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ABSTRACT

Full waveform inversion (FWI) is a powerful tool to reconstruct subsurface parameters.
This highly nonlinear inverse problem is normally solved iteratively to minimize a misfit
function, which is usually defined as the distance between the observed and predicted data,
by gradient-based method or Newton type method. Incorporating more nonlinearity within
each update in FWI, especially for multiparameter reconstruction, may have very impor-
tant consequences for convergence rates and discrimination of different parameter classes.
In this study, we focus on acoustic media with variable density, and the goal is to simul-
taneously update velocity and density, other parameterization is also discussed. We start
from the physical interpretation of both the gradient and the Hessian of the misfit function,
and derive one approach from the Newton method, to include the additional term of the
Hessian, which contains the second-order partial derivative of the wavefield and related
to the second-order scattering, into the gradient, to construct a new descent direction. A
matrix-free scheme is used to efficiently calculate the product of the Hessian and a vector.

INTRODUCTION

In the last decade, full waveform inversion (FWI) (Lailly, 1983; Tarantola, 1984; Virieux
and Operto, 2009) has gradually become a mature tool to reconstruct the subsurface pa-
rameters. Using the whole information in seismic data, FWI can be seen as a nonlinear
least-square minimization problem. A best fit of the subsurface parameters is found iter-
atively to minimize a misfit function, which measures the distance between the observed
and predicted data computed through a forward modelling with these parameters. Several
approaches can be used to solve this optimization problem, such as gradient-based method,
quasi-Newton method and Gauss-Newton/Newton method.

With the full wavefield accounted in FWI, it is naturally to include more realistic
physics in the forward modelling to better match the observed data, such as viscosity, elas-
ticity and anisotropic effects (e.g., Fichtner, 2011; Operto et al., 2013; Plessix et al., 2013;
Alkhalifah and Plessix, 2014; Pan et al., 2016). In this case, multiparameter inversion has
become feasible to invert parameter classes other than P-wave velocity, such as density,
attenuation, shear-wave velocity and so on. However, adding more parameter classes in
FWI can increase the ill-posedness of the inverse problem, and inverting multiparameter is
much more complicated than the monoparameter inversion due to the potential presence of
trade-off/cross-talk between different parameter classes and more degrees of freedom are
considered in the parameterization. It is difficult to distinguish the change of the seismic
data caused by perturbations of different parameter classes, since they can be more or less
coupled. Studies show that hierarchical strategies can be used to invert different parameter
classes. However, as many other studies show that in multiparameter inversion, involving
the Hessian operator (e.g., Pratt et al., 1998), which is the second-order partial derivative
of the misfit function with respect to the parameters, can help to mitigate the cross-talk be-
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tween different parameter classes. Gauss-Newton approximation of the Hessian operator is
usually used instead of the full Hessian operator, by neglecting the additional terms which
contain second-order partial derivatives of the wavefield in the Hessian operator. This addi-
tional terms could be essential in FWI by correcting the descent direction with energy from
multiple scattering in the residuals with the first-order partial derivative of the wavefield.
However, this term needs to be carefully dealt in the Newton method, since adding this
term into the Gauss-Newton Hessian operator could destroy the positive definiteness of the
Hessian operator, and cause a significant false prediction of the perturbations.

In this study, we present a nonlinear FWI method, based on a discrete frequency-space
domain acoustic finite-difference forward modelling. This nonlinear FWI method can be
derived from the Newton method, and the second-order scattering term is included in the
gradient to form a new descent direction. As in the Gauss-Newton method, Gauss-Newton
Hessian operator is used to help mitigating cross-talk between different parameter classes.
To avoid explicitly calculation of the Hessian matrix and better account the inverse of the
Hessian operator, a matrix-free formalism is then used to compute a product between the
Hessian operator and a vector as in the truncated Newton method (Métivier et al., 2013,
2014; Pan et al., 2017). Although we focus on acoustic case, to simultaneously update
velocity and density, other parameterizations are also discussed, and similar derivation can
be easily expended to elastic case.

FORWARD MODELLING IN ACOUSTIC MEDIA

We will use the frequency domain acoustic wave equation to describe the wave motions

ω2

κ(x)
u(x,xs, ω) +∇ ·

(
1

ρ(x)
∇u(x,xs, ω)

)
= fs(ω)δ(x− xs), (1)

where κ(x) is the bulk modulus, and ρ(x) is the density, u(x,xs, ω) is the pressure wave-
field at position x, generated by a point source located at xs with spectrum fs(ω). Rewrite
the model parameters with different classes into vector form as m, discretized wave equa-
tion can be written in matrix form as

A(m, ω)u(m,xs, ω) = f(xs, ω), and

u(m,xs, ω) = A−1(m, ω)f(xs, ω),
(2)

Where A(m, ω) is the impedance matrix, and it is a sparse banded matrix, as the number
of non-zero diagonals are related to the finite-difference scheme, e.g., in this study, we use
a five-point finite difference scheme, so the impedance matrix has five non-zero diagonals.
Suppose we compute the wavefield in a nz × nx = nm nodal points on a regular grid,
the impedance matrix is a nm × nm matrix with model parameters (nm× npar) × 1
column vector (in our case, we have two different parameter classes, so npar = 2), and
both the source and the wavefield vector are nm × 1 column vector. The wavefield can
be obtained by the inverse of the impedance matrix, which is usually replaced by direct
matrix factorization methods, such as LU decomposition, in most of the applications, to
avoid the calculation of inverting the large sparse matrix for each forward modelling. It is
also straight forward that when the source spectrum is 1, the columns of A−1(m, ω) stands
for the discrete approximations of the Green’s functions correspond to the related source
locations.

2 CREWES Research Report — Volume 29 (2017)



Nonlinear multiparameter FWI

NONLINEAR FULL WAVEFORM INVERSION IN FREQUENCY DOMAIN

FWI method is to seek the high resolution estimation of the subsurface model param-
eters by solving a nonlinear least-squares minimization problem. The misfit function is
defined as the L2 norm of the data residuals

φ(m) =
1

2

∑
ns

∑
nω

‖dobs(xs, ω)− dsyn(m,xs, ω)‖2 =
1

2

∑
ns

∑
nω

δdT δd∗, (3)

with dsyn(m,xs, ω) = Ru(m,xs, ω) is the synthetic data generated using the current
model m, R is the sampling matrix that sampling the wavefield from the whole space to
the receivers’ locations, and dobs(xs, ω) is the observed data, T is the transpose operator
and ∗ is the conjugate operator.

The gradient method

Gradient based methods are usually used in solving the optimization problem, so that
the subsurface parameters can be updated iteratively along a descent direction, which is the
opposite direction of the gradient, with a step length as

m(n+1) = m(n) − αng(n). (4)

The gradient of the misfit function is

g =
∂φ(m)

∂m
= −Re

{∑
ns

∑
nω

((
∂ (Ru(m,xs, ω))

∂m

)T
δd∗

)}
, (5)

where ∂(Ru(m,xs,ω))
∂m

is the Fréchet derivative matrix J, and real part of the complex-valued
vector is taken to ensures the gradient of the misfit function remains real. To calculate the
gradient, the Frechet derivative matrix is needed. Taking the partial derivative of the wave
equation with respect to the model parameter gives the relation

A(m, ω)
∂ (u(m,xs, ω))

∂m
= −∂A(m, ω)

∂m
u(m,xs, ω), (6)

Which shows that the first-order partial derivative of the wavefield ∂(u(m,xs,ω))
∂m

can be ob-
tained by solving the wave equation with a virtual source

f g = −∂A(m, ω)

∂m
u(m,xs, ω), (7)

For each model position and model parameter class. The radiation pattern for each
parameter class is included in the virtual source, and the calculation of this radiation pattern
is depend on the details of the finite approximation method used in the forward modelling
(see Appendix A for detail discussion). This also indicates that for each parameter class,
the first-order partial derivative of the wavefield with respect to each model position can be
interpreted as the wavefield u(m,xs, ω) scattered by a small perturbation of the parameter
at this position.
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Substituting the virtual source back to the gradient, the gradient becomes

g = −Re

{∑
ns

∑
nω

(
R

(
A−1(m, ω)

(
−∂A(m, ω)

∂m
u(m,xs, ω)

))T
δd∗

)}

= Re

{∑
ns

∑
nω

(
uT (m,xs, ω)

(
∂A(m, ω)

∂m

)T (
A−1(m, ω)

)T
RT δd∗

)}
, (8)

the conjugate of the data residual δd∗ in the frequency domain is equivalent to the data time
reversed in time domain, and the data residual is back project to the whole space using the
operator RT , before it is propagated back to the subsurface by the operator (A−1(m, ω))

T .
Since only the real part of the complexed-valued vector is taken to obtain the gradient, the
gradient can be calculated using the adjoint (conjugate transpose) of impedance matrix,

g = Re

{∑
ns

∑
nω

(
u†(m,xs, ω)

(
∂A(m, ω)

∂m

)† (
A−1(m, ω)

)†
R†δd

)}

= Re

{∑
ns

∑
nω

(
u†(m,xs, ω)

(
∂A(m, ω)

∂m

)†
λ(m, ω)

)}
, (9)

where λ(m, ω) is the adjoint variable/adjoint state that is the solution of the adjoint equation
(Fichtner et al., 2006a,b; Plessix, 2006)

(A(m, ω))† λ(m, ω) = R†δd, (10)

where † stands for the adjoint operator, and R† = RT since R is real defined.

The gradient of the misfit function is the multiplication between the first-order partial
derivative of the wavefield, sampled at the receiver points, and the data residuals. There-
fore, the model perturbation predicted by the gradient is constructed through the contribu-
tion of each parameter class at every position in the model space with the data residuals,
which is assumed contains only the first-order scattered events. This predicted perturba-
tion could be incorrect when multiscattered events are presented in the data residuals and
wrongly accounted with the first-order partial derivative wavefields. In multiparameter
FWI, cross-talk between different parameters could be an essential problem as well, since
model perturbation can be wrongly predicted, when similar radiation patterns for differ-
ent parameter classes could provide similar predictions for different parameter classes in
the gradient. Involving the Hessian operator (second-order partial derivative of the misfit
function) in calculating the model perturbation can help mitigating these issues, which will
require the application of the Newton-based methods to solve the optimization problem.
In the following section, we will study the application of the Hessian operator to better
incorporate both multiscattering and multiparameter in FWI.

Gauss-Newton and Newton method

By expanding the misfit function as a Taylor series up to the second order

φ(m + δm) = φ(m) + δmTg +
1

2
δmTHδm +O

(
‖δm‖3

)
, (11)
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where H = ∂2φ(m)
∂m2 is the second-order partial derivatives of the misfit function, or to say

the Hessian operator. Then a perturbation δm is found to minimum of the misfit function
under the quadratic approximation

g = −Hδm, or

δm = −H−1g.
(12)

The Hessian can be written as (Pratt et al., 1998)

H =
∂2φ(m)

∂m2
= −Re

∑
ns

∑
nω

 ∂JT

∂mT

(
δd∗ . . . δd∗︸ ︷︷ ︸
nm×npar

)
− JTJ∗


= −Re


∑
ns

∑
nω

∂J†
∂m

(
δd . . . δd︸ ︷︷ ︸
nm×npar

)†
︸ ︷︷ ︸

H1

+ Re

{∑
ns

∑
nω

J†J

}
︸ ︷︷ ︸

H2

, (13)

which contains two terms, the first term H1 contains the second-order derivatives of the
wavefield, and when it is neglected, the second term H2 becomes the Gauss-Newton ap-
proximation of the Hessian operator.

For multiparamter FWI, the Hessian is a large block matrix, with each block the second-
order derivative of the misfit function respect to parameter class mi and mj

Hij =
∂2φ(m)

∂mi∂mj

= −Re

{∑
ns

∑
nω

(((∂2u(m,xs, ω)

∂mi∂mj

)†
R†δd

)†
−
(
∂u(m,xs, ω)

∂mi

)†
R†R

(
∂u(m,xs, ω)

∂mj

))}
, (14)

and it is a nm × nm matrix. Obviously, in the monoparameter case, the Hessian only
contains one block, which is second-order derivative of the misfit function respect to the
parameter at each position.

The first term in the Hessian H1 is the multiplication between the second-order partial
derivatives of the wavefield recorded at the receiver location and the data residual. Sim-
ilar to the first-order partial derivatives, which are related to the first-order scattering, the
second-order partial derivatives are related to the second-order scattering. To calculate this
term, ∂2u(m,xs,ω)

∂mi∂mj
is needed, and by taking the second-order partial derivative of the wave

equation

A (m, ω)
∂2u(m,xs, ω)

∂mi∂mj

+
∂A(m, ω)

∂mj

∂u(m,xs, ω)

∂mi

= −∂
2A(m, ω)

∂mi∂mj

u(m,xs, ω)− ∂A(m, ω)

∂mi

∂u(m,xs, ω)

∂mj

, (15)

CREWES Research Report — Volume 29 (2017) 5



Geng et. al

and the second-order partial derivatives can be obtained by solving the wave equation with
a second-order virtual source,

∂2u(m,xs, ω)

∂mi∂mj

= A−1(m, ω)fH ,

with

fH = −∂A(m, ω)

∂mj

∂u(m,xs, ω)

∂mi

− ∂A(m, ω)

∂mi

∂u(m,xs, ω)

∂mj

− ∂2A(m, ω)

∂mi∂mj

u(m,xs, ω).

(16)

The first two terms contain the first-order scattered wavefield, and they generates the
second-order scattered wavefield. The third term in the virtual source depends on the pa-
rameterization and the details of the finite different method (Appendix B). The multipli-
cation between the second-order partial derivatives of the wavefield and the data residual
becomes,

−
(∂2u(m,xs, ω)

∂mi∂mj

)†
R†δd =

(
A−1(m, ω)fH

)†
R†δd

=

(
∂A(m, ω)

∂mj

(
A−1(m, ω)

(
− ∂A(m, ω)

∂mi

u(m,xs, ω)
)))† (

A−1(m, ω)
)†
R†δd︸ ︷︷ ︸

Adjoint wavefieldλ

+

(
∂A(m, ω)

∂mi

(
A−1(m, ω)

(
− ∂A(m, ω)

∂mj

u(m,xs, ω)
)))† (

A−1(m, ω)
)†
R†δd

+

(
∂2A(m, ω)

∂mi∂mj

u(m,xs, ω)

)† (
A−1(m, ω)

)†
R†δd

=
(
− ∂A(m, ω)

∂mi

u(m,xs, ω)
)† (

A−1(m, ω)
)†(∂A(m, ω)

∂mj

)†
λ(m, ω)

+
(
− ∂A(m, ω)

∂mj

u(m,xs, ω)
)† (

A−1(m, ω)
)†(∂A(m, ω)

∂mi

)†
λ(m, ω)

+

(
∂2A(m, ω)

∂mi∂mj

u(m,xs, ω)

)†
λ(m, ω). (17)

With this term H1 in the Hessian, the inverse of the Hessian can act as a deconvolution
operator including terms compensating the artifacts in the gradient generated by the second-
order scattered waves.

The second term H2 in the Hessian is the multiplication of two first-order derivatives of
the wavefield at the receiver locations with respect to different parameter class, which mea-
sures the similarity of the wavefield recorded at the receiver locations respect to different
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parameter classes and different positions,(
∂u(m,xs, ω)

∂mi

)†
R†R

(
∂u(m,xs, ω)

∂mj

)
=(

−∂A(m, ω)

∂mi

u(m,xs, ω)

)† (
A−1(m, ω)

)†
R†R

(
A−1(m, ω)

(
− ∂A(m, ω)

∂mj

u(m,xs, ω)
))

,

(18)

It can be seen that, for the same parameter classes i = j, this term reaches the maximum
at same positions, which are the diagonal terms, and rapidly decreases for the off-diagonal
terms. For the different parameter classes i 6= j, it measures the coupling between differ-
ent parameter classes at different positions. Since seismic data is usually band-limited, the
second term of the Hessian is diagonally dominant and banded, and it can predict 1) the de-
focusing caused by the incomplete and uneven illumination for the same parameter classes,
2) the coupling between different parameter classes, 3) the defocusing due to the limited
bandwidth of the seismic data. Therefore, applying the inverse of this part of Hessian to
filter the gradient, will help focusing the perturbations at each position for each parameter
class, and also decoupling different parameter classes to mitigate the cross-talk artifacts.

Nonlinear FWI from Newton method

Explicitly calculating the Hessian and its inverse are normally avoided in large inverse
problems due to the large cost, instead, methods, such as quasi-Newton method, truncated
Newton method, are usually used to better account the inverse Hessian operator in the in-
version. Compared to full Hessian operator, Gauss-Newton Hessian operator takes less
computation costs. As pointed out in Pratt et al (1998), including the term H1 in the Hes-
sian can produce significant false predictions, which may destroy the positive definition of
the Hessian, and cause the misfit cannot be further reduced, since in this case, the misfit
function is no locally convex anymore. However, it may still be essential to include the
term H1 in the Hessian to better handle the multiscattered energy in the data residuals. It is
then naturally to find a better way to incorporate this term, or to say adding more nonlinear-
ity in the descent direction, in the FWI scheme. In our former study, in the monoparameter
case of inverting squared-slowness, instead of directly using the inverse of the full Hessian
to correct the gradient, we include the double scattered energy in the gradient, and showed
the convergence can be improved. In this study, we will extend this method to the mul-
tiparameter case, which can be derived from Newton method and seen as an approximate
version of Newton method.

Rewrite the full Newton inversion equation(
H1 + H2

)
δm = −g,(

H−12 H1 + I
)
δm = −H−12 g,

δm = −
(
H−12 H1 + I

)−1
H−12 g,

δm = −
(
I−H−12 H1 + (H−12 H1)

2 − . . .
)
H−12 g.

(19)

We can find that instead of directly calculating the inverse of the Hessian, a series contains
the term H1, preconditioned by the term H−12 can be calculated first to precondition the
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perturbation, which is obtained from the Gauss-Newton method. Taking only the first two
terms, we can get an approximate version of the full Newton method (Pratt et al., 1998),

δm = −H−12

(
g −H1H

−1
2 g
)
. (20)

Suppose that δm1 = −H−12 g is the inverted model perturbation from Gauss-Newton
method, which can be obtained as the solution of a linearized inverse problem (Gauss-
Newton inversion problem). Different implementations can be used to solve the above
problem.

Approximate Newton method with subspace method

Two perturbation can be inverted using this approximate version of the full Newton
method, which are related to the standard Gauss-Newton method result and second-order
terms (Pratt et al., 1998)

δm1 = −H−12 g,

δm2 = H−12 H1H
−1
2 g = −H−12 H1δm1.

(21)

Then 2D subspace method can be applied to determine an optimal descent direction with
pre-calculated model perturbation δm1 and second-order term δm2

δm = αδm1 + βδm2. (22)

In multiparameter case, the model can be divided with different parameter classes, then the
2D subspace method can be extended into npar× 2D subspace method with more flexible
ability to update each parameter class. We will discuss the detail of subspace space method
in a companion paper.

Nonlinear inverse method from perturbation analysis

In the perturbative analysis based iterative nonlinear inverse methods (Snieder 1990),
linearized perturbation δm1 is first calculated, then using this linearized perturbation, for
each shot, for every receiver location i and synthetic data (Ru(m,xs, ω))i, first-order mul-
tiples can be calculated as

δd
(2)
i = δmT

1

∂2
(
Ru(m,xs, ω)

)
i

∂mT∂m
δm1. (23)

Then a standard Gauss-Newton method (first-order inverse operator) can be applied to this
estimated multiples, and finally obtain the perturbation as

δm = δm1 + H−12 Re

{(∂(Ru(m,xs, ω)
)

∂m

)†
RT δd(2)

}

= H−12 Re

{(∂(Ru(m,xs, ω)
)

∂m

)†
RT
(
δd− δd(2)

)}
. (24)

The update is then equivalent to remove the second-order scattering in the data residuals,
and use these new data residuals to build up a more linearized inverse problem, which can
be solved using the standard Gauss-Newton method.
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Approximate Newton method with nonlinear gradient/descent direction

In this study, we are more focused on investigating the method by adding nonlinearity
into the descent direction. Rewrite equation (20) as

δm = −H−12

(
g + H1δm1

)
, (25)

which can be considered as another linearized inverse problem with a new descent direction
g+H1δm1, or to say including the second-order scattering caused by the perturbation from
a linearized inverse problem in the original gradient.

Substituting H1 as in equation (17) into the perturbation (20),

δm = −H−12 Re

{∑
ns

∑
nω

((
u(m,xs, ω)

)†(∂A(m, ω)

∂m

)†
λ(m, ω)

+
(∂A(m, ω)

∂m
u(m,xs, ω)

)†((
A−1(m, ω)

)†(− npar∑
j=1

(
∂A(m, ω)

∂mj

)†
λ(m, ω)δm1j

))

+

((
∂A(m, ω)

∂m

)†
λ(m, ω)

)†(
A−1(m, ω)

(
−

npar∑
j=1

(∂A(m, ω)

∂mj

u(m,xs, ω)δm1j

)))

+

npar∑
j=1

(((∂2A(m, ω)

∂m∂mj

u(m,xs, ω)
)†
λ(m, ω)

)†
δm1j

))}
. (26)

In the monoparameter case, we can find out that it is consistent with the nonlinear descent
direction we have studied based on the scattering theory (Geng et al., 2017, see details in
Appendix C). Using this approximate version of the full Newton method, by including the
double scattered terms into the gradient, we form a new descent direction, which can be
used to better correlate to the multi-scattered energy in the data residuals than the Newton
method. In this update, data residual generated from the current model (prediction/true
perturbation) is used to calculate the adjoint wavefield λ(m, ω), and a perturbation δm1 is
obtained first to calculate the new descent direction.

Efficient calculation of approximate Newton method with Hessian-vector product

Explicitly calculating both terms of the Hessian operator in the approximate Newton
method is still not possible for the large size of FWI problem, especially in the multipa-
rameter case. In the approximate Newton methods we discussed in the former section, we
can see that, the calculation of a product between the Hessian H1 and a vector is needed to
first calculate the second-order scattering related perturbation, and the inverse of H2 can be
added to the perturbation iteratively by a truncated Gauss-Newton method, with the help
of a Gauss-Newton Hessian-vector product, while in the nonlinear inverse method derived
from the perturbation analysis, the second-order scattered data is predicted before using the
linearized inversion to estimate the related perturbation.

CREWES Research Report — Volume 29 (2017) 9



Geng et. al

As in equation (26), the product of the first term H1 with a model vector m is

H1m = Re

{∑
ns

∑
nω

(
npar∑
j=1

(((∂2A(m, ω)

∂m∂mj

u(m,xs, ω)
)†
λ(m, ω)

)†
mj

)

+

((
∂A(m, ω)

∂m

)†
λ(m, ω)

)†(
A−1(m, ω)

(
−

npar∑
j=1

(∂A(m, ω)

∂mj

u(m,xs, ω)mj

)))

+
(∂A(m, ω)

∂m
u(m,xs, ω)

)†((
A−1(m, ω)

)†(− npar∑
j=1

(
∂A(m, ω)

∂mj

)†
λ(m, ω)mj

)))}
,

(27)

which can be further written as

H1m = Re

{∑
ns

∑
nω

(
npar∑
j=1

(((∂2A(m, ω)

∂m∂mj

u(m,xs, ω)
)†
λ(m, ω)

)† (
µ1(m, ω)

)
j

)

+

((
∂A(m, ω)

∂m

)†
λ(m, ω)

)†
µ2(m, ω) +

(∂A(m, ω)

∂m
u(m,xs, ω)

)†
µ3(m, ω)

 ,

(28)

where λ(m, ω), µ1(m, ω), µ2(m, ω) and µ3(m, ω)are the adjoint variables, λ(m, ω) is the
solution of the adjoint equation as in the calculation of the gradient as in (10), and µ1(m, ω),
µ2(m, ω), µ3(m, ω) are the solutions of the adjoint equations

µ1(m, ω) = m

A(m, ω)µ2(m, ω) = −
∑npar

j=1
∂A(m,ω)
∂mj

u(m,xs, ω)mj(
A(m, ω)

)†
µ3(m, ω) = −

∑npar
j=1

(
∂A(m,ω)
∂mj

)
)†
λ(m, ω)mj.

(29)

The Hessian-vector product for the second term H2 of the Hessian operator, which is
used in the truncated Gauss-Newton method to solve the linearized inverse problem (12)
with Gauss-Newton Hessian by the conjugate gradient method, is reduced into a much
more simple form as

H2m = Re

{∑
ns

∑
nω

((∂A(m, ω)

∂m
u(m,xs, ω)

)†
µ3(m, ω)

)}
, (30)

with A(m, ω)µ2(m, ω) = −
∑npar

j=1
∂A(m,ω)
∂mj

u(m,xs, ω)mj(
A(m, ω)

)†
µ(m, ω) = −R†Rµ2(m, ω).

(31)

It can be seen that to obtain the Hessian-vector (28) and (30), besides the forward
modelling wavefield u(m,xs, ω) and the adjoint wavefield λ(m, ω), which are also needed
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in the calculation of the gradient, two more forward modeling problems are needed to
obtain the virtual sources and their related wavefields. Therefore, compared to the truncated
Gauss-Newton/Newton method, about twice amounts of the wave equations are needed to
be solved in the approximate Newton with nonlinear descent direction.

EXAMPLE

Hessian vector

We will first show the gradient and Hessian-vectors in a constant model with one small
scatterer for one source and receiver pair. The model is 1 × 1 km with grid intervals of
10 m, and the background model is linearly changed along z direction for both velocity
and density. The source and receiver are located near to the surface. Ricker wavelet with
dominant frequency 15 Hz is used as the source wavelet, and the data is recorded for 1 s
with 1 ms sampling. 44 frequencies from 2 Hz to 45 Hz are used to generate the results in
the frequency domain. The perturbation is chosen to be 10% of the background model, and
is located within a 40 × 40 m box-shaped area at x = 0.5 km. First, we consider velocity
perturbation only, as shown in Figure 1-3 the related gradient and Hessian-vectors with
perturbations in different depths. It can be observed that, when the data residual is related
to the velocity perturbation locating inside the first Fresnel zone, the gradient for velocity
has much larger values compared to the gradient for density, which is almost zero, indi-
cating that density perturbations hardly response to first-order scattering at wide scattering
angles; on the contrary, when the data residual is related to velocity perturbation locating
outside the first Fresnel zone in the deeper region (e.g., corresponds to smaller scattering
angles), the gradients for velocity and density are comparable, indicating possible param-
eter crosstalk. When second-order scattering is considered, the Hessian-vectors calculated
using the true perturbation and different part of the Hessian operators are also shown in
Figure 1-3. The second-order scattering related Hessian-vectors contain two symmetric
lobes for both velocity and density. Compared to the amplitude of Gauss-Newton Hessian-
vectors, the amplitude of corresponding second-order scattering related Hessian-vectors is
around one order of magnitude smaller. The contribution of the second-order scattering
to the full Hessian can hardly be seen in the shallow perturbation case (Figure 1), but are
clearly visible in other two cases (Figure 2 and Figure 3). The amplitude of Hessian-vectors
for density are small compared to the amplitude of Hessian-vectors for velocity, which in-
dicates a weak second-order scattering from perturbations of different parameter classes.

We then study the density perturbation, Figure 4 shows the gradient and related Hessian-
vectors when the density perturbation inside the first Fresnel zone. Compared to the results
related to velocity perturbation in the same position (Figure 2), the gradient for both den-
sity and velocity are much smaller, and the second-order scattering related Hessian-vectors
are nearly zero, which again indicate the difficulty of updating long wavelength compo-
nent of the density, as well as the very weak second-order scattering related to the density
perturbations.

CREWES Research Report — Volume 29 (2017) 11



Geng et. al

a)

Distance (km)

D
ep

th
 (

k
m

)

 

 

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

−0.1 0 0.1

b)

Distance (km)

D
ep

th
 (

k
m

)

 

 

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

−0.1 0 0.1

c)

Distance (km)

D
ep

th
 (

k
m

)

 

 

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

−0.1 0 0.1

d)

Distance (km)

D
ep

th
 (

k
m

)

 

 

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

−0.1 0 0.1

e)

Distance (km)

D
ep

th
 (

k
m

)

 

 

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

−0.1 0 0.1

f)

Distance (km)

D
ep

th
 (

k
m

)

 

 

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

−0.1 0 0.1

12 CREWES Research Report — Volume 29 (2017)



Nonlinear multiparameter FWI

g)

Distance (km)

D
ep

th
 (

k
m

)

 

 

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

−0.01 0 0.01

h)

Distance (km)

D
ep

th
 (

k
m

)

 

 

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

−0.01 0 0.01

FIG. 1. Gradient and Hessian-vectors for velocity (left column) and density (right column)
in a gz media with one small velocity perturbation (indicated with blue box) close to the
surface. From top to bottom are gradient, full Hessian-vector, Gauss-Newton Hessian-
vector and Hessian-vector with the first term in Hessian (continued).

The Marmousi-II model

The Marmousi-II model is an extension and elastic upgrade of the classic Marmousi
model. In this study, we only use part of the original vp and density model and the resize
the model into 141 × 321 grid nodes, with grid intervals of 25 m. The resulting vp and
density model is shown as in Figure 5a and 5b, respectively. We use a 64 sources and 321
receivers along the surface, and the water layer is kept constant throughout the iterations.
The initial model is obtained by smoothing the exact model using Gaussian smoothing,
shown in Figure 5c and 5d. Since the initial model is only a slightly smoothed version
of the true model, we simultaneously invert 4 frequencies (3 Hz, 5 Hz, 8 Hz, 12 Hz). A
maximum of 20 external iterations and 10 internal iterations are performed for each method.
For the approximated Newton method with nonlinear descent direction, 2 internal iterations
are used for the truncated Gauss-Newton method to obtain the perturbation before applying
the H1 operator.

The final inverted model using truncated Gauss-Newton, truncated Newton and approx-
imate Newton method with nonlinear descent direction are shown as in Figure 6. Velocity
and density profiles at x = 2.5 km and x = 5 km are shown in Figure 7 and Figure 8.
The velocity error, density error, as well as misfit functions with respect to the number of
iterations are shown in Figure 9 for all three methods. It can be seen that, truncated New-
ton method (Figure 6a and 6b) updates both velocity and density; truncated Gauss-Newton
method (Figure 6c and 6d) provides the best update for the velocity, but the update of den-
sity is overestimated due to the cross-talk. The approximate Newton method with nonlinear
descent direction (Figure 6e and 6f) can provide slightly better results for both velocity and
density compared to truncated Newton method, and compared to truncated Gauss-Newton
method, the update of density has less cross-talk artifacts, e.g., density profile at x = 2.5
km between z = 1.7 km and 3 km (Figure 7), and density profile at x = 5 km between
z = 2 km and 2.8 km (Figure 8).
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FIG. 2. Gradient and Hessian-vectors for velocity (left column) and density (right column)
in a gz media with one small velocity perturbation (indicated with blue box) inside the
first Fresnel zone. From top to bottom are gradient, full Hessian-vector, Gauss-Newton
Hessian-vector and Hessian-vector with the first term in Hessian.

CONCLUSIONS

The Hessian operator plays a very important role in FWI, especially in the multiparam-
eter case. The inverse of Gauss-Newton Hessian operator helps refocusing the gradient and
mitigating the cross-talk artifacts between different parameter classes, and the additional
term in the Hessian contains information related to the second-order scattering. However,
directly using full Hessian as in Newton method could cause incorrect prediction of the
model perturbation, since the second-order scattering energy may be incorrectly to corre-
late the first-order scattering energy in the gradient, and the positive definiteness of the
Gauss-Newton Hessian could be destroyed, which will affect the predict model parameters
in a negative way. In this study, we derive a nonlinear descent direction from the Newton
method to perform a multiparameter FWI, which alters the gradient with the second-order
scattering, and can be used to predict the model perturbation using a truncated Gauss-
Newton method.
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FIG. 3. Gradient and Hessian-vectors for velocity (left column) and density (right column)
in a gz media with one small velocity perturbation (indicated with blue box) in deeper part
of the model outside the first Fresnel zone. From top to bottom are gradient, full Hessian-
vector, Gauss-Newton Hessian-vector and Hessian-vector with the first term in Hessian.
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FIG. 4. Gradient and Hessian-vectors for velocity (left column) and density (right column)
in a gz media with one small density perturbation (indicated with blue box) inside the
first Fresnel zone. From top to bottom are gradient, full Hessian-vector, Gauss-Newton
Hessian-vector and Hessian-vector with the first term in Hessian.
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FIG. 5. Marmousi exact velocity model (a), initial velocity model (b), exact density model
(c), initial density model (d).
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FIG. 6. Inverted velocity and density models for the Marmousi case with truncated Newton
method (a) and (b), truncated Gauss-Newton method (c) and (d) and approximate Newton
method with nonlinear descent direction (e) and (f).
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APPENDIX A - CALCULATION OF VIRTUAL SOURCE IN THE GRADIENT

In this appendix, we will review the calculation of the virtual source for different pa-
rameterization with a 5-point finite difference scheme in the acoustic case (Jo et al., 1996;
Hustedt et al., 2004). We will first show the discretized form of the acoustic wave equation,
then we will derive the virtual source of the gradient for different parameter classes from
the discretized form of the wave equation. In 2D case, at each point, the wave equation is

ω2

κ(xi, zj)
u(xi, zj, ω) +∇ ·

(
1

ρ(xi, zj)
∇u(xi, zj, ω)

)
= f(xi, zj), (A-1)

It can be discretized with five-point finite difference schemes with perfectly matched
layer (PML)

ω2

κxi,zj
uxi,zj +

1

∆2
xξxi

(
1

ξxi+1/2

1

ρxi+1/2,zj

(
uxi+1,zj − uxi,zj

)
− 1

ξxi−1/2

1

ρxi−1/2,zj

(
uxi,zj − uxi−1,zj

))

+
1

∆2
zξzi

(
1

ξzj+1/2

1

ρxi,zj+1/2

(
uxi,zj+1

− uxi,zj
)
− 1

ξzj−1/2

1

ρxi,zj−1/2

(
uxi,zj − uxi,zj−1

))
= fxi,zj ,

(A-2)

where

ξx = 1 + iγx(x)/ω = 1 + i
cpmlcos

(
πx
2L

)
ω

, and

ξz = 1 + iγz(z)/ω = 1 + i
cpmlcos

(
πz
2L

)
ω

,

(A-3)

are the functions extend the model with a PML layer with width L for both sides along x
and z direction. The averaged coefficients on the half grid are

1

ξxi+1/2

=
1

2

( 1

ξxi
+

1

ξxi+1

)
, and

1

ρxi+1/2,zj

=
1

2

( 1

ρxi,zj
+

1

ξxi+1,zj

)
.

(A-4)

Therefore, the impedance matrix A in equation (6) is a banded diagonal matrix with five
non-zero diagonals, and each coefficient for each point is determined as in equation (A-2).

To calculate the virtual sources for each parameter of different parameterizations, we
need to calculate the partial derivatives of the impedance operator with respect to the per-
turbations first. Here we consider 3 different parameterizations for the acoustic media: a)
bulk modulus and density (κ, ρ), b) velocity and density (v, ρ), c) slowness and buoyancy
s, b. From the discretized wave equation (A-2), it is obvious that for the parameter on
each point (xi, zj) (we will use (i, j) for short in this appendix), bulk modulus and also its
related parameter velocity and slowness contribute only to the coefficient of this point in
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the impedance matrix, however, density ρ or buoyancy contributes to the coefficients of all
five neighbour points used in the finite difference. Take the partial derivative of the wave
equation respect to the model parameter outside the PML boundaries, for bulk modulus
and density, we can get the element for the virtual sources for each point

∂Ai,j
∂κi,j

ui,j = − ω
2

κ2i,j
ui,j,

and

∂Ai,j
∂ρi,j

ui,j = −

(
ui+1,j − ui,j

)
2∆2

xρ
2
i,j

+

(
ui,j − ui−1,j

)
2∆2

xρ
2
i,j
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(
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)
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zρ
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(A-5)

For velocity and density

∂Ai,j
∂vi,j
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2∆2

zρ
2
i,j

∂Ai,j−1
∂ρi,j

ui,j = −

(
ui,j − ui,j−1

)
2∆2

zρ
2
i,j

.

(A-6)
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And for slowness and buoyancy

∂Ai,j
∂si,j

ui,j =
2ω2

ρi,jvi,j
ui,j = 2ω2bi,jsi,jui,j,

and

∂Ai,j
∂bi,j

ui,j = ω2s2i,jui,j +

(
ui+1,j − ui,j

)
2∆2

x

−

(
ui,j − ui−1,j

)
2∆2

x

+

(
ui,j+1 − ui,j

)
2∆2

z

−

(
ui,j − ui,j−1

)
2∆2

z

∂Ai+1,j

∂bi,j
ui,j = −

(
ui+1,j − ui,j

)
2∆2

x

∂Ai−1,j
∂bi,j

ui,j =

(
ui,j − ui−1,j

)
2∆2

x

∂Ai,j+1

∂bi,j
ui,j = −

(
ui,j+1 − ui,j

)
2∆2

z

∂Ai,j−1
∂bi,j

ui,j =

(
ui,j − ui,j−1

)
2∆2

z

.

(A-7)

Rewrite the virtual source in the gradient calculation from equation (A-6) and (A-7)
into matrix form, it is equivalent to the results obtained under chain rule

f gv = −
(
∂A(m, ω)

∂κ

∂κ

∂v
+
∂A(m, ω)

∂ρ

∂ρ

∂v

)
u(m,xs, ω) = −2ρv

∂A(m, ω)

∂κ
u(m,xs, ω)

f gρ = −
(
∂A(m, ω)

∂κ

∂κ

∂ρ
+
∂A(m, ω)

∂ρ

∂ρ

∂ρ

)
u(m,xs, ω)

= −
(
v2
∂A(m, ω)

∂κ
+
∂A(m, ω)

∂ρ

)
u(m,xs, ω)

f gs = −
(
∂A(m, ω)

∂κ

∂κ

∂s
+
∂A(m, ω)

∂ρ

∂ρ

∂s

)
u(m,xs, ω) = 2ρv3

∂A(m, ω)

∂κ
u(m,xs, ω)

f gb = −
(
∂A(m, ω)

∂κ

∂κ

∂b
+
∂A(m, ω)

∂ρ

∂ρ

∂b

)
u(m,xs, ω)

= −
(
−ρ2v2∂A(m, ω)

∂κ
− ρ2∂A(m, ω)

∂ρ

)
u(m,xs, ω).

(A-8)

APPENDIX B - CALCULATION OF SECOND-ORDER DERIVATIVE OF THE
IMPEDANCE MATRIX IN THE HESSIAN

To calculate the first term H1 of the Hessian, the term contains second-order derivative
of the forward operator ∂2A(m,ω)

∂m2 u(m,xs, ω) is needed. Same as the calculation of the
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virtual source in the gradient in Appendix A, this can be derived by taking second-order
partial derivatives of the wave equation with respect to different parameter classes at each
point. In the acoustic case, this term contains four components.

First, bulk modulus and density, it will be ∂2A(m,ω)
∂κ2

u(m,xs, ω), ∂2A(m,ω)
∂κ∂ρ

u(m,xs, ω),
∂2A(m,ω)
∂ρ∂κ

u(m,xs, ω) and ∂2A(m,ω)
∂ρ2

u(m,xs, ω), and each element is

∂2Ai,j
∂κ2i,j

ui,j = − 2

κi,j

(
∂Ai,j
∂κi,j

ui,j

)
=

2ω2

κ3i,j
ui,j,

∂2Ai,j
∂κi,j∂ρi,j

ui,j =
∂2Ai,j

∂ρi,j∂κi,j
ui,j = 0,

and

∂2Ai,j
∂ρ2i,j

ui,j = − 2

ρi,j

(
∂Ai,j
∂ρi,j

ui,j

)

=

(
ui+1,j − ui,j

)
∆2
xρ

3
i,j

−

(
ui,j − ui−1,j

)
∆2
xρ

3
i,j

+

(
ui,j+1 − ui,j

)
∆2
zρ

3
i,j

−

(
ui,j − ui,j−1

)
∆2
zρ

3
i,j

∂2Ai+1,j

∂ρ2i,j
ui,j = − 2

ρi,j

(
∂Ai+1,j

∂ρi,j
ui,j

)
= −

(
ui+1,j − ui,j

)
2∆2

xρ
3
i,j

∂2Ai−1,j
∂ρ2i,j

ui,j = − 2

ρi,j

(
∂Ai−1,j
∂ρi,j

ui,j

)
=

(
ui,j − ui−1,j

)
2∆2

xρ
3
i,j

∂2Ai,j+1

∂ρ2i,j
ui,j = − 2

ρi,j

(
∂Ai,j+1

∂ρi,j
ui,j

)
= −

(
ui,j+1 − ui,j

)
2∆2

zρ
3
i,j

∂2Ai,j−1
∂ρ2i,j

ui,j = − 2

ρi,j

(
∂Ai,j−1
∂ρi,j

ui,j

)
=

(
ui,j − ui,j−1

)
2∆2

zρ
3
i,j

.

(B-1)

Second, for velocity and density, it will be ∂2A(m,ω)
∂v2

u(m,xs, ω), ∂
2A(m,ω)
∂v∂ρ

u(m,xs, ω),
∂2A(m,ω)
∂ρ∂v

u(m,xs, ω) and ∂2A(m,ω)
∂ρ2

u(m,xs, ω),

∂2Ai,j
∂v2i,j

ui,j = − 3

vi,j

(
∂Ai,j
∂vi,j

ui,j

)
=

6ω2

ρi,jv4i,j
ui,j,

∂2Ai,j
∂vi,j∂ρi,j

ui,j =
∂2Ai,j
∂ρi,j∂vi,j

ui,j = − 1

ρi,j

(
∂Ai,j
∂vi,j

ui,j

)
=

2ω2

ρ2i,jv
3
i,j

ui,j,
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and

∂2Ai,j
∂ρ2i,j

ui,j = − 2

ρi,j

(
∂Ai,j
∂ρi,j

ui,j

)

=
2ω2

ρ3i,jv
2
i,j

ui,j +

(
ui+1,j − ui,j

)
∆2
xρ

3
i,j

−

(
ui,j − ui−1,j

)
∆2
xρ

3
i,j

+

(
ui,j+1 − ui,j

)
∆2
zρ

3
i,j

−

(
ui,j − ui,j−1

)
∆2
zρ

3
i,j

∂2Ai+1,j

∂ρ2i,j
ui,j = − 2

ρi,j

(
∂Ai+1,j

∂ρi,j
ui,j

)
= −

(
ui+1,j − ui,j

)
2∆2

xρ
3
i,j

∂2Ai−1,j
∂ρ2i,j

ui,j = − 2

ρi,j

(
∂Ai−1,j
∂ρi,j

ui,j

)
=

(
ui,j − ui−1,j

)
2∆2

xρ
3
i,j

∂2Ai,j+1

∂ρ2i,j
ui,j = − 2

ρi,j

(
∂Ai,j+1

∂ρi,j
ui,j

)
= −

(
ui,j+1 − ui,j

)
2∆2

zρ
3
i,j

∂2Ai,j−1
∂ρ2i,j

ui,j = − 2

ρi,j

(
∂Ai,j−1
∂ρi,j

ui,j

)
=

(
ui,j − ui,j−1

)
2∆2

zρ
3
i,j

.

(B-2)

Third, for slowness and buoyancy, it will be ∂2A(m,ω)
∂s2

u(m,xs, ω), ∂
2A(m,ω)
∂s∂b

u(m,xs, ω),
∂2A(m,ω)
∂b∂s

u(m,xs, ω) and ∂2A(m,ω)
∂b2

u(m,xs, ω),

∂2Ai,j
∂s2i,j

ui,j =
1

si,j

(
∂Ai,j
∂si,j

ui,j

)
= 2ω2bi,jui,j,

∂2Ai,j
∂si,j∂bi,j

ui,j =
∂2Ai,j
∂bi,j∂si,j

ui,j =
1

bi,j

(
∂Ai,j
∂si,j

ui,j

)
= 2ω2si,jui,j,

and

∂2Ai,j
∂b2i,j

ui,j =
∂2Ai+1,j

∂b2i,j
ui,j =

∂2Ai−1,j
∂b2i,j

ui,j =
∂2Ai,j+1

∂b2i,j
ui,j =

∂2Ai,j−1
∂b2i,j

ui,j = 0. (B-3)

APPENDIX C - CALCULATION OF SECOND-ORDER DERIVATIVE OF THE
IMPEDANCE MATRIX IN THE HESSIAN

In the monoparameter case, we use the acoustic wave equation with constant density
to describe the wave motion. For simplicity, in this appendix, we assume that the source
spectrum fs(ω) = 1, and invert square slowness s(x) = 1/v2(x) for only one receiver, one
source and one frequency. In the nonlinear inversion we study before, the standard gradient
is

g = Re

{
u†(s,xs, ω)

(
∂A(s, ω)

∂s

)†
λ(s, ω)

}
= Re

{
ω2u†(s,xs, ω)λ(s, ω)

}
, (C-1)
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with

∂A(s, ω)

∂s
= ω2,u(s,xs, ω) = A−1(s, ω)f(xs, ω), and

λ(s, ω) =
(
A−1(s, ω)

)†
RT δd.

(C-2)

It is obvious that source side wavefield is the GreenâĂŹs function for the related source
location, and the adjoint wavefield is the receiver side wavefield generated with the con-
jugate of the data residuals as source. Insert the expression of the adjoint wavefield and
the source side wavefield into the gradient, at nth iteration, the gradient at each position x
becomes

g = Re
{
ω2G(x,xs, ω|sn)G(xg,x, ω|sn)δd∗(xg,xs, ω|sn)

}
, (C-3)

and the nonlinear descent direction is

gn(x) = −Re
{
∂G(xg,xs, ω|sn+1)

∂s(x)
δd∗ (xg,xs, ω|sn)

}
, (C-4)

with the high-order sensitivities for the nth iteration is

∂G(xg,xs, ω|sn+1)

∂s(x)
=

(
∂G(xg,xs, ω|sn+1)

∂s(x)

)
0

+

(
∂G(xg,xs, ω|sn+1)

∂s(x)

)
1

+ . . . , (C-5)

where the zero order term(
∂G(xg,xs, ω|sn+1)

∂s(x)

)
0

=
∂G(xg,xs, ω|sn)

∂s(x)
= −ω2G(xg,x, ω|sn)G(x,xs, ω|sn),

and the first order term is(
∂G(xg,xs, ω|sn+1)

∂s(x)

)
1

= ω4

∫
dx′δsn(x′) [G(xg,x

′, ω|sn)G(x′,x, ω|sn)G(x,xs, ω|sn)

+ G(xg,x, ω|sn)G(x,x′, ω|sn)G(x′,xs, ω|sn)] ,

with δsn(x) is the pre-calculated perturbation from the current iteration, and it is a function
of the current data residual

δd(xg,xs, ω|sn) = −ω2

∫
dxG(xg,x, ω|sn)δs(x)G(x,xs, ω|sn) + · · · = Jδsn + . . . , or

δsn ≈ −H2Re
{
JT δd∗(xg,xs, ω|sn)

}
.

(C-6)

The first term of the Hessian operator is

H1 = Re
{(∂A(s, ω)

∂s
λ(s, ω)

)†
A−1(s, ω)

(
−∂A(s, ω)

∂s
u(s, ω)

)
+
(∂A(s, ω)

∂s
u(s, ω)

)† (
A−1(s, ω)

)†(−(∂A(s, ω)

∂s

)†
λ(s, ω)

)}
. (C-7)
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The related Hessian-vector is

H1δsn= Re
{(∂A(s, ω)

∂s
λ(s, ω)

)†
A−1(s, ω)

(
−∂A(s, ω)

∂s
u(s, ω)δsn

)
+
(∂A(s, ω)

∂s
u(s, ω)

)† (
A−1(s, ω)

)†(−(∂A(s, ω)

∂s

)†
λ(s, ω)δsn

)}
. (C-8)

Inserting the expression of different terms (C-2) in the Hessian operator and the related
Hessian-vector product (C-7) and (C-8), we can write the above Hessian operator and
Hessian-vector product into the form of Green’s function, For the first term H1 in the
Hessian operator,

H1(x,x
′) = −ω4Re {[G(xg,x

′, ω|sn)G(x′,x, ω|sn)G(x,xs, ω|sn)

+ G(xg,x, ω|sn)G(x,x′, ω|sn)G(x′,xs, ω|sn)] δd∗(xg,xs, ω|sn)} . (C-9)

Similarly, we can get the expression of the second term H2 in the Hessian operator

H2(x,x
′) = ω4Re {G(xg,x

′, ω|sn)G(x′,xs, ω|sn)G∗(xg,x, ω|sn)G∗(x,xs, ω|sn)} .

(C-10)

Substituting the above Hessian operators back to the approximate Newton method, we can
obtain the descent direction for each position as

g(x) +H1(x,x
′)δsn = Re

{
ω2G(xg,x, ω|sn)G(x,xs, ω|sn)δd∗(xg,xs, ω|sn)

− ω4

∫
dx′δsn(x′) [G(xg,x

′, ω|sn)G(x′,x, ω|sn)G(x,xs, ω|sn)

+ G(xg,x, ω|sn)G(x,x′, ω|sn)G(x′,xs, ω|sn)] δd∗(xg,xs, ω|sn)} . (C-11)

It is equivalent with the nonlinear descent direction we obtained from the scattering theory
by perturbing the first-order perturbations, the gradient, with the second-order perturba-
tions, which is obtained from the true data residuals. However, it is different from the
nonlinear inverse theory (Snieder, 1990; Innanen, 2014), which can be seen by removing
the nonlinear effects (multiscattered) in the data residual to perform a better linearized in-
version using the Gauss-Newton method or even preconditioned gradient-based method.
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