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ABSTRACT

We first present detailed expressions of polarization vectors of P- and SV-waves for a
transversely isotropic medium with a tilted symmetry axis (TTI) as a function of stiffness
parameters of a transversely isotropic medium with a vertical symmetry axis (VTI), and
then we propose the equation to calculate the exact solution of PP-wave reflection coeffi-
cient in TTI media. In order to relate the stiffness matrix of TTI media to fracture properties
(e.g. fracture density and fillings moduli), we use the stiffness matrix of HTI media given
by the linear slip theory to obtain the stiffness matrix of VTI media using the Bond rotation,
which provides us to calculate stiffness parameters for TTI media given different fracture
properties and tilted angles. We also study how to compute the transmission angle in TTI
media using the extended Snell′s law. We finally model PP-wave reflection coefficient vari-
ations with the incidence angle and the azimuthal angle given different values of fracture
density and tilted angle. We conclude that in the case of TI media with a high tilted an-
gle, the tilted angle mainly affects the value of the reflection coefficient, while the fracture
density affects the variation of reflection coefficient with the azimuthal angle.

INTRODUCTION

Seismic wave propagation in most subsurface layers exhibits phenomenon of anisotropy,
and transverse isotropy (TI) is a common anisotropic model used for characterization of
seismic wave propagation (Alkhalifah and Larner, 1994; Alkhalifah, 1995; Grechka et al.,
2001; Bakulin et al., 2010; Wang and Tsvankin, 2013). A rock with a set of parallel verti-
cal fractures is equivalent to a horizontal transversely isotropic (HTI) medium (Schoenberg
and Douma, 1988; Schoenberg and Sayers, 1995; Bakulin et al., 2000; Chen et al., 2014,
2017), and a finely layered shale rock with a vertical or sub-vertical symmetry axis is con-
sidered to be a vertical transversely isotropic (VTI) medium (Thomsen, 1986; Carcione,
1992; Berryman et al., 1999; Carcione, 2000; Stovas et al., 2006). The TI medium with
a tilted symmetry axis (TTI media) is considered to include two cases: the finely layered
shale with a tilted angle, and a vertically fractured rock with a tilted symmetry axis (Behera
and Tsvankin, 2009; Fletcher et al., 2009; Nadri et al., 2012; Stovas and Alkhalifah, 2013;
Wang and Tsvankin, 2013; Wang and Peng, 2015; Shragge, 2016). In the present study, we
focus on the TTI media formed by rotating the vertically fractured rock.

The Zoeppritz equation is proposed to describe how seismic wave energy partitions
at an interface, which is well used to measure exact reflection and transmission coeffi-
cients of seismic wave (Shuey, 1985; Sheriff and Geldart, 1995; Aki and Richards, 2002;
Avseth et al., 2010). The Zoeppritz equation has been extended to weakly anisotropic
media to compute exact solutions of seismic wave transmission and reflection coefficients
(Schoenberg and Protázio, 1992; Rüger, 1996; Pšenčík and Vavryčuk, 1998). The quan-
tities required to compute for the calculation of exact solutions of reflection coefficients
in weakly anisotropic media involve polarization vectors and azimuthal angles (Thomsen,
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1988; Tsvankin, 1997; Pšenčík and Gajewski, 1998), which are related to stiffness param-
eters. Hudson (1980) presented a penny-shaped crack model to study how cracks affect the
elastic matrix of anisotropic rocks. For rocks containing a set of vertical and rotationally
invariant fractures, the linear slip theory Schoenberg and Douma (1988); Schoenberg and
Sayers (1995) is used to express the influence of fractures on the total property of frac-
tured rocks as a function of the normal and tangential fracture weaknesses. Combining
the penny-shaped crack model and the linear slip theory, Bakulin et al. (2000) related the
fracture weaknesses to fracture properties (e.g. fracture density and aspect ratio).

In this study, using the stiffness matrix of HTI media (Schoenberg and Sayers, 1995;
Bakulin et al., 2000; Gurevich, 2003), we first write the stiffness matrix of VTI media in
terms of the normal and tangential fracture weaknesses using the Bond transformation Auld
(1990) and assuming the tilted angle to be π/2, and then we obtain the explicit expressions
of stiffness parameters of TTI media as a function of fracture weaknesses. After calculating
polarization vectors and azimuthal angles of P- and SV-waves for TTI media, we compute
the exact solution of PP-wave reflection coefficient using the extended Zoeppritz equation.
We finally analyze how PP-wave exact reflection coefficient varies with the incidence angle
and the azimuthal angle given different values of fracture density and tilted angle.

THEORY AND METHOD

Polarization and azimuthal angles of P- and SV-wave in an anisotropic medium

In the case of a TI medium with a tilted angle (TTI), a harmonic plan wave incident
from the half-space may generate three reflected and three transmitted waves (Pšenčík and
Vavryčuk, 1998), as shown in Figure 1. In the present study, we focus on P- and SV-wave
reflection and transmission in the TTI medium.

FIG. 1. Incident P-wave generating three reflection waves and three transmission waves in a TTI
medium. The quantities θ, φ, and υ denote the P-wave incidence angle, the azimuthal angle, and
the tilted angle.
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Polarization vectors of P-and SV-waves are given by

PP = [sinαP cos βP, sinαP sin βP, cosαP] ,

PSV = [sinαSV cos βSV, sinαSV sin βSV,− sinαSV] , (1)

where α and β are the polarization and azimuthal angles of the wave, respectively.

For the P-wave, αP and βP are expressed as
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G =− sin θ sin υ cosφ+ cos θ cos υ,
(3)

and where CV
11, CV

13, C
V
33 and CV

44 are stiffness parameters of the TI medium with a vertical
symmetry axis (VTI), which means that a TTI medium can be described by rotating a VTI
medium.

For the SV-wave, αSV and βSV are given by
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Exact solution of reflection coefficient in anisotropic media

Extend Zoeppritz equation can be used to obtain exact solution of the reflection coeffi-
cient in anisotropic media (Schoenberg and Protázio, 1992; Pšenčík and Vavryčuk, 1998).
For the TTI media, the extended Zoeppritz equation is given by

X11 X12 X13 X14

X21 X22 X23 X24

X31 X32 X33 X34

X41 X42 X43 X44



RPP
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TPSV

 =


Y1
Y2
Y3
Y4

 , (6)
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where RPP and RPSV are PP-and PSV-wave reflection coefficients, TPP and TPSV are PP-and
PSV-wave transmission coefficients, and where
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where VP and VSV are P-and SV-wave velocities, iP represents the incidence P-wave, C13,
C15, C23, C25, C33, C35 and C55 are stiffness parameters of TTI media, and the superscripts
U and cL denote the upper and lower TTI layers.

We write equation 6 succinctly as

XR = Y, (8)

where X represents the displacement-stress matrix for the reflected and transmitted waves,
R is the reflection and transmission coefficients vector, and Y is the displacement-stress
vector of the incident P-wave, respectively. Hence, the reflection and transmission coeffi-
cient vector is calculated by

R = (X)−1 Y. (9)

Relationships between stiffness matrices of anisotropic media

The stiffness matrix of the TTI medium is obtained using the VTI medium stiffness
matrix and the Bond transformation (Auld, 1990)
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(10)
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where

Mυ =
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Using equation 10, we may combine the tilted angle and the stiffness matrix of the tilted
TI medium to calculate the stiffness matrix of the corresponding VTI medium. Substituting
the calculated stiffness matrix of the VTI medium into equations 2-5, we obtain the polar-
ization and azimuth angles of P- and SV-waves. Base on the linear slip theory, the stiffness
matrix of the HTI medium is given by (Schoenberg and Douma, 1988; Schoenberg and
Sayers, 1995; Gurevich, 2003)
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(13)

where λ and µ are Lamé constants of the homogeneous isotropic host rock, χ =
λ

λ+2µ
, and

∆N and ∆T are the normal and tangential fracture weaknesses related to fracture properties
(e.g. fracture density and fracture fillings).

Combining Hudson (1980) penny-shaped crack model and the linear slip theory, Bakulin
et al. (2000) presented expressions of fracture weaknesses in terms of fracture property

∆N =
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(
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)] , (14)

where e is fracture density, ψ is fracture aspect ratio, and k′ and µ′ are bulk and shear
moduli of fillings in fractures, respectively.
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Assuming the tilted angle υ being π/2, we first use the stiffness matrix of the HTI
medium to express the VTI medium in terms of the normal and tangential fracture weak-
nesses

CVTI =


(λ+2µ)
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1− χ2∆N

)
λ (1− χ∆N ) λ (1−∆N ) 0 0 0
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 .
(15)

Substituting equation 15 into equation 10, we finally obtain the stiffness parameters of
the TTI medium
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C25 =λ (1− χ∆N)

(
1

2
sin 2υ

)
− λ (1−∆N)

(
1

2
sin 2υ

)
, C26 = 0,
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C31 =
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C56 =0, C61 = 0, C62 = 0, C63 = 0,

C64 = µ∆T sin υ cos υ, C65 = 0, C66 = µ− µ∆T sin2υ. (16)
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Transmission angles of P-and SV-waves in TTI media

Snell′s law is employed to calculate reflection and transmission angles of P-and S-
waves in homogenous isotropic media. A generalized form of Snell′s law in anisotropic
media is proposed by Slawinski (1996) and Slawinski et al. (2000). Figure 2 shows reflec-
tion and transmission of P-and SV-waves for the case of an interface separating isotropic
and anisotropic layers. The expression of Snell′s law extended to TTI media under the

FIG. 2. Reflection and transmission angles of P-and SV-waves. The parameter θiP is P-wave
incident angle, θU

P and θU
SV are reflection angles of P-and SV-waves in the upper isotropic layer, and

θL
P and θL

SV are transmission angles of P-and SV-waves in the lower anisotropic layer.

assumption of an isotropic upper layer is given by

sin (θiP)

V U
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=
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SV)
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SV
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=
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where V U
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SV are P-and SV-wave velocities of the upper layer,V L
P (θL

P , φ) and V L
SV (θL

SV, φ)
are P-and SV-wave velocities of the lower layer, which are related to the corresponding
transmission angle and azimuth, and K is ray parameter.

The P-and SV-wave velocities of the lower layer are expressed as
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√
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√
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√
D
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(18)

where ρ is the density, and the expressions of E, F , and D are shown in equation 3.

In practice, in order to estimate the transmission angles of P-and SV-waves, we first
use the velocity of the upper isotropic layer to calculate ray parameters at different incident
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angles, and then we estimate the transmission angles and velocities of P- and SV-waves
using equations 17 and 18.

NUMERICAL SIMULATION

We construct a reflection interface (Figure 3) which separates isotropic and TTI layers
to analyze how fracture property affects the exact reflection coefficient. For this model, we
assume that elastic properties (P-and S-wave velocities, and density) of the upper isotropic
layer are same to the background of the lower TTI layer, which means the reflection is
induced by tilted fractures.

FIG. 3. An interface separating isotropic and TTI layers. P-and S-wave velocities of the isotropic
layer and background of TTI layer are 3.81 km/s, 2.59 km/s, and 2.26 g/cm3, respectively.

Figure 4 plots PP-wave reflection coefficient for the case of different values of fracture
density and tilted angle. We observe that in the case of HTI media (i.e. ν = 90◦), the
absolute value of PP-wave reflection coefficient increases with the fracture density and the
variation of the reflection coefficient with the azimuthal angle for the case of a big fracture
density is larger than that for the case of a small fracture density. However, the tilted angle
may affect the value of the reflection coefficient. From Figure 5, we confirm that the tilted
angle mainly affects the value of reflection coefficient, and its influence on the variation of
reflection coefficient with the azimuthal angle is small.

CONCULISONS

Based on the linear slip theory, we express the stiffness matrix of VTI media in terms
of the normal and tangential fracture weaknesses. Using the relationship between the ma-
trices of VTI and TTI media, we derive explicit expressions of stiffness parameters that are
related to fracture properties (fracture density and aspect ratio) and fluid parameters (bulk
and shear moduli). We also show the method to compute the transmission angles of P-
and SV-waves in TTI media using the extended Snell′s law. The step to obtain the exact
solution of PP-wave reflection coefficient in reservoirs with tilted fractures involves: 1)
calculate the stiffness matrix of HTI media given fracture properties and fluid parameters;
2) assume the tilted angle to be π/2 to compute the stiffness matrix of VTI media and then
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FIG. 4. Reflection coefficient variations with the incident angle θ and the azimuthal angle φ in the
case of different values of fracture density and tilted angle.
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FIG. 5. Reflection coefficient variations with the azimuthal angle in the case of different values of
tilted angle.

calculate the stiffness matrix of TTI media given a tilted angle; 3) compute the polarization
and azimuthal angles of P- and S-waves using the calculated stiffness parameters of TTI
media; and 4) obtain the exact result of PP-wave reflection coefficient by solving the extend
Zoeppritz equation. Following this step, we finally model PP-wave reflection coefficient
variations with the incidence angle and the azimuthal angle given different values of frac-
ture density and tilted angle. We conclude that for the TI media with a relatively high tilted
angle, the variation of the reflection coefficient with the azimuthal angle is mainly affected
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by fracture density, while the tilted angle affects the value of the reflection coefficient.
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