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ABSTRACT

Quasi-Newton optimization methods have been shown to provide considerable im-
provements in the convergence rate of full waveform inversion (FWI). These methods use
approximate Hessian matrices to generate an update direction. The DFP method uses an
approximate Hessian which predicts observed changes in the gradient, while remaining
nearest in a least-squares sense to the previous approximate Hessian. By using a low-
resolution approximation to the Hessian to initialize the method, we attempt to increase
the rate of convergence. This work is ongoing, currently there are significant challenges in
using the inverse of the Hessian on the low-resolution scale to provide a meaningful inverse
on the high-resolution scale.

INTRODUCTION

Full waveform inversion (FWI) is a computationally demanding approach for recov-
ering a model of the sub-surface (Lailly, 1983; Tarantola, 1984). The driver of the FWI
problem is a numerical optimization procedure, wherein measured data and synthetic data
generated by the estimated model are made to match as closely as possible. A vital step
in most numerical optimization procedures is the calculation of the gradient, and this cal-
culation typically dominates the cost of FWI (Virieux and Operto, 2009). FWI can easily
be formulated using a steepest descent approach to this optimization, where the model is
simply updated by the gradient multiplied by a scalar at each iteration. It has been shown,
however, that the inversion can be made more efficient by using more sophisticated nu-
merical optimization techniques, such as conjugate gradients (e.g. Kamei and Pratt, 2013),
l-BFGS (e.g. Hak and Mulder, 2011) and truncated Newton optimization (e.g. Métivier
et al., 2015). Quasi-Newton methods like l-BFGS modify the gradient direction with an
approximation of the inverse Hessian before updating the model. This introduces an ad-
ditional cost at each iteration, but typically leads to faster convergence, and thus fewer
required iterations.

A major factor in the efficiency of the l-BFGS method is the starting estimate of the in-
verse Hessian. Estimates which better capture the important features of the inverse Hessian
lead to faster convergence in the numerical optimization procedure. Unfortunately, it can
be very difficult to obtain a reasonable estimate of the inverse Hessian. A closely related
method, DFP optimization (named for Davidon, Fletcher and Powell), employs an estimate
of the Hessian matrix, which may be simpler to approximate. We investigate here the idea
of using a low resolution estimate of the Hessian matrix in initializing DFP in FWI.

THEORY

In exact Newton optimization, the descent direction at each iteration is calculated by
solving

Hp = −g, (1)
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where H is the Hessian, g is the gradient, and p is the descent direction. Broyden class op-
timization methods create a descent direction by applying an approximation to the inverse
Hessian Q to the gradient, so equation 1 is replaced with

p = −Qg. (2)

Information about the Hessian is introduced to Q by requiring that it successfully predicts
the last observed change in the gradient (Nocedal and Wright, 2006). For a linear problem,
this change is given by

∆g = H∆m, (3)

where ∆m is the change in the model, and ∆g is the change in the gradient. The matrix Q
is then required to satisfy

Q−1∆m = ∆g. (4)

This condition alone does not sufficiently constrain Q, so additional conditions are re-
quired. In the BFGS method, the Q chosen is that which satisfies equation 4 while min-
imizing the Frobenius norm of the difference from the Q used at the previous iteration
(Nocedal and Wright, 2006). This approach can be seriously affected by the initial Q set
in the inversion. If the input Q is very close to the true inverse Hessian in a least squares
sense, the BFGS update will both predict the changes in the gradient and be close in a least
squares sense to the true Hessian. Ideally, this leads to an update which is close to the exact
Newton update. Unfortunately, the inverse of the Hessian matrix can be very difficult to
predict.

The DFP method is another Broyden class method, and imposes the same requirement
of predicting the last observed change in the gradient. The DFP method replaces the re-
quirement that Q be nearest to the previous Q with the requirement that Q−1 be nearest to
the previous Q−1 (Nocedal and Wright, 2006). This effectively means that the change to
the approximate Hessian is minimized, rather than its inverse, and that the initial Q should
be the inverse of an approximate Hessian. The DFP method can then be expected to per-
form well if provided with an approximate Hessian close to the true one, while the BFGS
method should perform well with an approximate inverse Hessian close to the true one.
This distinction may be notable: matrices which are close may have inverses that are far
apart.

The DFP approximation to the inverse Hessian is given by

Qk+1 = Qk −
Qk∆gk∆gTkQk

∆gTkQk

+
∆mk∆mT

k

∆gTk ∆mk

(5)

In Quasi-Newton methods, the approximate inverse Hessian matrix is typically not com-
puted directly or stored, due to the large size of the matrix. Direct calculation is not nec-
essary because it is the product of this matrix with the gradient that is required in solving
equation 2. An iterative procedure for the calculation of Qg can be created based on 5
(Nocedal and Wright, 2006). This requires only the storage of the previous k differences
∆gk and ∆mk, and the initial estimate Q0.
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An approximate Hessian matrix

Creating approximations close to the Hessian matrix may be considerably easier than
generating approximations close to the inverse Hessian. This is because while the entire
Hessian may be costly to compute and store, it is relatively simple to generate an expres-
sion for an element of the Hessian. By making approximations to these expressions, we
can generate an approximation to the Hessian. By contrast, it is very difficult to generate
an expression for an element of the inverse Hessian, given the need for a matrix inver-
sion. As previously discussed, the inverse of a close approximation to the Hessian does not
necessarily generate a close approximation to the inverse Hessian.

For example, in the an-acoustic FWI problem, the elements of the Hessian matrix relat-
ing to derivatives with respect to, for instance, velocity, are given by

Hcc(r, r
′) =

∑
rg ,rs

∫
dωω4[1 + βsco(r)]

2G(rg, r, r
′, rs), (6)

where
G(rg, r, r

′, rs) = G∗0(rg, r
′)G∗0(r

′, rs)G0(rg, r)G0(r, rs), (7)

β = i− 2

π
log

(
ω

ω0

)
, (8)

sco = 1
c2

, ω0 is a reference frequency, and G0 are Green’s functions in the current medium.

The matrix
∑
rg ,rs

G(rg, r, r
′, rs) is very expensive to calculate for large models, and is

typically too large to store. One approach to approximating the Hessian matrix is to replace
G0 with P TG0, where P T is a matrix projecting from the full dimension of the inversion
problem onto a smaller grid. [1 + βsco(r)] is likewise replaced with P T [1 + βsco(r)]. The
result is an approximation to the matrix P THP , where P and P T are applied to the Green’s
functions before they are multiplied, rather than after. This effectively changes the order of
a multiplication and a summation, valid only when all elements of a sum are equal. Thus,
this approximation effectively assumes that the wavefield is slowly varying on the scale of
the coarser grid. An approximate version of the Hessian on the original grid is then given
by PBP T , where B is the approximation to P THP .

The advantage of this approach is that for a model of dimension N , and a coarse grid
of dimension M , the cost of calculating the approximate Hessian reduces to O(M3) from
O(N3) operations, and the memory required to store the approximate Hessian is O(M2)
instead of O(N2). If this approximate Hessian can then be shown to be close to the true
Hessian, it provides an appealing starting matrix for a DFP type optimization.

An example segment of an exact Gauss-Newton Hessian matrix and the corresponding
approximation for an example QFWI problem are shown in figure 1. The Frobenius norm
of the difference between the exact and approximate Hessian is about 40.9% the norm of
the exact Hessian matrix, so these matrices are fairly close to one another for the purposes
of the DFP optimization approach. The inverses of these matrices after adding a small
stabilization term λI are shown in figure 2. The Frobenius norm of the difference of these
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FIG. 1.
Exact (left) and approximate (right) Hessian for a subset of variables in a QFWI problem. The
difference between the exact and approximate Hessian has a relatively small Frobenius norm.

FIG. 2.
Inverse of the exact (left) and approximate (right) Hessian after stabilization for a subset of variables
in a QFWI problem. The difference between the exact and approximate inverse Hessian has a large
Frobenius norm.

matrices is about 98.4% the norm of the inverse of the exact Hessian matrix, making this
approximation a poor starting point for the BFGS optimization approach.

An inverse to the approximate Hessian

The DFP method requires the inverse of the approximate Hessian to initialize the inver-
sion. Inverting a matrix of N2 elements is a process requiring O(N3) operations, which is
generally infeasible. Much less expensive is obtaining the inverse of the matrix B, which
contains only M2 elements. Challenges arise in the proposed method when attempting to
use this inverse to provide a meaningful value of Q. Even with a calculated B−1 such that
BB−1 = IM , it is difficult to calculate the inverse of the approximate Hessian, PBP T .
While it is easy to generate an estimate QM such that

PBP TQMP
T = PIMP

T , (9)

the inverse we require is Q, which satisfies

PBP TQ = IN . (10)

Several problems arise in determining such a Q. First, the smaller dimensionality of B
means that PBP T is not an invertible matrix. This obstacle is not insurmountable, a sparse
stabilizing term can be added to PBP T to make this term invertible. If the stabilizing term
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FIG. 3.
Exact Hessian (left) and inverse of Q as defined in equation 11 (right) for a subset of variables in a
QFWI problem. Despite significant similarities, the difference between these matrices is very large.

is sufficiently small, this should also preserve the L2 closeness to the true Hessian. A more
daunting challenge is the necessity for Q to be N dimensional to satisfy equation 10. This
introduces significant memory requirements unless Q can be efficiently generated from a
smaller dimensional term, as the Hessian approximation PBP T is. A similar approach to
that which generates the Hessian approximation can be followed, using

Q = PQMP
T + λIN , (11)

where λ is a small scalar. Unfortunately, the inverse of the Q provided in equation 11 is not
a good approximation of the Hessian, as illustrated in figure 3.

CONCLUSIONS

The approach discussed in this report produces an approximation to the Hessian matrix
which is very close to the true Hessian. This approximation can be generated with small
memory and computational cost requirements, and provides an appealing initial estimate
for a DFP optimization procedure. Unfortunately, the inverse of the approximate Hessian
is challenging to compute using the same memory and computational cost requirements.
This challenge is not specific to this particular approximation to the Hessian, approaches
to generating a low memory approximation to the Hessian still require that the inverse
be evaluated, which may require much more memory and computation. This will likely
present a problem for any non-diagonal approximate Hessian.
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