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ABSTRACT

We investigated the simulation of Viscoacoustic wave propagation and reverse time mi-
gration (RTM) in transversely isotropic (TI) media, vertical TI (VTI) and tilted TI (TTI),
within approximating constant-Q. Reverse time migration (RTM) is based on two-way
wave equation and has advantages over than other imaging methods. Such wave propa-
gation can be modeled with a finite difference scheme by introducing a series of standard
linear solid (SLS) mechanisms, and it can be carried out within a computationally tractable
region by making use of perfectly-matched layer (PML) boundary conditions. The Viscoa-
coustic wave equation for VTI and TTI mediums have been derived using the wave equation
in anisotropic media by setting shear wave velocity as zero. Using the TI approximation
and ignoring all spatial derivatives of the anisotropic symmetry axis direction leads to insta-
bilities in some area of the model with the rapid variations in the symmetry axis direction.
A solution to this problem is proposed that involves using a selective anisotropic parameter
equating in the model to reduce the difference of Thompson parameters in areas of rapid
changes in the symmetry axes. To eliminate the high-frequency instability problem, we
applied the regularization operator and built a stable Viscoacoustic wave propagator in Ti
media. After correcting for the effects of anisotropy and viscosity, the anisotropy RTM im-
age in attenuation media with high resolution is obtained and compared with the isotropic
RTM image.

INTRODUCTION

Attenuation is an increasingly indispensable component of wavefield simulation in seis-
mic exploration and monitoring applications. It is a key element in many recent instances
of data modeling, reverse time migration (RTM), and full waveform inversion (FWI). To
consider the anisotropic media, the isotropic acoustic assumption for seismic processing
and imaging method is not useful and affected the resolution and placed images of subsur-
face structures (Zhou et al., 2006a). Therefore, it is necessary to focus on the anisotropy
and viscosity for complex media to obtain a significant improvement in image resolution
and positioning. There are to way to consider the anisotropic medium, the pseudo-acoustic
wave equation and the pure acoustic wave equation. Alkhalifah (1998, 2000) derived the
pseudo-acoustic wave equation from the dispersion relation by setting the shear-wave ve-
locity along the anisotropy symmetry axis to be zero. To reduce the computational time,
based on pseudo-acoustic approximation, Zhou et al. (2006b) and Duveneck et al. (2008)
developed and simplified the pseudo-acoustic wave equation into two coupled second- or-
der partial differential equations to account for VTI media. Although the VTI wave equa-
tion is used to image structures which have similar properties with a VTI media (Crampin,
1984), but may not be satisfied in anisotropic dipping layers. The TTI equations have been
derived from VTI equations by assuming the symmetry axis is non-vertical and locally
variable (Fletcher et al., 2008; Zhang and Zhang, 2008). The TI wave equations with the
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zero value of SV wave’s velocity on the axis symmetry can’t remove the effect of the resid-
ual shear wave, so the instability occurs. Fletcher et al. (2009) proposed the equations by
adding non-zero S-wave velocity terms to solve the problem. To stabilize wave propagation
and reduce shear wave artifacts the parameters models of anisotropy can be smoothing be-
fore numerical simulation, and setting ε = δ in the regions around source and areas with the
high symmetry axis gradient (Zhang and Zhang, 2008; Yoon et al., 2010). However, to in-
vestigate the RTM images in anisotropic viscoelastic medium, generally, the focus is on the
anisotropy or viscosity. In this work, we focus on both anisotropy and viscosity to obtain
the accurate RTM images. In this paper, we investigate the simulation of wave propagation
in anisotropic viscoacoustic medium within approximating constant-Q using a split-field
PML equation in the time domain, and derive a viscoacoustic wave equation of VTI and
TTI mediums. This article is organized as follows. In the first section we describe the
background of research, and then the anisotropic model is presented, and we introduce the
split-field PML formulation of the approximate constant-Q anisotropic viscoacoustic wave
equation for VTI and TTI mediums in the second section. Numerical results on synthetic
data are presented in the fourth section.

VISCOACOUSTIC WAVE EQUATION IN ANISOTROPIC MEDIA

In this section, we derive systems of first-order differential equations regarding the
particle velocities and stresses that describe the propagation of waves in anisotropic media.
The starting point for driving viscoacoustic wave equations is Hook’s law, with the elastic
tensor, together with the equation of motion in anisotropic media with Vs = 0 (Alkhalifah,
2000). We derive the viscoacoustic VTI equation directly from the acoustic VTI media and
then the viscoacoustic TTI wave equations will calculate by introducing a rotation.

VISCOACOUSTIC VTI MEDIA EQUATION

In 2D case, the first order acoustic wave equations of VTI media is expressed as follow
(Duveneck et al., 2008)

σH = ρV 2
P

[
(1 + 2ε)ε11 +

√
1 + 2δε33

]
, (1)

σV = ρV 2
P

[√
1 + 2δε11 + ε33

]
,

where σH and σV represent the horizontal and vertical stress components respectively.
ε and δ are Thomsen parameters, and the εijare the diagonal elements of strain tensor.
The first order differential equations of acoustic VTI media can be obtained by taking a
time derivative of stress-strain relationship given in eq.1 and combining the result with the
equations of motion

∂tux = (1/ρ)∂xσH , (2)
∂tuz = (1/ρ)∂zσV ,

∂tσH = ρV 2
P

[
(1 + 2ε)∂xux +

√
1 + 2δ∂zuz

]
, (3)

∂tσV = ρV 2
P

[√
1 + 2δ∂xux + ∂zuz

]
,
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where ∂tεij = ∂xiui has been used, and ux, and uz are components of the particle velocity
vector. Based on acoustic anisotropic medium, eq.2 and eq.3 can modify to extend an
viscoacoustic anisotropic medium. The viscoacoustic wave equation in anisotropic media
for a series of SLS can be written as

∂tux = (1/ρ)∂xσH , (4)
∂tuz = (1/ρ)∂zσV ,

∂tσH = ρV 2
P

[
(1 + 2ε)

[[
1−

L∑
`=1

(
1− τε`

τσ`

)]
∂xux −

L∑
`=1

rH`

]
+
√
1 + 2δ∂zuz

]
, (5)

∂tσV = ρV 2
P

[
√
1 + 2δ∂xux +

[
1−

L∑
`=1

(
1− τε`

τσ`

)]
∂zuz −

L∑
`=1

rV `

]
,

where rH`, and rV `, which are referred to as memory variables of horizontal and vertical
stress components (Carcione et al., 1988), satisfy

∂trH` = −
1

τσ`
rH` + ρV 2

p (∂xux)
1

τσ`

(
1− τε`

τσ`

)
, (6)

∂trV ` = −
1

τσ`
rV ` + ρV 2

p (∂zuz)
1

τσ`

(
1− τε`

τσ`

)
.1 ≤ ` ≤ L,

The stress and strain relaxation parameters, τε and τσ, are related to the quality factor Q
and the reference angular frequency ω as (Robertsson et al., 1994)

τσ =

√
1 + 1/Q2 − 1/Q

ω
, (7)

τε =
1

ω2τσ
.

where ω is the central frequency of the source wavelet.

In order to introduce the PML boundary for such viscoacoustic waves, the first-order
linear differential equations are modified using the complex coordinate stretching approach.
In the frequency domain, derivative operators are replaced as follows

∂x →
[
1 +

id(x)

ω

]
∂x, (8)

∂z →
[
1 +

id(z)

ω

]
∂z.

By applying the complex coordinate stretching to the first-order linear differential equa-
tions 4, and 5 in the frequency domain we obtain

−iω
[
1 +

d(x)

−iω

]
ũx =

1

ρ
∂xσ̃H , (9)
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−iω
[
1 +

d(z)

−iω

]
ũz = −

1

ρ
∂zσ̃V , (10)

− iω
[
1 +

d(x)

−iω

] [
1 +

d(z)

−iω

]
σ̃H = ρV 2

P

[
(1 + 2ε)

[[
1−

L∑
`=1

(
1− τε`

τσ`

)]

×
(
1 +

d(z)

−iω

)
∂xũx −

L∑
`=1

rH`

]
+
√
1 + 2δ

(
1 +

d(x)

−iω

)
∂zũz

]
, (11)

− iω
[
1 +

id(x)

ω

] [
1 +

id(z)

ω

]
σ̃V = ρV 2

P

[√
1 + 2δ

(
1 +

d(z)

−iω

)
∂xũx+[

1−
L∑
`=1

(
1− τε`

τσ`

)](
1 +

d(z)

−iω

)
∂zũz −

L∑
`=1

rH`

]
, (12)

where ũx, ũz,σ̃H , and σ̃V are the temporal Fourier transforms of ux, uz, σH , and σV ,
respectively. To calculate the split-field PML formulations these equations must be trans-
formed back to the time domain. In the split-field PML formulations, the velocity, and
pressure fields are split into two independent parts based on the spatial derivative terms in
the original equations in two space dimensions. For one relaxation mechanism (L = 1),
which is sufficient for practical purposes (Blanch et al., 1995), equations 9, 10,11, and 12
are transformed back to time domain to get the split-field PML formulations

∂tux =
1

ρ
∂xσH − d(x)ux, (13)

∂tuz =
1

ρ
∂zσV − d(z)uz, (14)

∂tσH = ρV 2
P

[
(1 + 2ε)

[(
τε
τσ

)[
∂x(ux + d(z)u(1)x )

]
− rH

]
+
√
1 + 2δ

[
∂z(uz + d(x)u(1)z )

]]
− (d(x) + d(z))σH − d(x)d(z)σ(1)

H , (15)

∂tσV = ρV 2
P

[√
1 + 2δ

[
∂x(ux + d(z)u(1)x )

]
+

(
τε
τσ

)[
∂z(uz + d(x)u(1)z )

]
− rV

]
− (d(x) + d(z))σV − d(x)d(z)σ(1)

V , (16)
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a) b)

c) d)

FIG. 1: 2D wavefield snapshots in a viscoacoustic VTI medium with ε = 0.2, and δ = 0.05
a) σH , b) σV , c) ux, and d) uz. The shear wave artifacts are generated by source and have
not been suppressed.

where the auxiliary variables u(1)x , u(1)z , σ(1)
H , and σ(1)

V are the time-integrated components
for velocity, pressure and memory variable fields. When the seismic wave propagation,
the high-frequency leads to instability. To avoid the high-frequency effect on reverse time
propagation, the regularization must be considered. We construct a regularized equation
based on equations 15, and 16 in viscoacostic VTI media

∂tσH = ρV 2
P

[
(1 + 2ε)

[(
τε
τσ

)[
∂x(ux + d(z)u(1)x )

]
− rH

]
+
√
1 + 2δ

[
∂z(uz + d(x)u(1)z )

]]
−
[
ερVP

√
1 + 2ε[∂t(ux + d(z)u(1)x )]

]
− (d(x) + d(z))σH − d(x)d(z)σ(1)

H , (17)

∂tσV = ρV 2
P

[√
1 + 2δ

[
∂x(ux + d(z)u(1)x )

]
+

(
τε
τσ

)[
∂z(uz + d(x)u(1)z )

]
− rV

]
−
[
ερVP [∂t(uz + d(x)u(1)z )]

]
− (d(x) + d(z))σV − d(x)d(z)σ(1)

V . (18)

where ε is a small positive regularization parameter.

We examine the numerical character of the solutions of the wave equation for vis-
coacoustic VTI media as created using the split-field PML boundary approach. We first

CREWES Research Report — Volume 29 (2017) 5



Fathalian et. al

a) b)

c) d)

FIG. 2: 2D wavefield snapshots with suppression of source-generated shear wave artifacts.

consider propagation of waves in a homogeneous model. The anisotropic viscoacoustic
medium considered here is characterized by the constant velocity model ,VP = 2500m/s,
where the size of the grid is 651×651. The source is located at the point (1300m, 1300m),
and the source signature is a zero-phase Ricker wavelet with a central frequency of 25 Hz.
The grid spacing in the x and z directions is 4m, and the Thomsen anisotropic parameters
ε = 0.2 and δ = 0.05. In Figure 1 the 0.5s snapshots of the 2D anisotropic viscoacoustic
wavefield are plotted. The front wave of the P wave presents an elliptical shape because of
anisotropic effect.

There is a problem due to shear wave that generated by the source (Figure 1), which
for the acoustic and viscoacoustic medium have to regarded as artifacts(Alkhalifah, 2000;
Grechka et al., 2004). The shear wave artifacts generated in an elliptic media (ε 6= δ), and
they can suppress at the source by design a small smoothly tapered circular region with
ε = δ around the source(Figure 2). In Figure 2, there are only P waves and shear waves are
suppressed.

However, the shear waves that generated by source don’t consider as the problem when
the source located in the isotropic part of the model. In Figure 3 we show the effect of
attenuation on amplitude and phase of a propagating seismic wave in a inhomogeneous
medium for different values of quality factor (Q=infinity, Q=100, Q=20 and Q=10). The
attenuation affected the seismic wave energy, and the phase velocity of waves in all direc-
tions are inconsistent. In Figure 4 depth profiles of the wave field extracted at t = 0.5s
are plotted. The solid black line, solid blue line, dashed red line, and dashed black line
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a) b)

c) d)

FIG. 3: The 0.5s snapshots with four different quality factors in a VTI medium: (a) Q =
infinity, (b)Q = 100, (c) Q = 20, and (c) Q = 10.
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FIG. 4: Depth traces of FD showing the comparison trace number 370 of viscoacoustic
VTI medium with different Q.

represent the acoustic wave, and three examples of the viscoacoustic wave, with Q = 100,
Q = 20 and Q = 10 respectively. There are two main effects visible, reduced amplitude
and phase shift due to dispersion. The phases do not match, and mismatch increases with
the decrease of the Q value and the attenuation effect is more obvious.

VISCOACOUSTIC TTI MEDIA EQUATION

The one simplest and most practical approximations for anisotropic media is VTI medium,
while is only valid for simple geologic formations. In anticline structures and thrust sheets
where sediments are steeply dipping, the VTI medium approximation is not useful because
of non-vertical symmetry axis of the medium. Therefor, to consider such as areas is bet-
ter to use the tilted transversely isotropic (TTI) media. The one way to calculate the TTI
equations is to locally rotate the coordinate system of VTI medium. The rotation matrix as
function of the polar angle and azimuth angle is defined as

R =

cos θ cosϕ cos θ sinϕ − sin θ
−sinϕ cosϕ 0

sin θ cosϕ sin θ sinϕ cos θ

 (19)
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where θ represent the tilt angle and ϕ represent the azimuth of tilt for TTI symmetry axis.
The spatial derivative in a rotated coordinate system can be written as∂x′∂y′

∂z′

 = R

∂x∂y
∂z

 (20)

where primed refer to the rotated coordinate system. Substituting eq.20 into eq.4 and eq.5,
the 2D viscoacoustic wave equation in anisotropic TTI media for a series of SLS can be
written as

∂tux = (1/ρ)∂x′σH , (21)
∂tuz = (1/ρ)∂z′σV ,

∂tσH = ρV 2
P

[
(1 + 2ε)

[[
1−

L∑
`=1

(
1− τε`

τσ`

)]
∂x′ux −

L∑
`=1

rH`

]
+
√
1 + 2δ∂z′uz

]
,

(22)

∂tσV = ρV 2
P

[
√
1 + 2δ∂x′ux +

[
1−

L∑
`=1

(
1− τε`

τσ`

)]
∂z′uz −

L∑
`=1

rV `

]
,

where ∂x′ , and ∂z′ are the first order differential operators in the rotated coordinate system
aligned with the symmetry axis:

∂x′ = cos θ cosϕ∂x − sin θ∂z, (23)
∂z′ = cosϕ sin θ∂x + cos θ∂z,

For one relaxation mechanism (L = 1), substituting eq.23 in the eq.21, and eq.22 and ap-
plying the complex coordinate stretching to the first-order linear differential equations in
the frequency domain. To calculate the split-field PML formulations these equations trans-
formed back to the time domain. The split-PML viscoacoustic wave equations in TTI
medium become

∂tux =
1

ρ
(cos θ cosϕ∂x − sin θ∂z)σH − d(x)ux, (24)

∂tuz =
1

ρ
(cosϕ sin θ∂x + cos θ∂z)σV − d(z)uz, (25)

∂tσH = ρV 2
P

[
(1 + 2ε)

[(
τε
τσ

)[
(cos θ cosϕ∂x − sin θ∂z)(ux + d(z)u(1)x )

]
− rH

]
+
√
1 + 2δ

[
(cosϕ sin θ∂x + cos θ∂z)(uz + d(x)u(1)z )

]]
− (d(x) + d(z))σH − d(x)d(z)σ(1)

H , (26)

CREWES Research Report — Volume 29 (2017) 9



Fathalian et. al

a) b)

c) d)

FIG. 5: The 0.5s snapshots with four different quality factors in a VTI medium: (a) Q =
infinity, (b)Q = 100, (c) Q = 20, and (c) Q = 10.
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FIG. 6: Depth traces of FD showing the comparison trace number 370 of viscoacoustic
VTI medium with different Q.

∂tσV = ρV 2
P

[√
1 + 2δ

[
(cos θ cosϕ∂x − sin θ∂z)(ux + d(z)u(1)x )

]
+

(
τε
τσ

)[
(cosϕ sin θ∂x + cos θ∂z)(uz + d(x)u(1)z )

]
− rV

]
− (d(x) + d(z))σV − d(x)d(z)σ(1)

V , (27)

Similarly with VTI medium, the regularization must be considered because of high fre-
quency instability. We construct a regularization equation based on split-field PML equa-
tion in TTI medium:

∂tσH = ρV 2
P

[
(1 + 2ε)

[(
τε
τσ

)[
(cos θ cosϕ∂x − sin θ∂z)(ux + d(z)u(1)x )

]
− rH

]
+
√
1 + 2δ

[
(cosϕ sin θ∂x + cos θ∂z)(uz + d(x)u(1)z )

]]
−
[
ερVP

√
1 + 2ε

[
∂t[(cos θ cosϕ∂x − sin θ∂z)(ux + d(z)u(1)x )]

]]
− (d(x) + d(z))σH − d(x)d(z)σ(1)

H . (28)
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FIG. 7: P-wave velocity model.

∂tσV = ρV 2
P

[√
1 + 2δ

[
(cos θ cosϕ∂x − sin θ∂z)(ux + d(z)u(1)x )

]
+

(
τε
τσ

)[
(cosϕ sin θ∂x + cos θ∂z)(uz + d(x)u(1)z )

]
− rV

]
−
[
ερVP [∂t[(cosϕ sin θ∂x + cos θ∂z)(uz + d(x)u(1)z )]]

]
−(d(x)+d(z))σV −d(x)d(z)σ(1)

V .
(29)

where ε is a small positive regularization parameter.
Figure 5 shows time snapshots of viscoacoustic wave propagation in a 2D homogenous
anisotropic media. The anisotropic viscoacoustic medium considered here is characterized
by the constant velocity model ,VP = 2500m/s, where the size of the grid is 651×651.
The source is located at the center of model, and the source signature is a zero-phase Ricker
wavelet with a central frequency of 25 Hz. The grid spacing in the x and z directions is 4m,
and the Thomsen anisotropic parameters ε = 0.2 and δ = 0.05. Figure 5 corresponds to an
axis of symmetry tilting at 45. The compressional P wavefront is approximately ellipsoidal
and the shear wave artifacts generated in an elliptic media is suppress at the source by de-
sign a small smoothly tapered circular region with ε = δ around the source.However, to
avoid the numerical computation instability in TTI media, we applying the viscoacoustic
equation and simply setting the shear wave velocity along the tilted symmetry axis to zero
(pure P wave equation). In Figure 6 we show the effect of attenuation on amplitude and
phase of a propagating seismic wave in a homogeneous anisotropic medium for different
values of quality factor (Q=infinity, Q=100, Q=20 and Q=10). The attenuation affected
the seismic wave energy, and the phase velocity of waves in all directions are inconsis-
tent. There are reduced amplitude and phase shift due to dispersion. The phases do not
match, and mismatch increases with the decrease of the Q value and the attenuation effect
is more obvious (Figure 6). In the attenuation media the reflection wave energy decay with
the increase of the depth. Therefore, the frequency bandwidth becomes narrow, the high
frequency more decay and the dominant frequency move to the low frequency.
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a) b)

c) d)

FIG. 8: Transversely isotropic velocity model. a) Thomsen’s ε model, b) Thomsen’s δ
model, c)Tilted dip angle along the tilted symmetry-axis, and d)Q model.

SYNTHETIC RTM EXAMPLE

To verify the accuracy of the viscoacoustic wave equation in TTI media, the 2D data set
modeled in an inhomogeneous TTI velocity model(Duveneck and Bakker, 2011) is tested
(Figure 7). There are some dipping anisotropic layers in velocity model that terminating
against the salt body. TheQmodel and three anisotropy distributions are shown in Figure 8.
The rapid variation of the tilt angle affected the TTI RTM images. The model grid dimen-
sions are 700×1200, and the grid size is 6.25 m×6.25 m. The sampling interval is 0.8 ms,
and the recording length is 6 s. We use as the source a zero-phase Ricker wavelet with a
center frequency of 10 Hz. To remove the effect of S-wave that generated at the source the
source is located in the isotropic part of the model, i.e., ε = δ. In Figure 10a snapshots of
the 2D Viscoacoustic wavefield from the forward modeling simulation using the split-field
PML absorbing layers are plotted. The results indicate that there is instability around in
the salt area because of variation of the tilt angle. In fact, using the TI approximation and
ignoring all spatial derivatives of the anisotropic symmetry axis direction leads to insta-
bilities in some area of the model with the rapid variations in the symmetry axis direction
(Duveneck and Bakker, 2011). The instability appears at the later time and can be solved
with the smoothing of the model. Although smoothing the model would help in some mod-
els, but it is not useful for any models. However, Yoon et al. (2010)show that some spots
of high symmetry axis gradient produce large instabilities and blows up the amplitudes of
the wavefield (Figure 10a). In Figure 9a the gradient of theta is displayed. We can pick up
the high gradient points by filtering the gradient of theta with a given threshold (Figure 9b).
In area with instability, the anisotropy can be taken off around the selected high gradient
points which set ε = δ to suppress artifacts from the source point in an anisotropic medium.
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a)

b)

FIG. 9: (a) The gradient of the tilted dip angle theta. (b) The filtered gradient by a given
threshold.
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a)

b)

FIG. 10: (a) The wavefield snapshots without anisotropic parameter equating. (d) The shot
record with anisotropic parameter equating. The anisotropy effect in tilted dip angle with
rapid variation is reduced by equating epsilon and delta around the high gradient points.
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a)

b)

c)

FIG. 11: Anisotropic reverse-time migration in attenuation medium. a) Isotropic revers-
time migration, b) Anisotropic (VTI) Isotropic revers-time migration, and c) Anisotropic
(TTI) Isotropic revers-time migration
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The stable forward modeling snapshot plotted in Figure 10b.
Figure 11 shows the reverse-time migration results obtained using the split-PML field Vis-
coacoustic TTI equations (Figure 11c) and, for comparison, using Viscoacoustic VTI wave
equations(Figure 11b) and isotropic Viscoacoustic wave equations(Figure 11a). For the
VTI migration, the θ set to zero and other parameters are same with the TTI model. The
imaging of dipping layers such as salt flank is affected and mispositioned in the isotropic
and VTI RTM images because of the presence of anisotropy. TTI RTM for both the
salt body and dipping layers that terminating against the salt body is more accurate than
isotropic RTM and VTI RTM.

CONCLUSIONS

Time-domain approximate constant-Q wave propagation involving a series of standard
linear solid (SLS) mechanisms is investigated. The wave equations have been extended
from isotropic media to transversely isotropic (TI) media including VTI and TTI media.
For imaging application, the stability condition and the artifacts of shear wave triplications
have been discussed. Results show that the stable anisotropic reverse time migration is
accessible by taking off anisotropy around the selected high gradient points in areas of
rapid changes in the symmetry axes. The TTI RTM image is more accurate than the VTI
RTM and isotropic RTM images especially in the areas with strong variations of dip angle
along the tilted symmetry-axis. Furthermore, the application of anisotropic equations to
3D RTM and field data and reduce computational time remains a challenge.
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