weaknesses. Based on the derived reflection coefficient,
we propose a two-step inversion method to use azimuthal seismic data to estimate frac-
ture weaknesses and integrated attenuation factors, which is implemented as: 1) utilizing
seismic data at the azimuthal angle equal or approximately equal to fracture orientation
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FIG. 11. Seismic amplitude differences among the data at different azimuthal angles. (a) Angle
gather amplitude differences at CDP 140, and (b) Stacked seismic amplitude differences. The
ellipse indicates the location of the fractured reservoir.

azimuth to predict elastic parameters (P- and S-wave moduli) using an iterative damped ;
2) employing seismic amplitude differences among the data at different azimuthal angles
to estimate the integrated attenuation factors and fracture weaknesses using an iterative
Bayesian inversion. Applying the proposed inversion method to synthetic seismic data, we
conclude that P- and S-wave moduli, integrated attenuation factors and fracture weaknesses
can be estimated stably in the case of moderate noise/error (SNR ≥ 2). A test on a real data
set acquired over a fractured carbonate reservoir reveals that the proposed inversion method
can provide realistic results of integrated attenuation factors and fracture weaknesses for
fracture prediction and fluid discrimination.

There are some assumptions under which we derive the linearized reflection coefficient
and apply the two-step inversion approach. Firstly, the normal and tangential fracture weak-
nesses are small, and their changes across the interface are small; secondly, the host rock is
assumed to be a low-loss medium; thirdly, we neglect the imaginary part of the reflection
coefficient which is smaller than the real part. These assumptions restrict the applicability
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FIG. 13. Inversion results of integrated attenuation factors and fracture weaknesses. The curve is
P-wave velocity

of the reflection coefficient and the proposed inversion method, however, the fractured oil-
bearing carbonate reservoir falls into this category. Although quantitative parameters for
fluid or fractures don’t emerge from our approach, inversion results of integrated attenua-
tion factors can be preserved as reasonable information for determine fluid type based on
rock physics.
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APPENDIX A. EXPRESSIONS OF Ψ̃ AND Ω̃ RELATED TO FRACTURE
ASPECT RATIO AND FLUID BULK MODULUS

Pointer et al. (2000) presented expressions of Ψ̃(ω) and Ω̃(ω) in the case of an equant
porosity model

Ψ̃(ω) =
1

π

a

c

Kf

µ

1

1− g
/[1 + 3(1− i)

ϑ

2c
],

Ω̃(ω) =
4

π

iωηf

µ

1

3− 2g
,

(A.1)

where a/c is fracture aspect ratio, Kf is bulk modulus of the filling fluid, and ηf is fluid
viscosity.
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