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ABSTRACT

Full waveform inversion (FWI) is used to reconstruct physical parameters of the sub-
surface. In this report, we move towards a modified FWI scheme that iteratively solves for
both source distribution uncertainty and velocity model uncertainty in the acoustic envi-
ronment. The sensitivities are derived for these two parameters in both time and frequency
domain. Additionally, to begin exploring the cross-talk between these two parameters, the
Hessian is derived in the frequency domain. The paper concludes with an analytic example
demonstrating the behaviour of this formulation and a discussion on the implications of
these results.

INTRODUCTION

Full waveform inversion (FWI) has been demonstrated to be a valuable tool for creating
high-resolution images of the subsurface (Tarantola (1984),Virieux and Operto (2009)).
The conventional FWI problem aims to resolve certain parameters, such as P- and/or S-
wave velocity, density, and more recently, anisotropy (Alkhalifa and Plessix (2014),Pan
et al. (2016)). In these applications, it is assumed that the source location and character is
known, with the focus being on the medium and not the source or receivers. Herein, we
propose to instead consider an application of FWI where the source distribution is also an
unknown in the formulation.

One application where this sort of problem is a reality is with microseismic data. Mi-
croseismic data refers to earthquakes of magnitude less than zero. These earthquakes are
commonly studied in the context of geothermal applications, hydraulic fracturing and min-
ing. Often, the velocity model is poorly constrained, and is the subject of refinement using
various methods such as calibration with perforation shots or seismic data (Bardainne and
Gaucher, 2010). In practice, simplified models are used, with conventional processors often
limiting themselves to 1D blocked models. Although anisotropy and 3D models are more
recent advances (Maxwell et al., 2010), obtaining accurate velocity models is a challenge.

Another challenge with microseismic data is the accuracy of event locations. Though
dependent on the recording geometry, microseismic events tend to have low signal-to-noise
ratio. For this reason, many increasingly complex methods have been developed to locate
microseismic events with greater accuracy (Waldhauser and Ellsworth (2000), Artman et al.
(2010)). However, there is always a certain, perhaps significant, uncertainty in the location.

Consider a receiver array on the surface, with microseismic events randomly distributed
in the subsurface. This is a simple transmission problem, and the arrival times of the
microseismic events, as well as their coda, contain information about the subsurface the
waves travelled through. Therefore, one can imagine conceiving a FWI formulation where
the microseismic data can be used to refine a velocity model (Figure 1). The transmission
problem has been studied in detail by Long et al. (2009),Kamath and Tsvankin (2014) and

CREWES Research Report — Volume 29 (2017) 1



Igonin and Innanen

FIG. 1. Schematic illustrating the geometry of a microseismic event (red star) propagating in a
layered medium to a set of receivers (blue triangles). The orange ellipses illustrate uncertainty in
location, which is especially pronounced in depth for a surface array.

Butzer et al. (2013) in the visco-acoustic, 2D VTI and 3D elastic environment respectively.

Extending the idea further, a similar FWI scheme could be developed where instead of
solving for the velocity model, it is the source location and character that is converged upon.
Since both the velocity model uncertainty and source distribution uncertainty problem are
similar in their wave nature, one could construct a scheme to iteratively solve for both. This
would require the construction of a new gradient for the source distribution uncertainty and
there would be inherent cross-talk between the two parameters.

The idea of applying FWI to microseismic has become a recent research topic of interest
in the international community, but the solution is far from found. Jarillo and Tsvankin
(2017) and Sethi and Shekar (2017) have made strides in applying FWI to this problem,
though limited to simplistic synthetic examples that want for a more realistic appraisal of
microseismic. This is an emerging area of research with much work still to be done.

In this paper, we derive the sensitivities for the source distribution and velocity model
uncertainties in both time and frequency domain. Then, to study the effect of cross-talk,
we construct the Hessian in frequency domain. To demonstrate how the two sensitivities
effect each other, we undertake a simple analytic example. Finally, we conclude with some
future work.

THEORY

In the following sections, equations for the gradient and Hessian are derived for the
purpose of updating the velocity model and source location iteratively. We start with the
frequency domain sensitivities, and in an analogous way, repeat the analysis in the time
domain. Finally, we construct the Hessian in the frequency domain and discuss its charac-
teristics.

Frequency domain gradients

For simplicity, we begin this analysis with an acoustic source and restrict ourselves to a
constant density model. In the frequency domain case, we assume that we know the origin
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FIG. 2. Schematic illustration of coordinate system and key variables. (a) Red region shows source
distribution, while blue region shows the true velocity model distribution. Red line indicates ray path
from source to receiver; (b) The same model space where the dashed regions are the background
source and velocity distributions.

time of the source, and set it to t = 0. The source, ss(r), has an unknown spatial distribution
and emits waves that travel through an unknown scalar acoustic medium sc(r) =

1
c2(r)

. This
wavefield is recorded at several receiver locations rg. Figure 2a shows a schematic of this
scenario.

Given this, we have the acoustic Helmholtz equation in sc(r) due to ss(r):[
∇2 + ω2sc(rg)

]
P (rg, ω|sc, ss) = ss(rg), (1)

where ∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
and P (rg, ω|sc, ss) is the recorded wavefield. Next consider

that the actual source/medium arrangement is a perturbation on a background arrangement
sc0(r), ss0(r), as in Figure 2b. In this case, the Helmholtz equation is[

∇2 + ω2sc0(rg)
]
P (rg, ω|sc0, ss0) = ss0(rg). (2)

Consider further that we have a delta function source, so the above equation simplifies to[
∇2 + ω2sc0(rg)

]
G(rg, rs, ω|sc0, ss0) = δ(rg − rs), (3)

where we now have the Green’s function as the wavefield. The way we connect the above
two equations is that the field P due to background source ss0 and background medium sc0
is the superposition of the responses from each point within the source distribution:

P (rg, ω|sc0, ss0) =
∫
drsG(rg, rs, ω|sc0, ss0)ss0(rs). (4)

The same can be said for the true source and medium:

P (rg, ω|sc, ss) =
∫
drsG(rg, rs, ω|sc, ss)ss(rs). (5)
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Let sc(r) = sc0(r) + δsc(r) and ss(r) = ss0(r) + δss(r). Then, if δP = P (rg, ω|sc, ss)−
P (rg, ω|sc0, ss0), we have

δP (rg, ω|sc0, ss0) =

∫
drsG(rg, rs, ω|sc0 + δsc, ss0 + δss)(ss0(rs) + δss(rs)) (6)

−
∫
drsG(rg, rs, ω|sc0, ss0)ss0(rs). (7)

The Green’s function in equation 6 can be expanded using the Born series (Clayton and
Stolt, 1981). Continuing from Eq. 7,

δP (rg, ω|sc0, ss0) =

∫
drs

[
G(rg, rs, ω|sc0, ss0) (8)

− ω2

∫
dr′G(rg, r

′, ω|sc0, ss0)δsc(r′)G(r′, rs, ω|sc0, ss0)
]
(ss0 + δss) (9)

−
∫
drsG(rg, rs, ω|sc0, ss0)ss0(rs). (10)

Multiplying through, we get five terms in total, but the first term cancels with the last term,
leaving three terms:

=

∫
drsG(rg, rs, ω|sco, ss0)δss(rs) (11)

−ω2

∫
drs

[∫
dr′G(rg, r

′, ω|sc0, ss0)δsc(r′)G(r′, rs, ω|sc0, ss0)
]
ss0(rs) (12)

−ω2

∫
drs

[∫
dr′G(rg, r

′, ω|sc0, ss0)δsc(r′)G(r′, rs, ω|sc0, ss0)
]
δss(rs) (13)

Now we are at a point where we can create our sensitivities one at a time by setting δss(r) =
0 and then considering a local version of the other perturbation, for example δss(r′) =
δss(r)δ(r − r′). Likewise, then set δsc(r) to zero and use the local version of the other
perturbation. Let’s start by setting δsc(rs) = 0 and δss(rs) = δss(r)δ(r− r′), which gives

δP (rg, ω|sc0, ss0) =

∫
drsG(rg, rs, ω|sc0, ss0)δss(r)δ(r− rs) (14)

= G(rg, rs, ω|sc0, ss0)δss(r), (15)

which is technically a truncated series to first order. Getting this into the form of a sensi-
tivity is a matter of rearranging to get

∂P (rg, ω)

∂ss(r)
= G(rg, r, ω|sc0, ss0), (16)

to first order. This is simply the Green’s function, which conceptually makes sense be-
cause it accounts for the direct path from the source to the receiver. Schematically, this is
illustrated in Figure 3a.

Similarly, the same thing can be done for the second sensitivity by setting δss(rs) = 0
and δsc(rs) = δsc(r)δ(r− r′), which gives:

δP (rg, ω|sc0, ss0) = −ω2

∫
drs

∫
dr′G(rg, r

′, ω|sc0, ss0)δsc(r′)δ(r− r′) · (17)

G(r′, rs, ω|sc0, ss0)ss0(rs) (18)

= ω2δsc(r)G(rg, r, ω|sc0, ss0)
∫
drsG(r, rs, ω|sc0, ss0)ss0(rs). (19)
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FIG. 3. Schematic illustration of model space with elements δss (a) and δsc (b).

This can then be rearranged to become

∂P (rg, ω)

∂sc(r)
= ω2G(rg, r, ω|sc0, ss0)

∫
drsG(r, rs, ω|sc0, ss0)ss0(rs), (20)

which is schematically illustrated in Figure 3b. Knowing the sensitivities, obtaining the
gradients is simply a matter of substituting into the following formula; for the derivation
refer to Margrave et al. (2011). For the case of the source distribution sensitivity,

gs(rg) =

∫
dω
∂P (rg, ω)

∂ss(rg)
δP ∗(rg, rs, ω|s0), (21)

where gs(r) is the gradient and the ∗ denotes the complex conjugate. The same form is true
for the velocity distribution sensitivity.

While it may be easier to visualize the effects of the microseismic inverse problem in
frequency domain, the problem may be more tractable in time domain, which is the subject
of the next section.

Time domain gradients

In the time domain, the process to obtain the gradient is similar. We start with an
acoustic source ss(r, t) that has an unknown spatial distribution and an unknown ignition
time t = t0. The scalar acoustic medium, which is also unknown, is sc(r) = 1

c2(r)
as before.

In this case, the acoustic wave equation is[
∇2 − sc(rg)

∂2

∂t2

]
p(rg, t|sc, ss) = ss(rg, t). (22)

As in the frequency domain case, consider the actual source/medium arrangement to be a
perturbation on a background arrangement sc0(r), ss0(r, t). That is,[

∇2 − sc0(rg)
∂2

∂t2

]
p(rg, t|sc0, ss0) = ss0(rg, t). (23)
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Similarly, with a delta function source, we have our familiar Green’s function represented
again: [

∇2 − sc0(rg)
∂2

∂t2

]
g(rg, t, rs, t0|sc0, ss0) = δ(rg − rs)δ(t− t0). (24)

Recall that if we time shift the source time t0 and the measurement time t both, it will
have no effect on the behaviour of the equation. To clean up some of the upcoming stamp
collecting, let us subtract t0 from both t0 and t in the above equation. We will change our
notation as follows:

g(rg, t, rs, t0|sc0, ss0) = g(rg, t− t0, rs, 0|sc0, ss0) (25)
= g(rg, rs, t− t0|sc0, ss0). (26)

As in the frequency domain case, the field p at rg due to a background source ss0 in a
background medium sc0 is a superposition over rs. However, now that we have time as an
added variable, we also have superposition over t0. Therefore,

p(rg, t|sc0, ss0) =

∫
drs

∫
dt0g(rg, rs, t− t0|sc0, ss0)ss0(rs, t0) (27)

=

∫
drsg(rg, rs, t|sc0, ss0) ∗ ss0(rs, t) (28)

where ∗ denotes convolution. Going back to the wave equation, the perturbed equation
with the sc0 operator is[
∇2
g − sc0(rg)

∂2

∂t2

]
g(rg, rs, t− ts|sc) = δ(rg−rs)δ(t− ts)+ δsc(rg)

∂2

∂t2
g(rg, rs, t− ts|sc)

(29)
where everything right of the equals sign is the new source term. We can plug this new
source term into Eq. 27. The wavefield with this source is really a Green’s function so

g(rg, rs, t− ts|sc) ≈
∫
dr′
∫
dt′g(rg, r

′, t− t′|sc0)
[
δ(r′ − rs)δ(t

′ − ts) (30)

+ δsc(r
′)
∂2

∂t′2
g(r′, rs, t

′ − ts|sc0)
]
. (31)

In order to simplify this expression, we need to side-track and review a special form of
convolution. Given

f(t− t0) =
∫
dt′g(t− t′)h(t′ − t0), (32)

let t′′ = t′− t0. This means that t′ = t′′ + t0 and dt′′ = dt′ so we can transform Eq. 32 into

f(t− t0) =
∫
dt′′g((t− t0)− t′′)h(t′′). (33)

Why is this useful? Looking at to Eq. 30, we need this to sort out the various time variables
that combine when we multiply through the Green’s function with the second term in the
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square brackets. The first term in the expansion is simple because the two delta functions
take care of the two integrals. That is,

g(rg, rs, t− ts|sc) ≈ g(rg, rs, t− ts|sc0) (34)

+

∫
dr′δsc(r

′)

∫
dt′g(rg, r

′, (t− ts)− t′|sc0)
[
∂2

∂t′2
g(r′, rs, t

′|sc0)
]

(35)

Now we have all the building blocks to determine the residuals and get the root formula
from which we can solve for the two sensitivities by setting individual perturbations to
zero. To reiterate, we have the full true wavefield

p(rg, t|sc, ss) =
∫
drsg(rg, rs, t|sc) ∗ ss(rs, t), (36)

and the field with the background source/medium:

p(rg, t|sc0, ss0) =
∫
drsg(rg, rs, t|sc0) ∗ ss0(rs, t). (37)

We define the residual as δp = p(sc, ss)−p(sc0, ss0) so in order to make this work, we need
to write Eq. 36 in terms of the background/source medium, as well as the perturbations.
That is, in Eq. 36, we substitute sc(r) = sc0(r) + δsc(r) and ss(r) = ss0(r) + δss(r) to get

p(rg, t|sc, ss) ≈
∫
drs

∫
dts

[
g(rg, rs, t− ts|sc0) (38)

+

∫
dr′δsc(r

′)

∫
dt′g(rg, r

′, (t− t0)− t′|sc0)
∂2

∂t′2
g(r′, rs, t

′|sc0)
]

(39)

· [ss0(rs, ts) + δss(rs, ts)] . (40)

Expanding this leads to four terms:

p(rg, t|sc, ss) ≈ p(rg, t|sc0, ss0) +
∫
drs

∫
dtsg(rg, rs, t− ts|sc0)δss(rs, ts)

+

∫
drs

∫
dts

∫
dr′δsc(r

′)

∫
dt′g(rg, r

′, (t− ts)− t′|sc0)
∂2

∂t′2
g(r′, rs, t

′|sc0)ss0

+

∫
drs

∫
dts

∫
dr′δsc(r

′)

∫
dt′g(rg, r

′, (t− ts)− t′|sc0)
∂2

∂t′2
g(r′, rs, t

′|sc0)δss.

Knowing that the fourth term will always be zero, we neglect it from here on in.

Now we can write our residuals out and simplify them as follows:

δp(rg, t|sc0, ss0) = p(rg, t|sc, ss)− p(rg, t|sc0, ss0) (41)

=

∫
drsg(rg, rs, t|sc0) ∗ δss(rs, t) (42)

+

∫
dr′δsc(r

′)

∫
drsO(rg, r

′, rs, t) ∗ ss0(rs, t), (43)

where

O(rg, r
′, rs, t) = g(rg, r

′, t|sc0) ∗
∂2

∂t2
g(r′, rs, t|sc0). (44)
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Finally we can solve for the sensitivities. Let us solve for the source distribution sensitivity
by setting δsc = 0 and δss(rs, t) = δss(r

∗, t∗)δ(r∗ − rs)δ(t− t∗). Therefore,

δps(rg, t|sc0, ss0) ≈ g(rg, r
∗, t− t∗)δss(r∗, t∗), (45)

which means
∂p(rg, t)

∂ss(r∗, t∗)
= g(rg, r

∗, t− t∗). (46)

Next we repeat this analysis in the case of the velocity model sensitivities where δss = 0
and δsc(r′) = δsc(r

∗)δ(r∗ − r′):

δpc(rg, t|sc0, ss0) ≈ δsc(r
∗)

∫
drsO(rg, r

∗, rs, t) ∗ ss0(rs, t). (47)

Therefore, the sensitivity is

∂p(rg, t)

∂sc(r∗)
=

∫
drs

[
g(rg, r

∗, t|sc0) ∗
∂2

∂t2
g(r∗, rs, t|sc0)

]
∗ ss0(rs, t) (48)

which in long-form is

∂p(rg, t)

∂sc(r∗)
=

∫
drs

∫
dt′
∫
dtsg(rg, r

∗, (t− ts)− t′|sc0)
∂2

∂t′2
g(r∗, rs, t

′|sc0)ss0(rs, ts). (49)

The final step is to write the expression for the gradient based on the sensitivity. For the
source-distribution uncertainty, the gradient is given by

gs = −
∑
rg ,rs

∫
dtδP (rg, rs, t|sc, ss)g(rg, r, t− t∗|sc, ss). (50)

where we see that the gradient is simply given by the sum of the residuals multiplied by the
green’s function. The companion report (Igonin and Innanen, 2017) shows some numeric
examples of what this update ends up looking like.

The velocity model time-domain gradient is given by

gc = −
∑
rg,rs

∫
dtδP ∗(rg, rs, t|sc, ss)

∫
dt′
∫
dtsg(rg, r, (t−ts)−t′|sc0, ss0)

∂2g(r, rs, t
′|sc0, ss0)

∂t′2
ss0(rs, ts).

(51)

This concludes the time domain derivation of the sensitivities of the source distribution
and velocity model.

Frequency-domain Hessian

Since we have a lot of interest in the cross-talk between the source distribution and
velocity model uncertainties, the Hessian is a key component of the analysis. It is the
diagonal terms of the Hessian that contain the shared terms and ultimately, will be the gate
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to address cross-talk that may exist. The Hessian is a 2 × 2 block matrix, as a virtue of
having two sensitivities. It can be written as

H(r, r′) =

[
H1(r, r

′) H2(r, r
′)

H3(r, r
′) H4(r, r

′)

]
. (52)

We will now proceed to derive the four components of the Hessian. Since the Hessian is by
definition symmetric, we need only find the expressions of three terms. Additionally, we
will refrain to the Gauss-Newton Hessian, which is given by

H(r, r′) =

∫
dω

∂P

∂s0(r′)

∂P ∗

∂s0(r)
, (53)

where the s0(r) refers to either the sc(r) or ss(r), depending on the case.

The first term, H1(r, r
′) is due to only the source distribution sensitivities and due to

the simple nature of the sensitivity is given by

H1(r, r
′) =

∫
dωG(rg, r

′, ω|sc0, ss0)G∗(rg, r, ω|sc0, ss0). (54)

The second and third terms are given by

H2(r, r
′) =

∫
dωG(rg, r

′, ω|sc0, ss0)ω2G∗(rg, r, ω|sc0, ss0)
∫
drsG(r, rs, ω|sc0, ss0)ss0(rs). (55)

Finally, the fourth and longest term, which is due to the velocity model sensitivities
alone, is given by

H4(r, r
′) =

∫
dω ω4G(rg, r

′, ω|sc0, ss0)G∗(rg, r, ω|sc0, ss0) · (56)∫
drsss0(rs)

2G(r′, rs, ω|sc0, ss0)G∗(r, rs, ω|sc0, ss0). (57)

While these formulae are informative, one of the best ways to explore their meaning is
with an analytic example, which is the subject of the following section.

ANALYTIC EXAMPLE

Let us begin the analytic example by describing our model space. Consider a 1D uni-
verse in the variable z. At the surface z = zg = 0, we have a geophone, and at some depth
zs we have a source. The wavefront generated at zs travels through a homogeneous medium
s(z) = s0, as shown in Figure 4. Since we would like to explore the behaviour of our new
source distribution sensitivity, we will maintain that the velocity is known accurately. In
order to study the Hessian as well, we will focus on the frequency domain. The true data is
a one-way Green’s function given by

D(zs, zg, ω) =
eik0zs

i2k0
, (58)
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FIG. 4. Schematic illustration of model space for the analytic example.

where k0 = w
c0

. Let’s say that the true depth is unknown and we guess the starting point to
be zs0. Therefore, the modelled data is given by

P (zs0, zg, ω) =
eik0zs0

i2k0
. (59)

The next step is to calculate the complex conjugate of the residuals, which is given by

δP ∗(zg, zs, ω) =
−e−ik0zs0 + e−ik0zs

i2k0
. (60)

The source distribution sensitivity is simply the Green’s function, so

∂P (zg, ω)

∂ss(z)
= G(zg, z, ω|sc0, ss0) =

eik0z

i2k0
. (61)

This can be substituted into the expression for the gradient:

gs(z) =

∫
dω
∂P (zg, ω)

∂ss(z)
δP ∗(zg, zs, ω|s0) (62)

=

∫
dω

[
−eik0(z−zs0)

(i2k0)2
+
eik0(z−zs)

(i2k0)2

]
(63)

Based on the form of this equation, and recalling what delta and step functions look like,
this is going to be a ramp function. There are a few things we can do to solve this integral:

→ Discretize the integral, keeping only the low frequencies and effectively remove the
integral.

→ Determine the Fourier-transform (FT) expression for a ramp function.

→ Expand the exponential terms as a Taylors’ series and keep only the low orders for
integration.

10 CREWES Research Report — Volume 29 (2017)
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Let us try the second approach. Recall that the FT for the delta function is given by

δ(z − z0) =
1

2π

∫
dkze

ikz(z−z0). (64)

Likewise, we have the Heaviside, or step, function given by

δ(−1)(z − z0) =
1

2π

∫
dkz

eikz(z−z0)

ikz
≡ θ(z − z0). (65)

Therefore, in a similar way, we can define

δ(−2)(z − z0) =
1

2π

∫
dkz

eikz(z−z0)

(ikz)2
≡ ψ(z − z0), (66)

where ψ(z − z0) is the ramp function.

Applying this to Eq. 63 and performing a change in variables to make the integral in
terms of dk0, we obtain the gradient

gs(z) =
c0π

2
[−ψ(z − zs0) + ψ(z − zs)] . (67)

Figure 5a shows what these two ramp functions look like in combination for the case of
zs0 < zs. If we had instead said that the background velocity was also incorrect, with k1
being the new wavenumber in this case, the gradient would have been

gs(z) =
c0π

2

[
−ψ(z − zs0) + ψ(z − k1

k0
zs)

]
. (68)

Figure 5b shows the effect on the gradient depending on whether k1 < k0 or vice versa.
What this shows is that if the background medium is not known accurately, the source-term
gradient will attempt to move the source deeper or shallower to account for it.

FIG. 5. Illustration of combined ramp functions for Eq. 68 and 69. (a) In the case of a known
background medium; (b) in the case of a faster or slower true background medium.

Next, we can determine the gradient for the velocity model sensitivity. The sensitivity
is given by

∂P (zg, ω)

∂sc(z)
= ω2 e

ik0z

i2k0

∫
dzs

eik0|z−zs|

(i2k0)2
ss0(zs). (69)
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If we have a point source at zs = zs0, the integral goes away and we have

∂P (zg, ω)

∂sc(z)
= − 1

(i2k0)2
ω2eik0(2z−zs0), (70)

After substituting this into the formula for the gradient, the resulting expression can be
simplified by transforming the integral to be with respect to d2k and using Eq. 65, the
definition of the Heaviside function. Therefore, the gradient becomes

gc(z) =
c3oπ

4

[
−θ(z − zs0) + θ(z − (

zs0
2

+
zs
2
))
]
. (71)

Examining the form of this closely, we see that we have two step functions of the same
amplitude, but in two different locations. If we have zs > zs0, the two step functions
in combination will create a box function that starts at zs0 and ends at zs0

2
+ zs

2
. Another

observation is that even though the velocity model is known, the gradient creates a non-zero
update in the region where the source is uncertain.

Finally, using Eq. 53 through 58, the Hessian can be constructed to further analyze
the cross-talk and begin to see what the Gauss-Newton update would look like for the first
iteration. After some math, the Hessian can be summarized as

H(r, r′) =

[
H1(z, z

′) H2(z, z
′)

H3(z, z
′) H4(z, z

′)

]
=

[
c0π
2
ψ(z′ − z) c0π

4
θ(z′ − 2z + zs0)

c0π
4
θ(z′ − 2z + zs0)

c0π
16
δ(z′ − z)

]
. (72)

Recalling that the Gauss-Newton update is given by

δs = −H−1g, (73)

we can imagine determining the inverse of each element in Eq. 73. Then consider mul-
tiplying this inverse Hessian first by gs(z). Interestingly enough, we end up with terms
like ψ−1(...)ψ(...) and θ−1(...)θ(...). Therefore, the step may end up resembling a delta
function. Next, consider the velocity model update. In that case, we have terms like
θ−1(...)ψ(...) and δ(...)θ(...), which may lead to the update resembling a step. In sum-
mary, the Hessian may in fact give the update the correct character we would expect; delta
functions for source position, and steps for velocity model layers.

DISCUSSION AND FUTURE WORK

Since this project is still in its infancy, the scope of the future work is quite broad. The
first order of business is to implement the new gradient in the framework of an existing
FWI code. This has been attempted in the companion report, Igonin and Innanen (2017).

The Hessian is the key to studying the cross-talk between these two parameters and a
major focus in the future is to characterize and propose solutions to this cross-talk.

The ultimate goal is to be able to apply an iterative FWI scheme for these two parame-
ters with real data. Due to the complex wave nature of microseismic data, the first attempt
would be made on physical modelling lab data, and only later would be applied to a real mi-
croseismic dataset owned by the Microseismic Industry Consortium (MIC). An extension
to 3D elastic media would also be necessary in this case, which would yield more complex
expressions for the gradient and Hessian.
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CONCLUSIONS

In this report, sensitivities for a source and velocity model uncertainty were derived as
a first step toward a transmission-based iterative FWI scheme to solve for both source loca-
tion and velocity model. The sensitivities were derived in both time and frequency domain.
Additionally, the Hessian was derived in the frequency domain. To explore the behaviour of
the gradient and Hessian, an analytic example in frequency domain was undertaken. While
this led to a few speculative insights, this research project has a broad scope of future work
with the goal of being eventually applied to real data, both laboratory and field in origin.
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