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ABSTRACT

Based on the complex linear slip theory, we derive complex stiffness parameters in
terms of fracture weaknesses and induced attenuation factor under the assumption of the
host rock being elastic and isotropic. Incorporating with the attenuative crack model, we
relate the induced attenuation factor to fracture properties (fracture density and aspect ra-
tio) and fluid parameters (fluid bulk modulus and viscosity), and study how fracture density
and water saturation affect the variation of the induced factor in seismic frequency range
(1-100 Hz). Using perturbations in the complex stiffness parameters, we derive a com-
plex linearized reflection coefficient involving the induced attenuation factor and fracture
weaknesses. The accuracy of the derived reflection coefficient is confirmed by compar-
ing the result calculated using the extended reflectivity method and that computed using
the derived equation. We finally use the derived linearized reflection coefficient to obtain
the seismic reflection response for the case of fractured reservoirs with different values of
fracture density and water saturation. We conclude that the attenuation factor is applicable
to distinguishing between oil-bearing and water-bearing reservoirs, and seismic response
difference induced by fracture density and water saturation increases with the incidence
angle.

INTRODUCTION

Seismic wave propagating though a rock with a set of parallel vertical fractures exhibits
the horizontal transverse isotropy (HTI). The linear-slip model (Schoenberg and Douma,
1988; Schoenberg and Sayers, 1995) and the penny-shaped crack model (Hudson, 1980) are
combined to relate stiffness parameters of the fractured rock to fracture properties (fracture
density, aspect ratio and filling moduli). In the linear-slip model, the normal and tangen-
tial fracture weaknesses are defined to measure the influence of fracture properties on the
stiffness parameters. Much work has been done to demonstrate that fluid viscosity and
the movement of fluid between the connected pores via the fractures can generate energy
losses when seismic wave propagates in fractured rocks. Chapman (2003) proposed a frac-
tured rock model under the assumption of perfect fluid pressure equalization between the
fractures and equant porosity, and studied frequency-dependent anisotropy due to meso-
scale fractures. Gurevich (2003) derived a set of equations to analyze elastic properties
of saturated porous rocks with aligned fractures. Brajanovski et al. (2006) studied seismic
attenuation due to wave-induced fluid flow in fractured porous media. Galvin and Gurevich
(2009) considered fractures to be thin circular cracks to simulate how fractures affect the
elastic properties, and estimated the attenuation and dispersion of elastic waves propagat-
ing in fractured rocks. Tang et al. (2012) proposed a cracked porous medium elastic wave
theory, which can be applied to identify hydrocarbons from the acoustic measurement data.
Kong et al. (2013) studied effect of fracture fill on seismic attenuation and dispersion in
fractured porous rocks.
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In addition to seismic wave anisotropy and attenuation, Carcione (1992) demonstrated
that a HTI medium exhibits quality factor (Q) anisotropy. Carcione (2000) proposed a
model for source rocks, which can relate seismic anisotropy (in velocity and attenuation)
to kerogen content, pore pressure, and water saturation. Chichinina et al. (2006, 2009)
extended the linear-slip model to study the attenuation anisotropy in fractured media, and
presented P-wave and S-wave inverse quality factors related to the normal and tangential
fracture weaknesses. Carcione et al. (2012) studied fracture-induced anisotropic attenua-
tion and derived compliance and stiffness matrices of the fractured rock in terms of the
complex normal and tangential fracture compliances for the HTI and orthorhombic me-
dia. Carcione et al. (2013) proposed characteristics of angular and frequency-dependent
wave velocity and attenuation in the fractured rock with a high permeability. Based on
anisotropic quality factors, Zhu (2017) simulated seismic wave propagation in viscoelastic
anisotropic media using frequency-independent Q wave equation.

Using the complex linear-slip model (Chichinina et al., 2006), we first propose expres-
sions of the complex stiffness parameters in terms of fracture weaknesses and attenuation
factor. Incorporating with the attenuative crack model, we relate the attenuation factor to
fracture properties (fracture density and aspect ratio) and fluid parameters (fluid bulk mod-
ulus and viscosity), and we analyze how the attenuation factor is influenced by fracture
density and water saturation. Using a scattering function involving slowness and polariza-
tion of PP-wave wave, we derive an linearized reflection coefficient as a function of fracture
weaknesses and attenuation factor. In order to verify the accuracy of the derived reflection
coefficient, we compare the result calculated using the derived reflection coefficient and
that computed using the extended reflectivity modeling method. Our work ends with the
modeling of reflection response for the case of fractured reservoirs with different values of
fracture density and water saturation.

THEORY AND METHOD

Stiffness matrix related to induced attenuation

Based on the linear slip theory (Schoenberg and Douma, 1988; Schoenberg and Sayers,
1995), Chichinina et al. (2006) proposed a complex stiffness matrix for a homogeneous
and isotropic host rock with a set of parallel fractures whose normals parallel to the x1-axis

C̃ =



M(1− ∆̃N) λ(1− ∆̃N) λ(1− ∆̃N) 0 0 0

λ(1− ∆̃N) M(1− χ2∆̃N) λ(1− χ∆̃N) 0 0 0

λ(1− ∆̃N) λ(1− χ∆̃N) M(1− χ2∆̃N) 0 0 0
0 0 0 µ 0 0

0 0 0 0 µ(1− ∆̃T) 0

0 0 0 0 0 µ(1− ∆̃T)


,

(1)
where M = λ + 2µ, χ = λ/M = 1 − 2g, g = µ/M , λ and µ are Lamé constants of the
homogeneous isotropic and elastic host rock, and ∆̃N and ∆̃T are the complex normal and
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tangential fracture weaknesses, which are given by (Chichinina et al., 2006, 2009)

∆̃N =∆N − i∆I
N,

∆̃T =∆T − i∆I
T,

(2)

where ∆N and ∆T, and ∆I
N and ∆I

T are the real and imaginary parts of the complex fracture
weaknesses, respectively.

Carcione (2000) presented the inverse quality factor 1/Q for each stiffness parameter
of an anisotropic and attenuative medium

1

Q
=

Im(C̃mn)

Re(C̃mn)
, (3)

where Re and Im denote the real and imaginary parts of the stiffness parameter, and C̃mn
represents the element of the complex stiffness matrix.

Combining equations 1 and 3, we present an inverse quality factor matrix for the frac-
tured and attenuative medium

1

Q
=


1/Q11 1/Q12 1/Q12 0 0 0
1/Q12 1/Q33 1/Q23 0 0 0
1/Q12 1/Q23 1/Q33 0 0 0

0 0 0 1/Q44 0 0
0 0 0 0 1/Q55 0
0 0 0 0 0 1/Q55

 , (4)

where

1

Q11

=
Im[M(1− ∆̃N)]

Re[M(1− ∆̃N)]
=

∆I
N

1−∆N

,

1

Q12

=
1

Q13

=
1

Q21

=
1

Q31

=
1

Q11

,

1

Q22

=
Im[M(1− χ2∆̃N)]

Re[M(1− χ2∆̃N)]
=

(1− 2g)2∆I
N

1− (1− 2g)2∆N

,

1

Q23

=
Im[λ(1− χ∆̃N)]

Re[λ(1− χ∆̃N)]
=

(1− 2g)∆I
N

1− (1− 2g)∆N

,

1

Q33

=
1

Q22

,
1

Q32

=
1

Q23

,
1

Q44

= 0,

1

Q55

=
Im[µ(1− ∆̃T)]

Re[µ(1− ∆̃T)]
=

∆I
T

1−∆T

,
1

Q66

=
1

Q55

.

(5)

Combining equations 4 and 5, we use two inverse quality factors 1/QN = 1/Q11 and
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1/QT = 1/Q55 to rewrite the complex normal and tangential fracture weaknesses

∆̃N =∆N − i
1

QN

(1−∆N),

∆̃T =∆T − i
1

QT

(1−∆T).

(6)

Substituting equation 6 into equation 1, we re-express the complex stiffness parameters

C̃11 = M

[
1−∆N + i

1

QN

(1−∆N)

]
,

C̃12 = λ

[
1−∆N + i

1

QN

(1−∆N)

]
,

C̃23 = λ

[
1− (1− 2g)∆N + i

1

QN

(1− 2g)(1−∆N)

]
,

C̃33 = λ

[
1− (1− 2g)2∆N + i

1

QN

(1− 2g)2(1−∆N)

]
,

C̃44 = µ, C̃55 = µ

[
1−∆T + i

1

QT

(1−∆T)

]
.

(7)

Hudson et al. (1996) proposed an effective model to calculate stiffness matrix for an
elastic solid with thin, penny-shaped ellipsoidal cracks

C̃ =



M(1−
M

µ
eŨ33) λ(1−

M

µ
eŨ33) λ(1−

M

µ
eŨ33) 0 0 0

λ(1−
M

µ
eŨ33) M(1−

λχ

µ
eŨ33) λ(1−

λ

µ
eŨ33) 0 0 0

λ(1−
M

µ
eŨ33) λ(1−

λ

µ
eŨ33) M(1−

λχ

µ
eŨ33) 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ(1− eŨ11) 0

0 0 0 0 0 µ(1− eŨ11)


,

(8)
where e is the fracture density, and in the case of an equant porosity model, U11 and U33

are given by (Pointer et al., 2000)

Ũ11 =
16

3(3− 2g)

1

1 + Ψ(ω)
,

Ũ33 =
4

3(1− g)

1

1 + Υ (ω)
,

(9)

and in the case of fluid saturated cracks, Ψ and Υ are expressed as

Ψ(ω) =
4

π

iωηf

µ

1

3− 2g
,

Υ (ω) =
1

π

a

c

Kf

µ

1

1− g
1

1 + 3(1− i)J/(2c)
,

(10)

4 CREWES Research Report — Volume 29 (2017)



Linearized reflection coefficient and reflectivity modeling

where c/a is the fracture aspect ratio,Kf is the bulk moduli of fluid, ηf is the fluid viscosity,
ω is the angular frequency, and the quantity J is related to the host rock permeability Pm,
the host rock porosity φh, the fluid viscosity ηf and the bulk modulus of the fillings Kf

J =

√
ωφhKfPm

2ηf
. (11)

Pointer et al. (2000) pointed out that in the case of seismic frequency range (1-100 Hz),
Ψ(ω) ≈ 0. Hence, Ũ11 is real in the seismic frequency range. Combining equations 1 and
8, we re-express the complex normal and tangential fracture weaknesses in terms of Ũ11

and Ũ33, which relates the inverse quality factors 1/QN and 1/QT to fracture properties and
fluid parameters

∆̃N =
M

µ
eŨ33,

∆̃T =
16e

3(3− 2g)
,

1

QN(ω)
=

Im

(
M

µ
Ũ33e

)
1− Re

(
M

µ
Ũ33e

),

1

QT

=0. (12)

We observe that the fracture-induced attenuation factor 1/QN is frequency-dependent.
Combining equations 9-12, we may analyze how fracture properties and fluid parameters
affect the induced attenuation.

Linearized P-to-P reflection coefficient in fractured and attenuative media

Using the complex stiffness parameters shown in equation 7, we first express pertur-
bations in complex stiffness parameters for the case of an interface separating an isotropic
and elastic medium and a fractured and attenuative medium.

Taking C̃11 as an example

∆C̃11 =

(
M +

∆M

2

)[
1−∆N + i

1

QN

(1−∆N)

]
−
(
M −

∆M

2

)
= ∆M −

(
M +

∆M

2

)
∆N + i

1

QN

(
M +

∆M

2

)
(1−∆N) ,

(13)
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where M is the average value of P-wave modulus for the upper and lower media, and
∆M is change in P-wave modulus across the interface. The perturbations in other stiffness
parameters are expressed as

∆C̃12 =∆λ−
(
λ+

∆λ

2

)
∆N + i

1

QN

(
λ+

∆λ

2

)
(1−∆N) ,

∆C̃23 =∆λ− (1− 2g)

(
λ+

∆λ

2

)
∆N

+ i
1

QN

(
λ+

∆λ

2

)
(1− 2g) (1−∆N) ,

∆C̃33 =∆M − (1− 2g)2

(
M +

∆M

2

)
∆N

+ i
1

QN

(
M +

∆M

2

)
(1− 2g)2 (1−∆N) ,

∆C̃44 = ∆µ,∆C̃55 = ∆µ−
(
µ+

∆µ

2

)
∆T, (14)

where ∆λ and ∆µ are changes in Lamé constants across the reflection interface, and λ and
µ are the average values of Lamé constants for the upper and lower media.

The relationship between PP-wave reflection coefficientRPP and the scattering function
S involving the perturbation in stiffness is given by (Shaw and Sen, 2004, 2006)

RPP =
1

4ρ cos2 θ
S =

1

4ρ cos2 θ

(
∆ρcos2θ +

m=6,n=6∑
m=1,n=1

∆C̃mnξmn

)
, (15)

where ρ is the average value of density for the upper and lower media, θ is the P-wave
incidence angle, and ξmn is related to slowness and polarization of the wave. Elements of
ξmn used to derive the linearized reflection coefficient are given by (Shaw and Sen, 2006)

ξ11 =
sin4θcos4ϕ

α2
, ξ12 =

sin4θsin2ϕcos2ϕ

α2
, ξ13 =

sin2θcos2θcos2ϕ

α2
,

ξ21 = ξ12, ξ22 =
sin4θsin4ϕ

α2
, ξ23 =

sin2θcos2θsin2ϕ

α2
,

ξ31 = ξ13, ξ32 = ξ23, ξ33 = cos4θ, ξ44 =
− 4sin2θcos2θsin2ϕ

α2
,

ξ55 =
− 4sin2θcos2θcos2ϕ

α2
, ξ66 =

4sin4θsin2ϕcos2ϕ

α2
,

(16)

where ϕ is the azimuthal angle of the seismic line with respect to the symmetry axis of
fractures, and α is P-wave velocity of the elastic and isotropic host rock. Both the incidence
and azimuthal angels are the phase angles (Chen et al., 2017a,b).
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Combining equations 13-16, we derive the frequency-dependent linearized P-to-P com-
plex reflection coefficient

RPP(θ, ϕ, ω) =aM(θ)RM + aµ(θ)Rµ + aρ(θ)Rρ

+ a∆N
(θ, ϕ)∆N + a∆T

(θ, ϕ)∆T

+ aQN
(θ, ϕ)

i

QN

,

(17)

where

aM(θ) =
1

2 cos2 θ
, aµ(θ) = −4gsin2 θ, aρ(θ) = 1−

1

2 cos2 θ
,

a∆N
(θ, ϕ) = −

1

4 cos2 θ

[
1− 2g

(
sin2 θ sin2 ϕ+ cos2 θ

)]2
,

a∆T
(θ, ϕ) = −g tan2 θ cos2 ϕ

(
sin2 θ sin2 ϕ− cos2 θ

)
,

aQN
(θ, ϕ) = −a∆N

(θ, ϕ),

(18)

and where RM = ∆M/(2M) and Rµ = ∆µ/(2µ) are reflectivities of P- and S-wave
moduli of the elastic and isotropic host rock, and Rρ = ∆ρ/(2ρ) is the density reflectivity.
It is important to stress that under the assumptions of small relative changes in P- and S-
wave moduli, weak fracture weaknesses and low attenuation factor, we neglect the term
proportional to RM/QN, RM∆N and Rµ∆T in the derivation of the linearized reflection
coefficient. After the calculation of the frequency-dependent reflection coefficient, we may
compute the reflection coefficient in time domain using the inverse Fourier transform.

Extended reflectivity modeling method in fractured and attenuative media

In order to testify the accuracy of the derived reflection coefficient, we compare the re-
sult calculated using equation 17 and that computed using the reflectivity modeling method
extended to fractured and attenuative media. We next present the detailed process to calcu-
late PP-wave reflection coefficient using the extended reflectivity modeling method. Figure
1 shows a three-layer model, in which the upper and lower layers are elastic and isotropic,
and the middle layer is fractured and attenuative.

The displacement functions of the incidence P-wave (uiP), the reflection P-wave (uP2),
and the reflection S-wave (uS2) in layer 3 are given by

uiP = AiPexp [i (kxx− ωt)] exp
(
−ikP3

z z
)
,

urP3 = ArP3exp [i (kxx− ωt)] exp
(
ikP3
z z
)
,

urS3 = BrS3exp [i (kxx− ωt)] exp
(
ikS3
z z
)
,

(19)

where AiP, ArP3 and BrS3 are amplitudes of the incident P-wave, the reflected P-wave and

the reflected S-wave, kx =
ω

p
, p =

VP3

sinθP3

=
VS3

sinθS3

, kP3
z =

kx

tanθP3

, kS3
z =

kx

tanθS3

, VP3 and

VS3 are P- and S-wave velocities of the layer 3, θP3 and θS3 are angles of P-wave incidence
and S-wave reflection, t is the time, and z is the depth.
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FIG. 1. An reflection interface separating an elastic and isotropic medium and a fractured and
attenuative medium.

For the fractured and attenuative layer, the displacement functions of P- and S-wave
(uP2 and uS2) are expressed as

uP2 =
[
AtP2exp

(
−ikP2

z z
)

+ ArP2exp
(
ikP2
z z
)]

exp [i (kxx− ωt)] ,
uS2 =

[
BtS2exp

(
−ikS2

z z
)

+BrS2exp
(
ikS2
z z
)]

exp [i (kxx− ωt)] ,
(20)

where AtP2 and ArP2 are amplitudes of the transmitted P-wave and the reflected P-wave
respectively, BtS2 and BrS2 are amplitudes of the transmitted S-wave and the reflected S-

wave respectively, kP2
z =

kx

tanθP2

, kS2
z =

kx

tanθS2

, and θP2 and θS2 are angles of P-wave

reflection and S-wave reflection.

For the lower layer, the displacement functions of P-wave (uP1) and S-wave (uS1) are
given by

uP1 = AtP1exp [i (kxx− ωt)] exp
(
−ikP1

z z
)
,

uS1 = BtS1exp [i (kxx− ωt)] exp
(
−ikS1

z z
)
,

(21)

where AtP1 is the transmitted P-wave amplitude, BtS1 is the transmitted S-wave amplitude,

kP1
z =

kx

tanθP1

, kS1
z =

kx

tanθS1

, and θP1 and θS1 are angles of P- and S-wave transmissions in

the lower layer.

We present x− and z−components of displacement (Dx andDz) and stress (Sx and Sz)

Dx =
∂uP

∂x
−
∂uS

∂z
,

Dz =
∂uP

∂z
+
∂uS

∂x
,

Sx = λ

(
∂Dx

∂x
+
∂Dz

∂z

)
+ 2µ

∂Dz

∂z
,

Sz = µ

(
∂Dx

∂z
+
∂Dz

∂z

)
,

(22)
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where λ and µ are Lamé constants of the corresponding layer.

For the lower interface of the layer 3 (uP = uiP + urP3 and uS = 0), we obtain x− and
z−components of displacement (Dx3 and Dz3) and stress (Sx3 and Sz3)

Dx3

Dz3

Sx3
Sz3

 = Gz=h
3


ArP3 + AiP

ArP3 − AiP

BrS3

BrS3

 exp [i (kxx− ωt)] , (23)

where

Gz=h
3 = ikx cos

(
kP3
z h

)
−kx sin

(
kP3
z h

)
−ikS3

z cos
(
kS3
z h
)

kS3
z sin

(
kS3
z h
)

−kP3
z sin

(
kP3
z h

)
ikP3

z cos
(
kP3
z h

)
−kx sin

(
kS3
z h
)

ikx cos
(
kS3
z h
)

−Ω3 cos
(
kP3
z h

)
−iΩ3 sin

(
kP3
z h

)
−2µ3kxk

S3
z cos

(
kS3
z h
)
−2iµ3kxk

S3
z sin

(
kS3
z h
)

−2iµ3kxk
P3
z sin

(
kP3
z h

)
−2µ3kxk

P3
z cos

(
kP3
z h

)
iµ3Γ3 sin

(
kS3
z h
)

µ3Γ3 cos
(
kS3
z h
)

 ,
(24)

and where Ω3 = λ3

[
(kx)

2 + (kP3
z )2

]
+ 2µ3

(
kP3
z

)2, Γ3 =
(
kS3
z

)2− (kx)
2, and λ3 and µ3 are

Lamé constants of the layer 3.

We next propose x− and z−components of displacement (Dx2 andDz2) and stress (Sx2
and Sz2) for the upper interface of the middle layer (uP = uP2 and uS = uS2)

Dx2

Dz2

Sx2
Sz2

 = G2


ArP2 + AtP2

ArP2 − AtP2

BrS2 −BtS2

BrS2 +BtS2

 exp [i (kxx− ωt)] , (25)

where

G2 = ikx cos
(
kP2
z z
)

−kx sin
(
kP2
z z
)

−ikS2
z cos

(
kS2
z z
)

kS2
z sin

(
kS2
z z
)

−kP2
z sin

(
kP2
z z
)

ikP2
z cos

(
kP2
z z
)

−kx sin
(
kS2
z z
)

ikx cos
(
kS2
z z
)

−Ω2 cos
(
kP2
z z
)

−iΩ2 sin
(
kP2
z z
)

−2µ2kxk
S2
z cos

(
kS2
z z
)
−2iµ2kxk

S2
z sin

(
kS2
z z
)

−2ikP2
z kxµ2 sin

(
kP2
z z
)
−2µ2k

P2
z kx cos

(
kP2
z z
)

iµ2Γ2 sin
(
kS2
z z
)

µ2Γ2 cos
(
kS2
z z
)

 ,
(26)

and where Ω2 = λ2

[
(kx)

2 + (kP2
z )2

]
+ 2µ2

(
kP2
z

)2, Γ2 =
(
kS2
z

)2− (kx)
2, and λ2 and µ2 are

Lamé constants of the layer 2.

We finally derive x− and z−components of displacement (Dx1 andDz1) and stress (Sx1
and Sz1) for the upper interface of the layer 1(uP = uP1 and uS = uS)

Dx1

Dz1

Sx1
Sz1

 = Gz=0
1


AtP1

−AtP1

−BtS1

BtS1

 exp [i (kxx− ωt)] , (27)

CREWES Research Report — Volume 29 (2017) 9



Chen and Innanen

where

Gz=0
1 =


ikx 0 −ikS1

z 0
0 ikP1

z 0 ikx
−Ω1 0 −2µ1kxk

S1
z 0

0 −2µ1kxk
P1
z 0 µ1Γ1

 , (28)

and where Ω1 = λ1

[
(kx)

2 + (kP1
z )2

]
+ 2µ1

(
kP1
z

)2, Γ1 =
(
kS1
z

)2− (kx)
2, and λ1 and µ1 are

Lamé constants of the layer 1.

The displacement and stress are continuous at the interface, hence, we combine equa-
tions 23 - 27 to obtain

Gz=h
3


ArP3 + AiP

ArP3 − AiP

BrS3

BrS3

 =
(
Gz=h

2

) (
Gz=0

2

)−1 (
Gz=0

1

)
AtP1

−AtP1

−BtS1

BtS1

 . (29)

Definitions of reflection and transmission coefficients in terms of wave amplitude, we
rewrite equation 29 as

F11 + F12 F13 + F14 E12 − E11 E13 − E14

F21 + F22 F23 + F24 E22 − E21 E23 − E24

F31 + F32 F33 + F34 E32 − E31 E33 − E34

F41 + F42 F43 + F44 E42 − E41 E43 − E44



RPP

RPS

TPP

TPS

 =


F12 − F11

F22 − F21

F32 − F31

F42 − F41

 , (30)

where E =
(
Gz=h

2

)
(Gz=0

2 )
−1

(Gz=0
1 ), F =

(
Gz=h

3

)
, RPP = ArP3/AiP is the P-wave re-

flection coefficient, RPS = BrS3/AiP is the S-wave reflection coefficient, TPP = AtP1/AiP

is the P-wave transmission coefficient, and TPS = BtS1/AiP is the S-wave transmission
coefficient.

In order to calculate the quantities kx, kP2
z and kS2

z , P- and S-wave velocities ṼP and
ṼS in the fractured and attenuative layer are needed. Schoenberg and Douma (1988) pre-
sented the P- and S-wave velocities in terms of two dimensionless compliances that are
approximately equal to the normal and tangential fracture weaknesses in the case that the
dimensionless compliances are small. Following Chichinina et al. (2006), we present the
complex P- and S-wave velocities in terms of the attenuation factor and the normal fracture
weakness (

ṼP

)2

≈
M

ρ

[
1−

(
1− 2g sin2 ϑ

)2
∆̃N − g (sin 2ϑ)2 ∆̃T

]
=
M

ρ

[
1−

(
1− 2g sin2 ϑ

)2
∆N − g (sin 2ϑ)2 ∆T

]
+ i

M

ρ

[(
1− 2g sin2 ϑ

)2 1−∆N

QN

]
,
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(
ṼS

)2

≈
µ

ρ

[
1− g (sin 2ϑ)2 ∆̃N − (cos 2ϑ)2 ∆̃T

]
=
µ

ρ

[
1− g (sin 2ϑ)2 ∆N − (cos 2ϑ)2 ∆T

]
+ i

µ

ρ

[
g (sin 2ϑ)2 1−∆N

QN

]
,

(31)

where ϑ is the angle between the wavenumber vector and the x3-axis (Schoenberg and
Douma, 1988). The relationship among the angle ϑ, the incidence angle θ and the azimuthal
angle ϕ is

cosϑ = sin θ cosϕ. (32)

Combining equations 9-12, we may estimate the attenuation factor and fracture weak-
nesses given fracture properties and fluid parameters. Using the estimated results, we
calculate the complex P- and S-wave velocities using equations 31 and 32, and then we
may compute the frequency-dependent reflection coefficient using the extended reflectivity
modeling method.

NUMERICAL RESULTS

Variations of fracture weaknesses and attenuation factors with fracture properties
and fluid parameters

We next analyze how fracture properties and fluid parameters affect the normal fracture
weakness and the attenuation factor for the case of fractured and oil-bearing carbonate
rocks. We assume minerals making up the rock to be calcite and clay (Clay content is
0.1), and fluid to be a homogeneous mixture of oil and water. We use the Voigt-Ruess-Hill
average model (Mavko et al., 2009) to calculate the bulk and shear moduli of minerals, and
we employ Krief et al. (1990) model to compute the effective moduli of the dry host rock.
Table 1 shows mineral bulk and shear moduli, fluid moduli and viscosity.

Table 1. Bulk and shear mduli of minerals and fluids (Rops, 2017).

K(GPa) µ(GPa) ηf (cp)
Calcite 76.8 32 -
Clay 25 9 -
Water 2.34 0 1

Oil 1.8 0 8

The tangential fracture weakness ∆T is not influenced by fluid type (Bakulin et al.,
2000; Chen et al., 2017c). In the present study, we show variations of the normal fracture
weakness ∆N and the attenuation fractor 1/QN with frequency given different values of
fracture density and water saturation, as shown in Figure 2.

From the variation of ∆N, we observe that the normal fracture weakness increases with
fracture density. The normal fracture weakness for a oil saturated rock is lower than that for
a water saturated rock, and from the change of 1/QN, we find that a larger fracture density

CREWES Research Report — Volume 29 (2017) 11
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FIG. 2. Variation of the normal fracture weakness and the attenuation factor with frequency given
different values of fracture density and water saturation. The fracture aspect ratio c/a = 0.005, the
host rock permeability Pm = 0.01md, and the host rock porosity φh = 0.02.

induces a stronger attenuation, and the fracture induced attenuation for a oil saturated rock
is higher than that for a water saturated rock. We next plot the absolute value of relative dif-
ference between the water and oil saturated fractured rocks for ∆N and 1/QN, respectively
(See Figure 3). We observe that the relative change in the attenuation factor is relatively
larger than that in the normal fracture weakness, which indicates that the attenuation factor
can be used as an indicator to discriminate oil-bearing fractured reservoirs.

Verification of the accuracy of linearized reflection coefficient

We use equation 17 and the extended reflectivity modeling method to calculate PP-wave
reflection coefficient respectively to verify the accuracy of the derived linearized reflection
coefficient. Figure 4 shows a two-layer model, and the lower layer is fractured carbonate
rock in which mineral volumes, density, fracture properties and fluid parameters are dis-
played. Combining equations 9-12, we first compute the normal fracture weakness and
the attenuation quality factor, and then calculate the frequency-dependent PP-wave reflec-
tion coefficient, after which we utilize the inverse Fourier transform to obtain the reflection
coefficient in time domain. Figure 5 plots PP-wave reflection coefficient calculated us-
ing the linearized reflection coefficient and the extended reflectivity modeling method. In
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FIG. 3. Absolute value of relative difference between water and oil saturated rocks for the normal
fracture weakness and the attenuation factor.The absolute value of relative difference is calculated
using R(x) = |(xoil − xwater)/xoil|, and x denotes ∆N and 1/QN, respectively.

this study, we assume types of the isotropic and elastic upper layer to be sand rock and
carbonate rock, respectively. Table 2 shows parameters for the upper and lower layers.

Table 2. Parameters for the upper and lower layers.

Upper (sand) Upper (carbonate) Lower (fractured carbonate)
M(GPa) 76 120 -
µ(GPa) 19 30 -
ρ(g/cm3) 2.7 2.9 -
Pm(md) - - 0.001
φh - - 0.02

M
1

µ
1

ρ
1

V
Calcite

=0.9 V
clay

=0.1

e=0.04 c/a=0.005 S
W

=0 η
f
=8 cp

FIG. 4. Two-layer model for reflection coefficient calculation. For the second layer, the host rock
permeability Pm = 0.001md, and the host rock porosity φh = 0.02.

From Figure 5, we observe that the difference between the reflection coefficient calcu-
lated using the linearized equation and that computed using the extended reflectivity mod-
eling method is relatively small in the case of the incidence angle θ being not much larger
than 30◦, which indicates that the derived linearized reflection coefficient is applicable to
reflection response modeling in fractured and attenuative reservoirs. Hence, we may use
the linearized reflection coefficient with a acceptable accuracy to obtain P-wave reflection
response given different fracture properties and fluid parameters.
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FIG. 5. Comparison between PP-wave reflection coefficient calculated using the linearized reflec-
tion coefficient and the extended reflectivity modeling method. (a) The upper layer is sand rock,
and (b) The upper layer is carbonate rock.

Reflection response for oil-bearing carbonate rock

We proceed to forward modeling for PP-wave reflection coefficient using the derived
linearized reflection coefficient in the case of different values of fracture density, water
saturation and fluid viscosity. P- and S-wave moduli and density of the upper layer are
M = 60GPa, µ = 15GPa and ρ = 2.2g/cm3, and permeability and porosity of the host
rock are Pm = 0.001md and φh = 0.02. We use a 35 Hz Ricker wavelet to generate seismic
profiles for oil-bearing fractured and attenuative carbonate rocks with different values of
fracture density, as shown in Figure 6.

We observe that the reflection amplitude difference between oil and water saturated
fractured rocks increases with the incidence angle, and the reflection amplitude of oil satu-
rated fractured rocks with different values of fracture density also increases with the inci-
dence angle.

CONCLUSIONS

Based on the complex linear slip theory, we express the complex stiffness matrix in
terms of fracture weaknesses and induced attenuation factor under the assumption of the
host rock being elastic and isotropic. Incorporating with the attenuative crack model, we
relate the induced attenuation factor to fracture properties (fracture density and apsect ratio)
and fluid parameters (fluid bulk modulus and viscosity), and we also analyze the variation
of the attenuation factor with fracture density and water saturation to verify the capability
for distinguishing oil-bearing and water-bearing rocks. Using perturbations in the complex
stiffness parameters, we derive a complex linearized reflection coefficient involving the
induced attenuation factor and fracture weaknesses. We confirm that the derived reflection
coefficient is applicable to the calculation of PP-wave reflection coefficient in the case of the
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FIG. 6. Seismic profiles generated for oil-bearing fractured and attenuative rocks. (a) The blue color
represents the case of oil saturated rock (i.e. SW = 0), and red color represents the case of water
saturated rock (i.e. SW = 1); (b) The blue color represents the case of e = 0.06, and the red color
represents the case of e = 0.01 for oil saturated fractured rock.

incidence angle being less than 30◦. From the seismic response modeled using the derived
reflection coefficient for fractured reservoirs with different values of fracture density and
water saturation, we conclude that seismic response difference induced by fracture density
and water saturation increases with the incidence angle.
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