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ABSTRACT

Geophysics has seen a shift from mapping large-scale obvious features, to the mapping 
of subtle features, and accurate inversions for subsurface parameters. The presence of large 
amplitude multiples in the data makes both of these a challenging task, motivating the need 
for more robust methods of internal multiple prediction. The most successful method of in-
ternal multiple prediction is the fully data-driven algorithm based on the inverse scattering 
series, which has proven very successful on synthetic data, and is currently being adapted 
to work on land and marine data. However, one of the main hurdles obstructing its suc-
cessful application is its computational expense. Typically, computationally expensive 2D 
algorithms must be applied when the underlying geology contains any structure, in order 
to produce an accurate prediction. By leveraging properties of the CMP gather we show 
that the 1.5D algorithm may be applied in the presence of moderate dip, greatly improving 
efficiency, wile maintaining a high level of accuracy.

INTRODUCTION

Internal multiples continue to pose a significant problem in many geophysical applica-
tions. Large amplitude multiples, when they occur in the reservoir have the ability to mask 
the primary events, obscuring targets, and altering the waveform, making interpretation a 
challenging task. Additionally, most geophysical processing, and full-waveform inversion 
algorithms are not designed to handle multiples. The detrimental effect that multiples have 
on seismic data has motivated substantial research efforts into their removal, with varying 
degrees of success.

Historically, research into multiple prediction was split into two main camps, those 
which exploited the periodic nature of multiples, and those which exploited velocity differ-
ences between primaries and multiples. Alam and Austin (1981) and Treitel et al. (1982) 
were among the first to recognize that multiples are exactly periodic in the τ − p domain. 
Application of a sufficiently long deconvolution operator, which searches the data for peri-
odic signals, will predict the multiples in the data set. The large velocity contrast between 
multiples and primaries, and the resulting moveout difference, saw the development of 
multiple prediction methods based on stacking out, and FK filtering of multiples (Yilmaz, 
2001; Weglein, 1999).

The preceding methods, as well as many others, have seen varying degrees of success in 
their abilities to accurately predict multiples. However, they all rely on either their assump-
tions being correct, or some knowledge of subsurface properties. When the underlying 
assumptions are violated as is usually the case with internal, short period multiples, or ac-
curate knowledge of the subsurface is lacking, most methods of multiple prediction fail. 
The preeminent method of internal multiple prediction today is one based on the inverse 
scattering series. The inverse scattering series method of multiple prediction as proposed 
by Weglein et al. (1997) is a fully data-driven method, that automatically finds all the mul-
tiples in the dataset. We begin with a brief overview of the inverse scattering approach to

CREWES Research Report — Volume 29 (2017) 1



Eaid and Innanen

internal multiple prediction, discuss some of its drawbacks, and propose a remedy to one
of those drawbacks by leveraging properties of the common midpoint gather.

INTERNAL MULTIPLE PREDICTION BASED ON THE INVERSE
SCATTERING SERIES

Internal multiple prediction in 2D

Internal multiple prediction based on the inverse scattering series, proposed by Weglein
et al. (1997), utilizes the fact that all internal multiples can be constructed from a triplet
of sub-events, provided those sub-events obey a lower-higher-lower relationship. Further-
more every first order internal multiple arrives with a traveltime that is a combination of the
traveltimes of three primaries. Adding the traveltimes of the two deeper (lower) primaries,
and subtracting the traveltime of the shallower (higher) primary gives the exact traveltime
of a multiple. The inverse scattering approach searches through the entire dataset and au-
tomatically combines all combinations of events that obey this relationship, automatically
predicting all multiples. This is achieved with no underlying assumptions, and the algo-
rithms immense power lies in the fact that it predicts all multiples without any knowledge
of the subsurface, meaning it is a fully data-driven algorithm.

Weglein et al. (1997) presented the following 2D algorithm in the wavenumber pseu-
dodepth domain.

b3IM (kg, ks, ω) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
e−iq1(ϵg−ϵs)dk1e

−iq2(ϵg−ϵs)dk2 ×Ψ(kg, k1, k2, ks|ϵ) (1)

Where,

Ψ(kg, k1, k2, ks|ϵ) =
∫ ∞

−∞
b1(kg, k1, z)e

i(qg+q1)zdz

∫ z−ϵ

−∞
b1(k1, k2, z

′)e−i(q1+q2)z′dz′

×
∫ ∞

z′+ϵ

b1(k2, ks, z
′′)ei(q2+qs)z′′dz′′

(2)

Equations (1) and (2) combined make up the two dimensional pseudodepth-wavenumber
internal multiple prediction algorithm. The vertical wavenumber associated with the source
or receiver is given by qx, and the total vertical wavenumber is given by kz, where each has
the following definition,

qx =
ω

c0

√
1− k2

xc
2
0

ω2
(3)

and,
kz = qg + qs (4)

2D internal multiple prediction in the coupled planewave domain

Nita and Weglein (2009) and Sun and Innanen (2015) show the relationship,

kzz = ωt (5)
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which when substituted into equations (1) and (2) gives the 2D coupled planewave algo-
rithm.

b3IM (pg, ps, ω) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
e−iω(τ1g−τ1s )dp1e

−iω(τ2g−τ2s )dp2 ×Ψ(pg, p1, p2, ps|ϵ)

(6)

Where,

Ψ(pg, p1, p2, ps|ϵ) =
∫ ∞

−∞
b1(pg, p1, τ)e

iωτdτ

∫ τ−ϵ

−∞
b1(p1, p2, τ

′)e−iωτ ′dτ ′

×
∫ ∞

τ ′+ϵ

b1(p2, ps, τ
′′)eiωτ

′′
dτ ′′

(7)

Taken together equations (6) and (7) form the 2D planewave algorithm orginally de-
rived by Coates and Weglein (1996), where ps and pg are the source side and receiver side
horizontal slownesses respectively, and where τ , τ ′, and τ ′′ are the intercept times obeying
the lower-higher-lower relationship. Where horizontal slowness is defined as,

px =
sin θx
v

(8)

✁� ✁✂✁✄
✁☎

FIG. 1. Ray paths of the sub-event primaries constituting a first order multiple for the 2D case.

Figure 1 shows example subevent primaries that when combined in the 2D planewave
algorithm will predict a first order internal multiple. However, the inputs to the 2D plane
wave algorithm, namely b1(pi, pj, ω), are not raw prestack shot gathers, but rather prepared
coupled slant stack gathers (Sun and Innanen, 2015).

1.5 internal multiple prediction in the planewave domain

If the subsurface contains horizontally stratified layers, then by Snell’s law ps = p2 and
pg = p1, implying that ps = pg. It can then be shown that the algorithm in equations (6)
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and (7) reduces to (Sun and Innanen, 2014),

b3IM (pg, ω) =

∫ ∞

−∞
b1(pg, τ)e

iωτdτ

∫ τ−ϵ

−∞
b1(pg, τ

′)e−iωτ ′dτ ′
∫ ∞

τ ′+ϵ

b1(pg, τ
′′)eiωτ

′′
dτ ′′ (9)

which is the 1.5D planewave multiple prediction algorithm. Where now the input data is
created by slant stacking over receiver side horizontal slowness pg.

Accuracy and efficiency considerations

At the heart of all inverse scattering series prediction algorithms are the search inte-
grals, which for the 2D case are contained in equation (7), and for the 1.5D case lie in
equation (9). The search integrals are the integrals which search through the dataset, either
in depth, or for the planewave case intercept time, and combine the correct subevents to
form all internal multiples in the dataset. The set of three search integrals makes up the
bulk of computation time for any given multiple prediction scheme. In the 2D case, be-
cause any one pg or ps, will in general result in many p2 or p1 the search integrals run for all
possible p1 and p2 values, all the while holding pg and ps constant; which is being handled
by the integrals of equation (6). This then must also be repeated for every desired output
frequency. The source side and receiver side horizontal slowness are then updated, and the
process is repeated for every pg − ps pair. This is a very expensive process as the search
integrals are executed many times for a given pg − ps pair, and then this process is repeated
many times for each pg − ps pair. Compare this to the 1.5 algorithm, in which the search
integrals are repeated once for each output receiver side slowness pg, and once for each
frequency. This discussion emphasizes that the 2D algorithm is much more computation-
ally expensive than the 1.5D algorithm, so much in fact that currently for large commercial
datasets, application of the 2D algorithm is not feasible.

However, as is common in geophysical problems, there is typically a trade off between
efficiency and accuracy. When the medium in which our data is acquired from, leads to
pg ̸= ps, as is the case with dipping strata, then the underlying assumption of the 1.5D al-
gorithm fails, and the algorithm loses accuracy. When the underlying geology is structured
we typically must employ the 2D algorithm. Figures 2 and 3 show τ − p gathers (a) and
a trace extracted from pg ≈ 0.3 × 10−4 in (b), for the flat and dipping cases respectively.
Marked on each trace are the contributing primaries (red "x"), resulting multiple (blue "x"),
and the location of the predicted multiple using a 1.5D inverse scattering approach (blue
"o"). If the blue "o" overlies the blue "x" then the prediction will be successful. In the
case of 1.5D (flat layers) the prediction is successful, however, as expected when the data
becomes 2D (dipping layers)as in figure 3, then the prediction loses accuracy.

In general applying 1.5D predictions on 2D data is a fruitless endeavor that results in
poor predictions. The following sections will discuss how we can overcome this hurdle, by
leveraging properties of the CMP gather, extending the applicability of 1.5D methods, and
in turn improving efficiency.
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FIG. 2. τ − p gather from a model with flat interfaces (a), Trace extracted from pg ≈ 0.3× 10−4 (b).
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FIG. 3. τ − p gather from a model with dipping interfaces (a), Trace extracted from pg ≈ 0.3× 10−4

(b).

THE TRAVELTIME EQUATION IN THE CMP DOMAIN

From our previous discussion, if pg = ps then the more efficient 1.5D prediction algo-
rithm can successfully be applied. In fact, as will be shown, provided that pg ≈ ps, the 1.5D
algorithm still retains much of its accuracy. By changing the geometry of our experiment,
namely by transferring our data from a shot gather geometry, to a common midpoint geom-
etry, we may extend the applicability of the 1.5D algorithm, due to important properties of
the CMP geometry. Those properties will now be derived, and their implication on internal
multiple prediction will be discussed. As a note, much of the following discussion follows
from Diebold and Stoffa (1981).
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To start, consider a plane wave propagating in a homogeneous medium, whose direction
is governed by the angle with the vertical (i).

✁�

✁✂

✄

FIG. 4. Schematic diagram of ray propagating in homogeneous media.

Now from figure 4,
∆x = L sin(i) = V∆T sin(i) (10a)

∆x sin(i) = sin2(i)V∆T (10b)

and,
∆z = L cos(i) = V∆T cos(i) (11a)

∆z cos(i) = cos2(i)V∆T (11b)

making use of equations (10a), (10b), (11a), and (11b),

L2 = (V∆T )2 = ∆x2 +∆z2

= (V∆T )2 sin2(i) + (V∆T )2 cos2(i)

V∆T = V∆T sin2(i) + V∆T cos2(i)

= ∆x sin(i) + ∆z cos(i)

∆T = p∆x+ q∆z

where,

p =
sin(i)

V

q =
cos(i)

V

are the horizontal, and vertical slowness of the ray respectively. If we now consider a
medium consisting of horizontally stratified, homogeneous layers, and we integrate along
the ray path, the traveltime is,

T = px+ 2
∑
j

qjzj (12)
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where, the intercept time τ is defined as,

τ = T − px = 2
∑
j

qjzj (13)

The linear moveout equation τ = T − px is used in the slant stacking procedure to prepare
the 1.5D data.

Traveltime equation in the presence of dipping interfaces

When we assume flat layers, it can be shown that the horizontal slowness p is constant
along the ray path. This is no longer the case with dipping layers, so now the traveltime
equation must be expanded to handle upgoing and downgoing paths separately.
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FIG. 5. Geometry for a ray propagating in a medium with an arbitrary number of dipping layers.

Mota (1954) and Ocola (1972) show that for the case of a fixed receiver or source at A,
that the traveltime of the ray in figure 5 is,

T = pBx+
∑
j

Zaj(qaj + qbj) (14)

and for a fixed receiver or source at B,

T = pAx+
∑
j

Zbj(qaj + qbj) (15)

The derivation for the case of a fixed source or receiver at A is shown in appendix A.
When both source and receivers are moving, as is the case in the CMP experiment neither
equation (14) or (15) is valid.

In this case, if we draw an arbitrary reference line, as shown by Diebold and Stoffa
(1981) we can take a weighted average of equations (14) and (15), as shown in figure 6.

xA + xb

x
= 1 (16a)
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FIG. 6. Geometry for a ray propagating in a medium with an arbitrary number of dipping layers,
relative to a reference line.

zjx = xAzB + zAxB (16b)

Since equations (14) and (15) are the traveltimes for the same ray in the same medium, they
are equivalent, meaning we can take a weighted average by multiplying them by (16a) and
invoke the relationship in (16b).

T =
xA + xB

x

(
pBx+

∑
j

Zaj(qaj + qbj)
)

=
xA

(
pBx+

∑
j Zaj(qaj + qbj)

)
+ xB

(
pBx+

∑
j Zaj(qaj + qbj)

)
x

=
xA

(
pAx+

∑
j Zbj(qaj + qbj)

)
+ xB

(
pBx+

∑
j Zaj(qaj + qbj)

)
x

=
xApAx+ xBpBx+

∑
j xAZbj(qaj + qbj) +

∑
j xBZaj(qaj + qbj)

x

Resulting in,
T = xApA + xBpB +

∑
j

zj(qaj + qbj) (17)

Equation (17) is the most general traveltime equation for a ray in dipping strata, and
in general is exact for any experimental geometry. In the case of CMP geometry, where
xA = xB = x

2
, the traveltime for a ray in dipping strata becomes,

T =
x

2

(
pA + pB) +

∑
j

zj(qaj + qbj) (18)

which reduces to,
T = xp̄+

∑
j

zj(qaj + qbj) (19)
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Equation (19) is the traveltime for a ray in dipping strata for the special case of the
common midpoint geometry. The most important term in equation (19) is p̄ which is an
arithmetic average of the source side and receiver side horizontal slowness. The inher-
ent averaging of the source side and receiver side slowness has the result of a marked
diminution of dip induced changes in the traveltimes, as we will show, this has profound
consequences on internal multiple prediction.

The impact of common midpoint geometry on internal multiple prediction

Previous discussion indicated that in order for 1.5D prediction algorithms to have suc-
cess that the relation pg ≈ ps must hold. When this relation is not satisfied, as is the case in
dipping strata, we typically need to resort to applying 2D prediction algorithms. However,
as previously discussed this an undesirable result due to the computational expense of the
2D algorithm.

Equation (19) shows that traveltimes in the CMP geometry depend on an average of
the source side and receiver side horizontal slowness. The result of this is a reduction in
dip induced changes in the traveltime curves. The secondary result is the fact that even if
pg = ps does not hold, pg ≈ p̄ ≈ ps will hold up to some dip. After the dip becomes
too large and pg ≈ p̄ ≈ ps no longer holds we will have no choice but to resort to the 2D
algorithm, however, the arithmetic averaging of the source and receiver side slowness will
extend the applicability of 1.5D algorithms to cases of moderate dip.

Figure 7 (a) shows a τ − p gather extracted from a shot record acquired from a model
with two layers, where the second layer has a dip of 16 degrees, and figure 7 (b) shows an
extracted trace, annotated with the true multiple and where the prediction will try to remove
a multiple; it is in fact the same figure as 3. Figure 8 shows the same data, except now the
τ − p gather has been extracted from a CMP gather. Comparison of figures 7 (b) and 8 (b)
shows that the predicted multiple and true multiple are much closer when the prediction
is run on the τ − p gather extracted from the CMP gather, then on the one extracted from
the shot gather. This simple example illustrates that the applicability of the 1.5D prediction
algorithm can be greatly extended by applying it to CMP gathers.

EXAMPLES

The simplest model that will generate internal multiples is one that contains two layers
overlying an infinite half space, and as such will be the first one analyzed. Figure 9 shows
the velocity model used for testing, the second interface was varied through 0 to 25 degrees
of dip in increments of 2 degrees. The 1.5D planewave algorithm was then employed on
shot gathers, and CMP gathers from each model to compare the effect of source-receiver
geometry on the prediction.

Figures 10 (a), 11 (a), and 12 (a), show split spread shot gathers acquired over the
model of figure 9 for dips of 0, 10, and 25 degrees respectively. While 10 (b), 11 (b), and
12 (b), show the resulting predictions. As expected, in the zero dip case where pg = ps
is satisfied, the prediction is more or less perfect, and the multiple is removed without
harming the primary. As dip progresses from 0 to 10 to 25 degrees, the prediction fails in
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FIG. 7. τ − p gather from a shot gather over a model with dipping interfaces (a), Trace extracted
from pg ≈ 0.3× 10−4 (b).

FIG. 8. τ − p gather from a CMP gather over a model with dipping interfaces (a), Trace extracted
from pg ≈ 0.3× 10−4 (b).

its ability to predict a significant portion of the multiple. Figures 13, 14, and 15 show CMP
gathers acquired from the same model, as can be seen the prediction is now much more
robust in the presence of dip. It is only when the dip becomes severe (around 25 degrees)
that the prediction is significantly effected. These results show that in the presence of dip,
leveraging properties of the CMP gather leads to a much more robust prediction.

Figure 16 shows the energy removed by the prediction at a given dip, relative to the
energy removed in the flat layer case. Assuming that all of the multiple energy was removed
in the zero dip case, then a value of one on either curve, indicates that a given prediction
was perfect relative to the zero dip case, the smaller a value the worse the prediction was.
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FIG. 9. Velocity model used to generate shots and CMP gathers for multiple prediction.

FIG. 10. Shot gather over model with flat layers (a), resulting prediction using the 1.5D planewave
prediction scheme (b).
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FIG. 11. Shot gather over model with the second layer dipping at 10 degrees (a), resulting prediction
using the 1.5D planewave prediction scheme (b).

FIG. 12. Shot gather over model with the second layer dipping at 25 degrees (a), resulting prediction
using the 1.5D planewave prediction scheme (b).
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FIG. 13. CMP gather over model with flat layers (a), resulting prediction using the 1.5D planewave
prediction scheme (b).

FIG. 14. CMP gather over model with the second layer dipping at 10 degrees (a), resulting predic-
tion using the 1.5D planewave prediction scheme (b).
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FIG. 15. CMP gather over model with the second layer dipping at 25 degrees (a), resulting predic-
tion using the 1.5D planewave prediction scheme (b).

FIG. 16. Energy removed relative to energy removed in the case of a flat reflector versus dip.

In figure 16 the red curve indicates prediction from the CMP gathers, and the blue curve
predictions from the shot gathers. Figure 16 clearly shows that the prediction employed on
CMP gathers remains much more accurate in the presence of dip.

Although the following examples were encouraging, it is necessary to investigate how
these results hold up on more complicated models. Figure 17 shows a velocity model
with three dipping interfaces of 2,4, and 6 degrees respectively. Figure 18 shows a split
spread shot gather from the model in figure 17 in (a), and the resulting prediction in (b).
Figure 19 shows the same thing as 18 but for a CMP gather. These examples show that
in the presence of shallowly dipping layers, the prediction on the shot gather is not very
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FIG. 17. Velocity model with three dipping interfaces.

FIG. 18. Shot gather from center of model in figure 17 (a), resulting prediction using the 1.5D
planewave prediction scheme (b).
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FIG. 19. CMP gather from center of model in figure 17 (a), resulting prediction using the 1.5D
planewave prediction scheme (b).

successful, however, the prediction on the CMP gather remains very successful.

CONCLUSIONS

Typically when a dataset is acquired over 2D geology, if we wish to be successful in
predicting all multiples we must apply a full 2D internal multiple prediction based on the
inverse scattering series. Unfortuantely, this is a very computationally expensive proposi-
tion, which is not yet fully realizable on large datasets. We set out with the goal of finding
a way of applying the more efficient 1.5D algorithm on data acquired from 2D geology.
It was shown that provided the source side and receiver side horizontal slowness were ap-
proximately equal (pg ≈ ps) then the 1.5D algorithm could be successfully applied. We
then derived the traveltime equation for rays in dipping strata and showed that the travel-
time equation for a common midpoint geometry was a function of the average of the source
side and receiver side slowness (p̄). It was then argued that if pg ≈ p̄ ≈ ps that the 1.5D
algorithm could be successfully applied to CMP gathers from 2D (dipping) geology. Exam-
ples showed that predictions from shot gathers over dipping strata lost accuracy relatively
rapidly as the dip increased, however, the predictions from the CMP gathers maintained a
high level of accuracy even in the presence of large dip.
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APPENDIX A: TRAVELTIME EQUATION FOR A RAY IN DIPPING MEDIA
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FIG. 20. Geometry for critically refracted ray in medium with dipping strata.
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Eaid and Innanen

TAF =
AC

v0
+

CD

v1
+

DF

v0
=

AC +DF

v0
+

CD

v1

Using the relation that CD = L−BC −DE,

TAF =
AC +DF

v0
+

L−BC −DE

v1

Making the substitutions L = xg cos γ, AB · tan θc = BC, and EF · tan θc = DE.

TAF =
AB + EF

v0 cos θc
+

xg cos γ − tan θc(AB + EF )

v1

Collecting like terms and subbing in the appropriate trigonometric form of tan θc.

TAF =
xg cos γ

v1
+ (AB + EF )

[
1

v0 cos θc
− sin θc

v1 cos θc

]

Pulling out the common denominator, and using Snell’s law to substitute for sin θc.

TAF =
xg cos γ

v1
+

(AB + EF )

v0 cos θc

[
1−

(
v0
v1

)2]

Using the relations, sin θc = v0
v1

, and cos2 θ = 1− sin2 θ

TAF =
xg cos γ

v1
+

(AB + EF ) cos θc
v0

Making use of EF = xg sin γ +AB, and sin θc
v0

= 1
v1

.

TAF =
xg cos γ sin θc

v0
+

(
AB +AB + xg sin γ

)
cos θc

v0

TAF =
xg

v0

(
cos γ sin θc + sin γ cos θc

)
+ 2

AB

v0
cos θc

Now using the trig identity sin(A±B) = sinA cosB ± cosA sinB.

TAF =
xg

v0
sin(γ + θc) + 2

z cos θc
v0

Using β = γ + θc, in conjunction with z = h · cos γ.

TAF =
xg

v0
sinβ +

2h cos γ cos θc
v0

Now making use of the relations pB = sin β
v0

, and cosA cosB = cos(A−B) + cos(A+B).

TAF = xgpB +
h
[
cos(γ − θc) + cos(γ + θc)

]
v0
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CMP multiple prediction

Finally using, α = γ − θc, β = γ + θc, and qA = cosα
v0

, qB = cos β
v0

.

TAF = xgpB +
h

v0

[
cosα+ cosβ

]
TAF = xgpB + h

(
qA + qB

)
Intuitvely this may be extended to many interfaces giving us the result in equation (14).

T = pbx+
∑
j

hj(qaj
+ qbj )
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