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ABSTRACT

Full waveform inversion typically defines many more variables in the inversion than
can be expected to be independently recovered. This prevents usage of more powerful
optimization techniques, where large numbers of variables become very expensive. Here,
FWI is performed with a model resolution defined based on the data frequencies considered
at each iteration. This allows for Newton optimization to be employed in the recovery of
the low frequency part of the model, considerably reducing cross-talk on long wavelength
scales.

INTRODUCTION

Full waveform inversion (FWI) seeks to reconstruct a complete subsurface model which
accurately reproduces measured seismic data (Lailly, 1983; Tarantola, 1984; Virieux and
Operto, 2009). This is typically achieved through a numerical optimization procedure.
Great advances have been made in, for instance, constructing high resolution velocity mod-
els through use of FWI (Virieux and Operto, 2009). Significant obstacles, however, must be
confronted to move forward with FWI. Extreme computational cost in particular remains a
significant barrier. Closely related is the significant complexity introduced by considering
multiple physical parameters in the inversion, where cross-talk, confusion of different pa-
rameters in the inversion, is a serious concern (e.g., Operto et al., 2013; Pan et al., 2016).
These issues have led to FWI being largely confined to relatively low frequency, velocity-
only model recovery.

Many authors have experimented with different ways of improving the efficiency of
the FWI algorithm. One approach that has been investigated is to use powerful global
optimization techniques to recover a coarse approximation of the subsurface, followed by
traditional FWI (Datta and Sen, 2016). This allows for a relatively accurate model at large
scales, helping to improve the results of the inversion that builds on this model. While
this approach is promising, the extreme cost of performing a global optimization with a
large number of parameters severely limits the scales at which it can be employed. Global
optimization is far from unique in being too costly to implement for a full resolution FWI.
Many techniques intermediate between steepest descent optimization and global optimiza-
tion are too computationally intensive for the very large number of variables considered.
Notably, Newton optimization, which has been shown to be very effective in eliminating
cross-talk in multi-parameter FWI, falls into this category. If Newton optimization can be
applied at an affordable scale, it may provide useful large-scale information that helps to
prevent cross-talk in the FWI result.

While FWI typically considers a fixed number of model variables, this may not be
efficient or necessary. In multi-scale FWI early iterations are performed using only the
low-frequency content of the data, while later iterations progressively introduce higher
frequencies (Bunks et al., 1995). This naturally suggests that the achievable resolution of
the recovered model will change as the inversion progresses. In this report we investigate
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the idea of applying Newton optimization in FWI with a multi-resolution approach, wherein
the inverted model is re-parameterized as the inversion progresses to reflect the frequency
content of the data being considered.

THEORY

Multi-parameter FWI, where several physical properties are recovered in the inversion,
is often prone to cross-talk, where data residuals introduced by one parameter mistakenly
influences the estimate of another. This problem is not sufficiently treated when employing
very simple numerical optimization techniques, such as the steepest descent method. On
the other hand, it is well understood to be powerfully mitigated by considering second
derivative information in the optimization procedure. A Newton optimization approach,
where this second order information is fully employed, has the capacity to greatly reduce
cross-talk, an important consideration in multiparameter FWI.

Newton optimization conditions the gradient (first derivatives) with the inverse of the
Hessian matrix (second derivatives). This allows for consideration of changes in a deriva-
tive with respect to one variable as another variable is changed. Crucially, this prevents one
variable from being modified as a result of a data residual that can be entirely explained
by a change in another variable. So, for instance, greater resolution can be obtained in a
Newton update, as nearby variables are not confused for one another. Similarly, cross-talk
between physically distinct properties can be reduced.

Exact Gauss-Newton optimization is typically unachievable in FWI due to the ex-
tremely large associated computational costs and memory requirements. The memory
requirements consist chiefly of storing the Hessian matrix H , which for a model of N
elements contains N2 entries. The computational cost is driven by the solution for the
Newton update:

∆p = −H−1g, (1)

where ∆p is the descent direction and g is the gradient. The cost of solving this system is
on the order of approximately N3 operations.

Much of the information present in a Newton update may be useful, but perhaps not
crucial to the inversion procedure. For instance the part of the Hessian which allows for
better resolution forms a considerable fraction of the size and cost, but does not form the
key motivation for using the Hessian. If cross-talk reduction is a major objective, Newton
optimization with a coarse set of parameters may be desirable, as it mitigates cross-talk at
a large scale, but reduces the number of parameters considered, and so the cost.

Achievable seismic resolution is approximately one quarter to one eighth of the seismic
wavelength. Second order finite difference schemes can require ten or more grid points per
wavelength to avoid grid dispersion. This means that an inverted model defined on the same
grid as the wave simulation may have the capacity to define features much smaller than the
achievable limits imposed by the data. Such a model defines many more variables than
can actually be accurately recovered independently. The multiscale approach frequently
employed in FWI exaggerates the issue even further. In this approach, low frequencies are
inverted at early iterations, and successively higher frequencies are gradually introduced as
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the inversion proceeds. As the same finite difference grid is usually used at all iterations,
this means that an inverted model defined on this grid may have orders of magnitude more
variables than can be accurately recovered. As it is the large number of variables that makes
powerful optimization techniques prohibitively costly, it is reasonable to consider whether
there are advantages to more conservatively parameterized models.

In a multiscale inversion, the achievable level of resolution changes as the inversion
progresses. We investigate here the idea of changing in tandem the grid on which the
inverted model is defined, in the hopes of achieving efficiency improvements. We refer to
this approach as ’multi-resolution FWI’.

While the recovered model may be considerably over-defined in FWI, this does not
necessarily imply inefficiency. Some numerical optimization strategies are insensitive to
the resolution of the inverted model. Steepest descent optimization, for instance, has a
cost dominated by the evaluation of the gradient, the cost of which is closely tied to wave
propagation cost. More coarsely defined models offer minimal savings in steepest de-
scent optimization unless the wave propagation cost is also reduced. Other optimization
approaches have a more ambiguous relation to the model resolution. The conjugate gra-
dient and BFGS techniques share the property that an N -dimensional linear problem can
be solved in at most N steps. As the dimensionality drops, this upper cost limit falls as
well, supporting the idea that a more coarsely resolved model may be easier to recover. In
FWI, however, the problem is nonlinear, and the number of iterations performed is typi-
cally much less than the dimensionality of the problem. This makes it difficult to predict
the change in the performance of these techniques with changing model resolution. Newton
optimization and global optimization have costs closely tied to the model resolution. These
are the methods which most benefit by a reduction in the dimensionality of the optimization
problem.

Derivatives in the FWI problem

Gradient

To calculate the Hessian and gradient with respect to coarse model parameters, we em-
ploy the adjoint state method. To begin with, we consider the FWI problem as a constrained
optimization problem:

min
u

Φ =
1

2
||Ru− d||2, (2)

subject to the constraint that the Helmholtz equation be satisfied, that is

S(p)u = f, (3)

where u is the pressure field, R is a sampling operator representing receiver locations, d
represents the measured data, S is the Helmholtz operator, and f is a source term. In the
adjoint state method, the Lagrangian of this system is considered:

L(u, p, λ) =
1

2
||Ru− d||2 + <(S(p)u− f, λ), (4)
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where λ is a Lagrange multiplier, and < denotes the real part. If we choose a ũ satisfying
the wave equation, that is

S(p)ũ− f = 0, (5)

the Lagrangian reduces to the objective function:

L(ũ, p, λ) =
1

2
||Ru− d||2 = Φ. (6)

Then, the derivative of the objective function can be given as

dΦ

dp
=
dL(ũ, p, λ)

dp
=

∂

∂p
(L(ũ, p, λ)) +

∂

∂ũ
(L(ũ, p, λ)) ∗ dũ

dp
. (7)

This expression has an explicit dependence on the derivative dũ
dp

which can be eliminated by
choosing a Lagrange multiplier λ̃ such that ∂

∂ũ
(L(ũ, p, λ̃)) = 0. This means the Lagrange

multiplier satisfies
S(p)†λ̃ = RT (d−Rũ). (8)

After taking this step, the expression for the derivative reduces from equation 7 to

dΦ

dp
=
dL(ũ, p, λ̃)

dp
= <(∂pS(p)ũ, λ̃). (9)

The gradient vector can be constructed by calculating this term for each model variable
(Metivier et al., 2013).

Hessian

Calculation of the second derivatives follows a similar route. We now wish to take the
derivative of equation 9, subject to the constraints in equations 3 and 8. The associated
Lagrangian is given by

L(u, λ, γ, δ, p) = <(∂pS(p)u, λ) +<(S(p)u− f, γ) +<(S(p)†λ−RT (d−Ru), δ). (10)

Once again, choosing ũ and λ̃ to satisfy the constraints, only the first term remains, and

L(ũ, λ̃, γ, δ, p) = <(∂pS(p)ũ, λ̃) =
dΦ

dp
. (11)

The second derivative is then equal to

d2Φ

dpdp′
=
dL(ũ, λ̃, γ, δ, p)

dp′
=
∂L
∂p′

+
∂L
∂ũ

dũ

dp′
+
∂L
∂λ̃

dλ̃

dp′
. (12)

The terms with explicit derivatives can again be eliminated by choosing Lagrange multi-
pliers δ̃ and γ̃ satisfying

Sδ̃ = −∂pS(p)ũ (13)

and
S†γ̃ = −(∂pS(p)†λ̃+RTRδ̃) (14)
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This reduces equation 12 to

d2Φ

dpdp′
=
dL(ũ, λ̃, γ̃, δ̃, p)

dp′
= <

{
(∂p∂p′Sũ, λ̃) + (∂p′Sũ, γ̃) + (∂p′S

†λ̃, δ̃)

}
. (15)

When using the Gauss-Newton approximation, we take the limit as the residual d − Ru
approaches zero, neglecting terms dependent on λ̃.

A multiresolution inversion

FWI is an iterative process, wherein model updates, defined on the model grid, and
wavefield simulations, defined on a finite-difference grid, are successively repeated. For a
model of dimension M , and a finite difference grid with N points, we define the N by M
projection matrix P such that

mFD = Pm (16)

and
m = P TmFD, (17)

where m is the model considered in FWI, and mFD is the corresponding finite difference
model. In a multiresolution approach, M will be different for each range of frequencies
considered. The value of M should be determined by the expected achievable resolution at
a given frequency band. Here we choose M , such that the model is defined on a scale of λ

8
,

where λ is the wavelength of the highest frequency considered.

The derivatives of the operator S in the previous section with respect to the model
parameters can be easily calculated, given P and the derivatives with respect to the finite
difference points. Let us denote the elements of the finite difference model mi, and the
variables used in the inversion as Mi. The relationship between these values is given by

Mi =
N∑
j=1

Pj,imj. (18)

The derivative of the operator S is then

∂S

∂Mi

=
N∑
j=1

∂S

∂mj

∂mj

∂Mi

=
N∑
j=1

∂S

∂mj

1

Pj,i
. (19)

By considering FWI as a multiresolution process, we open the possibility for signif-
icant efficiency improvements with a number of different optimization approaches. This
report focuses on using multiresolution FWI with exact Gauss-Newton optimization, but
efficiency improvements should be attainable using any optimization approach, including
truncated Newton, l-BFGS, or conjugate gradients.

Computational cost and memory considerations for multiresolution Newton FWI

In Newton optimization, there are a number of steps which are demanding from a nu-
merical implementation standpoint. First, the calculation of the Hessian matrix, using
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equation 15, requires that equations 13 and 14 be solved once for each variable. This
necessitates factoring S and S† only once, as these terms do not change when considering
derivatives with respect to different variables p. For N variables in both the inversion and
the finite difference model, this process requires O(N3) operations, but as S is typically
very sparse, this cost does not usually dominate. Solving equations 13 and 14 once the
left hand side matrices are factorized requires a back substitution, necessitating O(N2)
operations. As this must be done for N right hand sides, the cost of this step is O(N3)
operations, and is typically much more than the factorization for sparse S.

The storage of the Hessian matrix can also be very demanding. For a model of N
variables, the Hessian contains N2 elements. Lastly, the Newton update must be solved
for, using equation 1. Solving this system again requires O(N3) calculations. Overall,
then, Newton optimization for N variables in both the inversion and the finite difference
model requires O(N3) calculations, and the storage of O(N2) elements.

In a multiresolution approach, the number of finite difference elements, N , determining
the size of S, may be much larger than the number of variables considered in the optimiza-
tion,M . This modifies several costs. The number of operations and storage required for the
solution of equation 1 reduce to O(M3) and O(M2) respectively. Obtaining the Hessian
matrix reduces to O(N2M) operations, and the cost of factorizing S remains unchanged.
Provided that S is sufficiently sparse that this cost does not dominate, this leads to a total
requirement ofO(N2M) operations and storage ofO(M2) elements in the multiresolution
Newton approach.

NUMERICAL EXAMPLES

To demonstrate the multiresolution FWI approach, a numerical example is provided in
this section. A major benefit of the multiresolution approach is expected to be an increased
ability to cope with cross-talk, so a multi-parameter FWI problem is considered. Specifi-
cally, the an-acoustic FWI problem is considered, which treats P-wave velocity and quality
factor Q. This problem is very prone to cross-talk, allowing for simple identification of
improvements. The an-acoustic wave propagation we consider in this report is given by[

ω2s(r) +∇2
]
u(r, ω) = f(r, ω), (20)

where the model parameter s is given by

s(r, ω) =
1

c2(r)

{
1 +

1

Q(r)

[
i− 2

π
log

(
ω

ω0

)]}
, (21)

c is the acoustic wave velocity, Q is the quality factor, ω0 is a reference frequency, u is the
pressure field, and f is a source term (Innanen, 2015).

Model

The model considered in this example is two dimensional, 500m by 500m in size and
defined on a grid with a spacing of 3.33m in both x and z directions. A simple geometrical
model is considered, with uniform background velocity and Q, and only a few anomalous
regions. This model is shown in figure 1. In the inversion the initial model was a uniform
velocity and Q, equal to the background values of the true model.
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FIG. 1. Velocity (left) and reciprocal Q (right) model used for the numerical examples.

FIG. 2. Inverted velocity (left) and reciprocal Q (right) for a fixed-resolution steepest optimization,
with a maximum frequency of 25Hz. Compare with figure 1.

Fixed-resolution FWI

Traditional FWI does not change the number of variables considered in the inversion
based on the frequencies used at each iteration. In this framework, it can be exceedingly dif-
ficult to reduce cross-talk in FWI. An example of FWI with steepest-descent optimization
is shown in figure 2. Here, 575 iterations were performed, and frequencies from 1-25Hz
were considered. The inversion result is severely polluted by cross-talk, which is to be
expected when using a method that considers no second derivative information. Newton
optimization is extremely expensive in the fixed-resolution approach due to the very large
number of variables considered. Approaches which consider approximations to the New-
ton update are more practical, but can still struggle to significantly reduce cross-talk. One
such approach is FWI with truncated Newton optimization, shown in figure 3. This method
yields a large improvement over the steepest descent approach, but still leaves significant
cross-talk.
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FIG. 3. Inverted velocity (left) and reciprocal Q (right) for a fixed-resolution truncated-Newton opti-
mization, with a maximum frequency of 25Hz. Compare with figures 1, 2.

Multi-resolution

In the multi-resolution approach implemented in these examples, the grid on which
the model update was calculated at each iteration was determined based on the maximum
frequency of the data considered at that iteration. More specifically, the model update
was calculated on a grid with a spacing equal to λ

8
, where λ is the wavelength of a given

frequency in the background medium. The value of λ
8

was determined by trial and error,
larger spatial grids introduced significant errors, likely due to an inability of the model to
describe high frequency data. A maximum grid spacing of 100m was also enforced, the
computational cost savings of coarser models diminishing rapidly. Higher frequencies were
gradually introduced in the inversion in a multi-scale approach (Bunks et al., 1995). In this
inversion, five frequencies evenly spaced between a minimum and maximum frequency
were inverted at each iteration. At the first iteration, only the 1Hz data was inverted, while
at every subsequent iteration the maximum frequency was increased by 1Hz, to a maximum
frequency, chosen to be the highest frequency for which this procedure was affordable for
this model. The minimum frequency remained fixed at 1Hz.

In these examples, the projection matrix was chosen such that each variable in the
coarse parameterization was a square block of the fine parameterization, the size of which
was determined by the λ

8
resolution criterion. Lengths of non-integer grid points in the fine

model were weighted in the projection matrix according to the fraction of the fine element
which lay inside the coarse parameter .

While the coarse model descent direction can be projected onto the fine model and
applied directly, this was not found to be an optimal approach. Instead, a smoother was
applied to the descent direction prior to the line-search and update. In the smoothing pro-
cess, each point was replaced with the mean of the 2N

M
by 2N

M
block centered at that point.

Examples of a descent direction before and after smoothing are given in figures 4 and 5,
respectively.
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FIG. 4. Calculated coarse update for squared slowness (left) and reciprocal Q (right), projected to
full resolution coordinates. Updates are unscaled. This represents a model update for a frequency
band of 1-7Hz.

FIG. 5. Smoothed coarse update for squared slowness (left) and reciprocal Q (right). Updates are
unscaled. This represents a model update for a frequency band of 1-7Hz. Compare to figure 4.
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FIG. 6. Inverted velocity (left) and reciprocal Q (right) for a multi-resolution exact Newton optimiza-
tion, with a maximum frequency of 7Hz. Compare with figure 1.

Multi-resolution exact Newton QFWI

The application of an exact Newton update in a multi-resolution FWI is restricted to
relatively low frequencies, where there are relatively few variables being inverted for. The
true model for these examples (figure 1) consists of 4.5 ∗ 104 elements. We consider the
performance of the multi-resolution approach for two different cases here, one in which the
maximum frequency considered in the exact Newton optimization is 7 Hz and considers
only 288 variables in the final step of the inversion, and another in which the maximum
frequency is 15Hz and 1152 variables are considered in the final step. These cases represent
a conservative and a more computationally demanding implementation of the approach.

The result of the multi-resolution inversion with a maximum frequency of 7Hz is shown
in figure 6. As expected, the recovered model has relatively poor resolution, but provides a
largely cross-talk free result: the locations of velocity anomalies and Q anomalies are not
confused with one another. This is in sharp contrast to the behaviour of steepest descent,
or even truncated Newton optimization.

The result of the multi-resolution inversion with a maximum frequency of 15Hz is
shown in figure 7. In this example, the result is very similar to the 7Hz result in figure 6.
Like the lower frequency result, cross-talk is largely eliminated here, but higher resolution
is achieved.

The large spatial scale of the anomalies allows for relatively coarse model updates to
effectively combat cross-talk in this example. Smaller scale anomalies will, of course,
require finer scale inversion to effectively remove cross-talk.

DISCUSSION

While the approach outlined here allows for a significant reduction in the computational
cost of a Newton optimization approach, this reduction is not as large as might be expected.
The previously limiting O(N3) computational cost and O(N2) memory requirement for
solving the full resolution Newton update are reduced to O(M3) and O(M2), respectively,
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FIG. 7. Inverted velocity (left) and reciprocal Q (right) for a multi-resolution exact Newton optimiza-
tion, with a maximum frequency of 7Hz. Compare with figures 1, 6.

but the cost of the algorithm detailed here is dominated instead by the calculation of the
elements of the Hessian with a cost of O(N2M). One alternate approach would be to
calculate the Gauss-Newton Hessian through the direct use of Jacobian matrices, using the
expression

HGN = JTJ, (22)

where J is the N by M Jacobian matrix. This approach is less computationally intensive,
requiring only O(NM2) calculations, but requires the storage of the Jacobian matrices,
with a memory requirement of O(NM). This memory requirement may be unachievable
for desirable values of M . In both these approaches, the size of the finite difference grid N
plays a major role in determining the cost. This suggests yet another possible approach to
implementing a multiresolution FWI, in which the finite difference grid also changes as the
inversion proceeds. If the inverted model and finite difference grid are both defined on the
same M grid points, this trivially reduces the cost of Newton FWI to O(M3). This could
be helpful for increasing the accuracy of early, low frequency iterations. Complications
may arise in pursuing this approach, however, if source and receiver spacing fall below the
effective model resolution.

This report has focused on the implementation of Newton optimization on a more
coarsely defined FWI problem. While the computational costs and memory requirements
of this approach are significantly less than those of a fully resolved Newton optimization,
they likely remain sufficiently high that this approach is restricted to considering only the
very low resolution component of models. The idea of using Newton optimization for a
reduced number of model variables, however, is not restricted to a low resolution approach.
This approach could also be used to improve a targeted subsection of a high resolution
model.

CONCLUSIONS

Multiresolution FWI offers the potential for more powerful optimization techniques
to be brought to bear on early stages of the FWI procedure. Gauss-Newton optimization
in a multiresolution context, offers the potential to reduce large scale cross-talk in multi-
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parameter FWI. Using the adjoint state method to obtain the Hessian, this approach cost
O(N2M) calculations, and had a memory requirement equal to the greater of N and M2.
More efficient implementations based on the same idea may be achievable by applying the
multiresolution concept to the finite difference grid as well.
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