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ABSTRACT

We investigate the simulation of wave propagation in attenuation medium within ap-
proximating constant-Q. Such wave propagation can be modelled with a finite difference
scheme by introducing a series of standard linear solid (SLS) mechanisms, and it can be
carried out within a computationally tractable region by making use of perfectly-matched
layer (PML) boundary conditions. To consider the effects of the number of relaxation
mechanisms (L), we compare numerical and analytical solution of the wave equation for
a homogeneous and complex medium. In the weak attenuation (Q = 100), the numerical
solutions using a series of SLS relaxation mechanisms and analytical solutions agree very
well, and the acoustic and viscoacoustic RTM images have similar artifacts and amplitudes
in the shallow layers. At the deeper layers, we can see that a series of SLS mechanisms
RTM yield comparable results with the acoustic RTM case. In strong attenuation (Q = 20),
when the wave reaches greater depth, the error of numerical solutions using single SLS
mechanism increase and the viscoacoustic RTM images using a single SLS mechanisms
are not so accurate in the deeper layers. Although the results of single SLS relaxation
mechanism are still useful for practical application, the three SLS relaxation mechanisms
are quite accurate for both weak and strong attenuation.

INTRODUCTION

Attenuation is an increasingly indispensable component of wavefield simulation in seis-
mic exploration and monitoring applications. It is a key element in many recent instances
of data modelling, reverse time migration (RTM), and full waveform inversion (FWI). A
standard linear solid model (SLS) for attenuation is one of many mathematical Q models
that describes the wave propagation. McDonal et al. (1958) perform the constant-Q model,
i.e., the attenuation coefficient is considered to be approximately linear with frequency.
Kjartansson (1979) use a linear model for attenuation of the wave with Q independent of
frequency, which is mathematically simple and completely specified by phase velocity and
Q. Liu et al. (1976) and Carcione et al. (1988) developed an efficient method based on the
general standard linear solid (SLS) to simulate nearly constant Q model.
The main point in the nearly constant-Q method is the selection of the appropriate num-
ber of mechanisms, i.e., L. Although the results of single SLS relaxation mechanism are
acceptable for practical application (Blanch et al., 1995), the three SLS (L=3) is consid-
ered to be accurate for weak and strong attenuations mediums(Emmerich and Korn, 1987;
Savage et al., 2010). In this paper, we investigate the simulation of wave propagation in
attenuation medium within approximating constant-Q using an unsplit-field viscoacoustic
wave equation in the time domain. To consider the accuracy of the number of relaxation
mechanisms (L), we compare numerical and analytical solution of the wave equation for a
homogeneous and complex medium over a frequency band. Also, we investigate the accu-
racy of single, three, and five SLS relaxation mechanisms on RTM images.
This article is organized as follows. In the first section we describe the background of
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research, and then the attenuation model is presented in the second section. In the third
section, we introduce the unsplit-field PML formulation of the approximate constant-Q vis-
coacoustic wave equation. Numerical results on synthetic data are presented in the fourth
section.

ATTENUATION MODEL

The 2D viscoacoustic wave field can be solved for through a system of first-order dif-
ferential equations in terms of stresses and the particle velocities. In linear viscoelasticity,
the basic hypothesis is that the value of the stress tensor depends upon the time-history of
the strain tensor. The viscoelastic hypothesis can be expressed as (Christense, 1982)

σ = G(t) ∗ ε̇, (1)

whereG(t) is the relaxation function and the symbol * denotes time convolution. The equa-
tions describing wave propagation in viscoacoustic media can be derived in terms of the
stress relaxation function. The constant-Q model for attenuation is linear with frequency
and obtain by applying properties of the convolution and then transforming Equation 1 to
the frequency domain as

σ(ω) = M(ω)ε(ω), (2)

where M(ω) is the complex relaxation modulus, and ω is the angular frequency. The
attenuation effects described by the quality factor and the phase velocity dispersion. The
quality factor is given by Carcione et al. (1988)

Q(ω) = Re[M(ω)]/Im(M(ω)), (3)

where Re and Im are the real and imaginary parts, respectively. The frequency-dependent
phase velocity is the angular frequency divided by the real wavenumber

υp(ω) = (Re[
√
ρ/M(ω)])−1, (4)

where ρ is the medium density.
To investigate the attenuation effects model of absorption mechanism must be defined. We
consider the generalized standard linear solid model (GSLS) to obtain a nearly constant
quality factor (Liu et al., 1976) over the frequency range. The complex modulus of a GSLS
can express in the frequency-domain as

M(ω) = MR

[
1− L+

L∑
l=1

1 + ωτεl
1 + ωτσl

]
, (5)

where MR is the relaxed modulus, and τσl and τεl are the stress and strain relaxation times
given by

τσl =

√
1 + 1/Q2

0l − 1/Q0l

ω
, (6)

τε =
1

ω2τσl
.
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a) b)

FIG. 1. The dissipation factor of single standard linear solid (a) and three SLS mechanisms (b). In
this case Q̄ = 100, the system is composed of L relaxation peaks of maximum value of Q−1

0 each,
and equally distributed in the log(ω) scale.

a) b)

FIG. 2. The dissipation factor of single standard linear solid (a) and three SLS mechanisms (b). In
this case Q̄ = 20, the system is composed of L relaxation peaks of maximum value of Q−1

0 each,
and equally distributed in the log(ω) scale

Where ω and Q0l are the center angular frequency of relaxation peak, and the minimum
quality factors respectively. The experiment results have shown that the earth materials
have constant Q over a limited range of frequency (Bourbie et al., 1987). Therefore the
quality factor is usually considered to be constant in the exploration frequency bandwidth.
For generalized standard linear solid model (GSlS), the quality factor is

Q =
Re[M(ω)]

Im[M(ω)]
=

1 +
∑L

l=1

ω2τ2σl
1+ω2τ2σl

τ∑L
l=1

ωτσl
1+ω2τ2σl

τ
, (7)

where τ = (τεl/τσl) − 1 (Blanch 1995). By applying the approximation τεl ≈ τσl the
dissipation factor (Q−1) for single mechanism can be obtained as (Bourbie et al., 1987):

Q−1 =
ω(τε − τσ)

1 + ω2τστε
, (8)
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a) b)

FIG. 3. The effect of increasing number of mechanisms on minimum quality factor for (a) constant
Q̄ = 100, and (b) constant Q̄ = 20.

With Eqs. (1) and (4) and assumption τ0l = (τσlτεl)
1/2 and Q0l = 2τ0l/τεl − τσl (Casula

and Carcione, 1992)the seismic quality factor Q for a GSLS can be obtained as:

Q = Q0L

(
L∑
l=1

2ωτ0l
1 + ω2τ 20l

)−1
, (9)

The almost constant quality factor is a quality factor at central of frequency band, Q(ω0) =
Q̄, thus

Q̄ = Q0L

(
L∑
l=1

2ω0τ0l
1 + ω2

0τ
2
0l

)−1
. (10)

Using Equation 10, we consider the dissipation factor for different value of constantQ over
a broad frequency range( between 5Hz and 125Hz). The dissipation factor of single and
three pairs of relaxation mechanisms for constant Q of 100 displayed in Figure 1. The dis-
sipation factor of constant Q is a match to the dissipation factor of minimum quality factor
Q0 and represents a single relaxation peak at ω0 = 1/τ0 (Figure 1a). In Figure 1b we study
the dependence of dissipation factor on the number of single standard linear elements. For
L=3, the curve composed of 3 single mechanisms each with maximum dissipation factor
Q0−1. However, to consider the series of a single standard linear solid model with the
accurate approximation of constant Q̄ the minimum quality factor Q0 must be calculated
correctly. Similarly, in Figure 2 the dissipation factor for single and three pairs of relax-
ation mechanisms for constant quality factor Q̄ = 20 are displayed. The effect of increasing
number of mechanisms on minimum quality factor shown in Figure 3.
In order to investigate the accuracy of a series of single standard linear solid mechanisms,
the dissipation factor (Q−1) and phase of the velocity of five, three, and one SLS mech-
anisms compared with the theoretical model. The reference phase velocity is 2.5km/s,
and the reference band is 5 − 125Hz. For Q = 100, the three SLS fits the theoretical
model curves very well in the central frequency. Note, the one, and five SLS have a good
approximation to the phase velocity and dissipation factor around the reference frequency
(Figure 4). In Figure 5 the dissipation factor and phase velocity of five, three and one SLS
mechanisms for the strong attenuation case are compared with the theoretical model. In
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this case, We found the three SLS mechanisms fit the theoretical model curves in the cen-
tral frequency, and the single and five SLS mechanisms have a good approximation to the
phase velocity and dissipation factor around the center frequency.

UN-SPLIT PML FORMULATION FOR VISCOACOUSTIC WAVE

The wave equation of the GSLS model based viscoacoustic medium theory expressed
as follows (Robertsson et al., 1994):

∂ux
∂t

= −1

ρ

∂P

∂x
, (11)

∂uz
∂t

= −1

ρ

∂P

∂z
,

∂P

∂t
= −MR

(
∂ux
∂x

+
∂uz
∂z

)[
1−

L∑
`=1

(
1− τε`

τσ`

)]
−

L∑
`=1

r`, (12)

∂r`
∂t

= − 1

τσ`
r` + ρc2p

(
∂ux
∂x

+
∂uz
∂z

)
1

τσ`

(
1− τε`

τσ`

)
, 1 ≤ ` ≤ L, (13)

where ux(x, t) and uz(x, t) are the particle velocity components in the x- and z-directions
respectively. P (x, t) is pressure wavefield , ρ(x) is density, and r` are referred to as memory
variables (Carcione et al., 1988). In order to introduce the PML boundary for such viscoa-
coustic waves, the first-order linear differential equations are modified using the complex
coordinate stretching approach. In the frequency domain, derivative operators replaced as
follows

∂x →
[
1 +

id(x)

ω

]
∂x, (14)

∂z →
[
1 +

id(z)

ω

]
∂z.

By applying the complex coordinate stretching to the first-order linear differential Equa-
tions 11, 12, and 13 in the frequency domain and transforming back to the time domain
(Fathalian and Innanen, 2016) the unsplit-field PML equations of the GSLS model based
viscoacoustic medium theory can obtain as

∂P

∂t
= −K

[
∂(ux + d(z)u

(1)
x )

∂x
+
∂(uz + d(x)u

(1)
z )

∂z

][
1−

L∑
`=1

(
1− τε`

τσ`

)]
(15)

− [d(x) + d(z)]P − d(x)d(z)p(1) −
L∑
`=1

r`,
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a)

b)

FIG. 4. The dissipation factor (a) and phase velocity (b) of constant Q = 100. The black line corre-
sponds to constant Q = 100, red line corresponds to one SLS (Q0 = 100), blue line corresponds to
three SLS (Q0 = 59), and cyan line corresponds to five SLS (Q0 = 65).
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a)

b)

FIG. 5. The dissipation factor (a) and phase velocity (b) of constant Q = 20. The black line
corresponds to constant Q = 20, red line corresponds to one SLS (Q0 = 20), blue line corresponds
to three SLS (Q0 = 11.9), and cyan line corresponds to five SLS (Q0 = 13.1).
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∂ux
∂t

= −1

ρ

∂P

∂x
− d(x)ux, (16)

∂uz
∂t

= −1

ρ

∂P

∂z
− d(z)uz, (17)

∂rl
∂t

= − 1

τσ
rl +K

[
∂(ux + d(z)u

(1)
x )

∂x
+
∂(uz + d(x)u

(1)
z )

∂z

]
1

τσl

(
1− τεl

τσl

)
(18)

− [d(x) + d(z)] rl − d(x)d(z)r
(1)
l .

where the auxiliary variables u(1)x , u(1)z , P (1) , and r(1) are the time-integrated components
for velocity, pressure, and memory variable fields. They defined as

u(1)x (X, t) =

∫ t

−∞
ux(X, t

′
)dt

′
, (19)

u(1)z (X, t) =

∫ t

−∞
uz(X, t

′
)dt

′
,

P (1)(X, t) =

∫ t

−∞
P (X, t

′
)dt

′
,

r(1)(X, t) =

∫ t

−∞
r(X, t

′
)dt

′
.

To consider the effects of the number of relaxation mechanisms (L), we compare nu-
merical and analytical solution of the wave equation for a homogeneous medium with
a background velocity of 2500 m/s for different values of quality factor (Q = 20, and
Q = 100). In Figure 6a depth profiles of the wavefield extracted at three different times
with Q = 100 are plotted. In the weak attenuation case(Q = 100 ), As the wave begins
to propagate, the numerical and analytical solutions agree very well. And when the prop-
agation time increases and the wave reached greater depth, the single SLS mechanism is
still significant compared to the analytical results. For strong attenuation (Q = 20), the
numerical results (FD) and analytical solution displayed in Figure 6b. The numerical and
analytical solution match very well but wave the reaches greater depth, the single SLS
mechanism not matched with the analytical results and mismatch increases with depth.

NUMERICAL RESULTS

To investigate the accuracy of the SLS mechanisms we consider the homogenous and
the Marmousi model. We examine the numerical character of the solutions of the constant-
Q wave equation as created using the unsplit-field PML boundary approach. We first con-
sider the propagation of waves in a homogeneous model. The viscoacoustic medium con-
sidered here characterized by the constant velocity model, where the size of the grid is
1001×1001. The source located at the point (2000m, 2000m) and the source signature is
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a)

b)

FIG. 6. Depth traces of FD and analytical solution shown at three different time steps for (a)Q = 100,
and (b) Q = 20. The solid black lines, dashed blue lines, dashed red lines, and dashed green lines
represent the analytical solutions, numerical solutions with L=1, L=3, and L=5 respectively.
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a)

b)

FIG. 7. (a)Snapshots showing an expanding wavefront at different time step for a acoustic medium
(left panels), and for a medium with attenuation (Q = 100) with three mechanisms (L = 1, L = 3,
and L = 5). (b) Depth traces from Figure (a) showing the effect of attenuation on the amplitude and
phase of propagating wave with three different SLS.
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a)

b)

FIG. 8. (a)Snapshots showing an expanding wavefront at different time step for a acoustic medium
(left panels), and for a medium with attenuation (Q = 20) with three mechanisms (L = 1, L = 3,
and L = 5). (b) Depth traces from Figure (a) showing the effect of attenuation on the amplitude and
phase of propagating wave with three different SLS
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a) b)

FIG. 9. Portion of the Marmousi velocity model (a) and Q model (b)..

a zero-phase Ricker wavelet with a central frequency of 25 Hz. The grid spacing in the x
and z directions is 4m. An unsplit-field PML absorbing boundary condition is applied to
the sides and bottom of the model. In Figure 7a snapshots of the 2D viscoacoustic wave-
field with different mechanisms using the unsplit-field PML absorbing layers are plotted.
There are two main effects visible, reduced amplitude and phase shift due to dispersion.
The phases do not match, and mismatch increases with depth because of velocity disper-
sion in the attenuating media. For moderate attenuation values (Q=100), as shown in Fig-
ure 7b, the attenuation effects at different depths for a single and series of SLS mechanisms
(L = 1, L = 3, and L = 5) are still significant compared to the black curves that repre-
sent the acoustic case (no attenuation). As the wave begins to propagate, the amplitudes
for the acoustic and viscoacoustic cases are very similar, but when the propagation time
increases and the wave reach greater depth, its amplitude is strongly attenuated especially
for the case Q=20 (Figure 8a). Also, when the wave reaches grater depth, the single SLS
mechanism is not so accurate because of a mismatch with the three relaxation mechanisms
results(Figure 8b).

In the second example, we consider wave propagation within the acoustic Marmousi
model. A portion of the velocity model, 6km wide and 3 km in depth, is illustrated in Fig-
ure 9a. A shot is positioned at a 500m distance and a depth of 12m. From this point, a wave
with a time dependence given by a zero-phase Ricker wavelet with a center frequency of
25Hz propagates into the model. We position an array of receivers at the same depth, 4m
apart. The Q model includes constant quality factors with different values, while the back-
ground model has Q = 100 (Figure 9b). The first-order pressure-velocity viscoacoustic
wave equation using PML absorbing boundary condition is used to compute the synthetic
seismograms. The FD staggered-grid contains 4th-order accuracy in space and 2nd-order
accuracy in time. In Figure 10 the FD synthetic data of acoustic and viscoacoustic with a
series of SLS mechanisms (L = 1, L = 3, and L = 3) are displayed. The shots include
first arrivals, multiples, reflections, refractions, and diffraction. The viscoacoustic simula-
tion exhibits reduced amplitude (particularly multiples) and shifted phase due to velocity
dispersion. There are two main effects visible, reduced amplitude and phase shift due to
velocity dispersion. Trace number 600 for acoustic and viscoacoustic data (L = 1, L = 3,
and L = 5) is illustrated in Figure 11. We can see that the viscoacoustic data are very
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a) b)

c) d)

FIG. 10. Shot record from acoustic simulation (a), viscoacoustic (L = 1) simulation (b), viscoa-
coustic (L = 3) simulation, and viscoacoustic (L = 5) simulation using PML absorbing boundary
condition.

a) b)

FIG. 11. Depth traces of FD showing the comparison trace number 150 of acoustic (black line),
viscoacoustic (L = 1(dashed red line)) , and viscoacoustic (L = 3(dashed blue line)).
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a) b)

c) d)

FIG. 12. The S spectrum of the shot record from acoustic simulation (a), viscoacoustic (L = 1)
simulation (b), viscoacoustic (L = 3) simulation, and viscoacoustic (L = 5) simulation.
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a) b)

c)

FIG. 13. Difference between acoustic and viscoacoustic data (L = 3) (a), viscoacoustic (L =
3) and viscoacoustic (L = 1) data, and viscoacoustic (L = 3) and viscoacoustic (L = 5). The
viscoacoustic(L = 3) and viscoacoustic (L = 5) are very close together.
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a) b)

c)

FIG. 14. The S spectrum of difference between acoustic and viscoacoustic data (L = 3) (a),
viscoacoustic (L = 3) and viscoacoustic (L = 1) data, and viscoacoustic (L = 3) and viscoacoustic
(L = 5). The viscoacoustic(L = 3) and viscoacoustic (L = 5) are very close together.
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FIG. 15. The layered velocity model

similar together. However, the single SLS mechanism has some error compared with the
three relaxation mechanisms in the gather depth with the strong attenuation. We know that
in the attenuation media the reflection wave energy decay with the increase of the depth,
so the frequency bandwidth become narrow, the high frequency more decay and the domi-
nant frequency move to the low frequency(Figure 12). The difference waveforms between
the acoustic and viscoacoustic data are shown in Figure 13. This figure include the dif-
ference waveforms between the acoustic and viscoacoustic data (L = 3) (Figure 13a), the
viscoacoustic data(L3) with viscoacoustic data(L = 1) (Figure 13b), and the viscoacoustic
data(L = 3) with viscoacoustic data(L = 5) (Figure 13c)results. For strong attenuation val-
ues, as the wave begins to propagate, the viscoacoustic (L = 3) and viscoacoustic (L = 1)
data are very similar. When the wave reaches grater depth, the single SLS mechanism is not
so accurate because of mismatch with the three relaxation mechanisms results(Figure 13b.
In Figure 13c, two viscoacoustic data with L = 3 and L = 5 are close together, and
there is no significant difference between them. The S spectrum of Figure 13 are shown in
Figure 14.

REVERSE TIME MIGRATION

In this section, we consider the accuracy of nearly constant-Q wave propagation by se-
ries of standard linear solid (SLS) for RTM images with attenuation for a layered model
using a time-space domain FD method. We use as the source a zero-phase Ricker wavelet
with a center frequency of 25Hz. The synthetic data are migrated by using the acoustic
RTM and viscoacoustic RTM with a different number of mechanisms (L = 1, L = 3, and
L = 5). Perfectly matched layer (PML) absorbing boundary conditions are used to atten-
uate the reflections from an artificial boundary. In Figure 15 a layered model is displayed.
The model grid dimensions are 501×401, the grid size is 4 m×4 m, and the quality factors
for the background are Q = 100 and Q = 20 respectively. The sampling interval is 0.4ms,
and the recording length is 2s.
For weak attenuation,i.e., constant Q = 100, the RTM images are shown in Figure 16,
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a) b)

c) d)

FIG. 16. The RTM images of the layered model with background attenuation (Q = 100) (a)
acoustic RTM (reference), (b) viscoacoustic RTM (L = 1), (c) viscoacoustic RTM (L = 3) and
(b)viscoacoustic RTM (L = 5).
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FIG. 17. Depth slices from Figure 13 showing the effect of attenuation and comparison of acoustic
(Black solid line), viscoacoustic L = 1 (dashed red line), viscoacoustic L = 3 (green solid line), and
viscoacoustic L = 5 (dashed blue line).
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a) b)

c) d)

FIG. 18. The RTM images of the layered model with background attenuation (Q = 20) (a)
acoustic RTM (reference), (b) viscoacoustic RTM (L = 1), (c) viscoacoustic RTM (L = 3) and
(b)viscoacoustic RTM (L = 5).
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FIG. 19. Depth slices from Figure 15 showing the effect of attenuation and comparison of acoustic
(Black solid line), viscoacoustic L = 1 (dashed red line), viscoacoustic L = 3 (green solid line), and
viscoacoustic L = 5 (dashed blue line).

CREWES Research Report — Volume 29 (2017) 21



Fathalian et. al

which includes the acoustic RTM without attenuation (reference) (Figure 16a), the viscoa-
coustic RTM with a different number of mechanisms (Figure 16b, c, and d) results. The
attenuation affects the amplitudes and the phases of the propagating waves, effects which
are not taken into account in the acoustic RTM image. In Figure 17 we compare the depth
traces of acoustic and viscoacoustic data with a different number of SLS mechanisms. The
acoustic and viscoacoustic RTM images have similar artifacts and amplitudes in the shal-
low layers. At the deep layers, we can see that the single, three, and five SLS mechanisms
yield comparable results with the acoustic case.
For the strong attenuation value, i.e., constant Q = 20, the RTM images of the single,
three, and five SLS mechanisms are shown in Figure 18 and compare with the acoustic
case results. The viscoacoustic RTM images have very weak amplitudes in the deeper lay-
ers with strong attenuation (Figures 17b, c, and d). In Figure 19 we show a comparison of
amplitudes between acoustic and viscoacoustic data. The three and five SLS mechanisms
results agree very well together, while the single SLS mechanism is not so accurate than
them. However in the deeper layer the error of single SLS mechanism increase, the results
are still useful for practical application.

CONCLUSIONS

Time-domain approximate constant-Q wave propagation involving a series of standard
linear solid (SLS) mechanisms is investigated. We found that the numerical results and
analytical solutions using single and a series of standard linear solid (SLS) mechanisms in
the weak attenuation medium agree very well. In strong attenuation when the wave reaches
greater depth, the error of numerical solutions using single SLS mechanism increase and the
viscoacoustic RTM images using a single SLS mechanisms are not so accurate. Although
modeling of a single SLS relaxation mechanism is still useful for practical application and
faster than three and five SLS mechanisms, the three SLS relaxation mechanisms are quite
accurate for both weak and strong attenuation.
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