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ABSTRACT

In this study, a frequency-domain elastic full waveform inversion algorithm for 2-D
VTI media has been developed. The forward problem used in this inversion algorithm is
simulated by applying frequency domain finite difference method, which is a fast approach
for multi-source and multi-receiver acquisition. For the anisotropic inversion of VTI media,
five elastic constants (c11, c13, c33, c44 and density) have to be dealt with. In this paper, the
gradients of four elastic constants are calculated in matrix forms. To accelerate the conver-
gence rate of inversion, the pusdo-Hessian is also implemented in the objective function.
The inversion results in the paper show that parameters c11, c13 and c33 can be inverted
properly, yet the inversion result of c44 is not satisfying.

INTRODUCTION

In oil and gas exploration, seismic inversion plays a key role in delineating subsurface
structures (Tarantola, 1984; Pratt et al., 1998; Shin and Min, 2006). Most of the FWI tech-
niques are performed under the assumption that the underground formations are isotropic,
yet, according to Thomsen (1986), shale, laminated thin-layers and oriented vertical frac-
tures are transversely isotropic (TI) media. And transversely isotropic media with a vertical
symmetry axis (VTI) are commonly observed in sedimentary formations. For this reason,
anisotropy should be taken into account in FWI.

In the anisotropic waveform inversion, more formation parameters should be inverted
than in isotropic inversion (Chang and McMechan, 2009; Kamath and Tsvankin, 2016; Pan
et al., 2016). This implies multiparameter anisotropic elastic FWI is a highly non-linear
problem. Plessix (2009) proposed that the inversion resolution can be greatly enhanced by
taking anisotropy into consideration. Barnes et al. (2008) used the full waveform inversion
in transversely isotropic media. In his paper, the Thomsen parameters (Thomsen, 1986)(in-
cluding isotropic parameters of vertical P- and S-wave velocities, anisotropic parameters
of δ and ε) are inverted. It showed that the isotropic parameters can be reconstructed
properly yet the anisotropic parameters can not be well restored. According to Gholami
and Siahkoohi (2010), Thomson’s parameters can not be inverted simultaneously even if
source-receiver stations are well distributed at all directions. Gholami et al. (2013) also
pointed out that the choice of parameterization is important for anisotropic FWI. Lee et al.
(2010) applied a frequency-selection strategy, moving from lower to higher frequencies to
invert elastic constants(c11, c13, c33, c44) in VTI meida. In his paper, he coupled elastic con-
stants c11 and c33 based on Thomsen’s relstionship. And the steepest-descent method based
on the adjoint state of the wave equations (Lailly, 1983; Tarantola, 1984; Pratt et al., 1998)
are used to updated by model parameters. In this paper, we will invert elastic constants
c11, c13, c33, c44 while keeping density fixed. As an inversion problem, FWI requires inten-
sive computation. An efficient step-length formula is extremely important to accelerate the
convergence rate. In this study, we estimate the step length by a modified quadratic inter-
polation method. The inversion results show that satisfying reconstruction can be obtained
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for elastic constants c11, c33 and c13, yet the inversion of c44 needs to be enhanced.

FREQUENCY DOMAIN FORWARD MODELING

Wave propagation in an elastic medium is governed by the equation:

ρ∂2
t uj = σij,j, (1)

where i, j = 1, 2, 3, ρ is the density, ui is the displacement vector and σij is stress tensor,
and where σij,j represent spatial derivatives of the stress tensor. The comma between sub-
scripts is used for spatial derivatives. The summation convention for repeated subscripts is
assumed. According to Hooke’s law, the relationship between the stress and strain tensors
is,

σij = cijklεkl, (2)

where cijkl are the elastic stiffness coefficients. The strain tensor εkl is

εkl =
1

2
(uk,l + ul,k). (3)

In the case of a transverse isotopic medium, the second-order wave equation system in
frequency domain can be written as

−ρω2ux = ∂σ11
∂x

+ ∂σ12
∂y

+ ∂σ13
∂z

+ fx

−ρω2uy = ∂σ21
∂x

+ ∂σ22
∂y

+ ∂σ23
∂z

+ fy

−ρω2uz = ∂σ31
∂x

+ ∂σ32
∂y

+ ∂σ33
∂z

+ fz

. (4)

For formations with a vertical symmetry axis (VTI), the elastic stiffness tensor is

c
V TI

=


c11 c11 − 2c66 c13 0 0 0

c11 − 2c66 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66

 , (5)

And the 2D elastic stiffness tensor is reduced to

c
V TI

=

c11 c13 0
c13 c33 0
0 0 c44

 . (6)

The 2D elastic wave equations for VTI media can be written as
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−ρω2ũx = ∂
∂x

(
c11

∂ux
∂x

+ c13
∂uz
∂z

)
+ ∂

∂z

(
c44

(
∂ux
∂z

+ ∂uz
∂x

))
+ f̃x(ω)

−ρω2ũz = ∂
∂z

(
c13

∂ux
∂x

+ c33
∂uz
∂z

)
+ ∂

∂x

(
c44

(
∂ux
∂z

+ ∂uz
∂x

))
+ f̃z(ω).

(7)

Employing the finite-element method, the above equations can be written as

Wũ = f̃. (8)

Rewrite the above equations into the matrix formalism (Pratt and Worthington, 1988),
we have [

Wxx(x, ω) Wxz(x, ω)
Wzx(x, ω) Wzz(x, ω)

] [
ũx(x, ω)
ũz(x, ω)

]
=

[
f̃x(x, ω)

f̃z(x, ω)

]
, (9)

where,
[
f̃x(x, ω) f̃z(x, ω)

]T
is the source vector f̃ , and the wave operator W (x, ω) is

defined as

W (x, ω) =

[
Wxx(x, ω) Wxz(x, ω)
Wzx(x, ω) Wzz(x, ω)

]
. (10)

In VTI media, W (x, ω) can be written as

Wxx(x, ω) = −ρ(x)ω2 − ∂
∂x
c11

∂
∂x
− ∂

∂z
c44

∂
∂z

Wxz(x, ω) = − ∂
∂x
c13

∂
∂z
− ∂

∂z
c44

∂
∂x

Wzx(x, ω) = − ∂
∂z
c13

∂
∂x
− ∂

∂x
c44

∂
∂z

Wzz(x, ω) = −ρ(x)ω2 − ∂
∂z
c33

∂
∂z
− ∂

∂x
c44

∂
∂x

. (11)

In isotropic media, W (x, ω) can be written as

Wxx(x, ω) = −ρ(x)ω2 − ∂
∂x
ρ(x)Vp(x)2 ∂

∂x
− ∂

∂z
ρ(x)Vs(x)2 ∂

∂z

Wxz(x, ω) = − ∂
∂x

(ρ(x)Vp(x)2 − 2ρ(x)Vs(x)2) ∂
∂z
− ∂

∂z
ρ(x)Vs(x)2 ∂

∂x

Wzx(x, ω) = − ∂
∂z

(ρ(x)Vp(x)2 − 2ρ(x)Vs(x)2) ∂
∂x
− ∂

∂x
ρ(x)Vs(x)2 ∂

∂z

Wzz(x, ω) = −ρ(x)ω2 − ∂
∂z
ρ(Xx)Vp(x)2 ∂

∂z
− ∂

∂x
ρ(x)Vs(x)2 ∂

∂x

. (12)

GRADIENT DIRECTION

The main objective of FWI is to find a suitable velocity model by minimizing the objec-
tive function based on the residuals between modeled and field data (Lailly, 1983; Taran-
tola, 1984; Virieux and Operto, 2009). The general relation between the model m and the
data u can be expressed as

u = g(m). (13)
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The objective function can be written as

E(m) =
1

2

∑
ω

∑
s

[u− d]T [u− d]∗ . (14)

where u and d are the modelled and observed data, superscripts T and ∗ are tranpose and
complex conjugate, respectively. ω and s denote the frequency and source.

The inversion problem now has changed into finding the global minimum of this misfit
function. We choose an initial model and perform iterations to reach its neighboring min-
imum. And then the best model calculated at one iteration can be treated as new initial
model for the next iteration. For a given initial model m0, take a second-order Taylor-
Lagrange expansion, the misfit funstion of equation (14) can be expressed as

E(m0 + δm) = E(m0) +∇mE(m0)T δm + 1/2δmT∇2
mE(m0)δm +O(δm2), (15)

where, δm is parameter perturbation and O(δm2) is second-order Lagrange remainder, and
∇mE is the gradient.

When a local minimum of E is reached with a suitable increment of δm , the above
equation can be written as

∇mE(m0) = ∇2
mE(m0)δm = H(m0)δm, (16)

The derivative of the gradient with respect to model m is Hessian H . For a perturba-
tion of the kth parameter of a model m, its gradient can be obtained by taking the partial
derivative of the objective function of equation (14) with respect to the kth model parameter
as

∇mk
E(mk) =

∑
ω

∑
s

Re

[(
∂ũ
∂mk

)T (
ũ− d̃

)∗]
. (17)

The first term on the RHS of the above equation can be obtained by taking the partial
derivative of both sides of equation (8) as

∂ũ
∂mk

= W−1f̃k. (18)

And f̃k is the virtual source vector (Pratt et al., 1998) of the kth model parameter, which
can be written as

f̃k = − ∂W
∂mk

ũ. (19)

Substitute equation (18) and (19) into equation (17), we have
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FIG. 1. The wavefields of this true model
with a P-wave anomaly in the middle.
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FIG. 2. The wavefields of a homogeneous
initial model.

∇mk
E(mk) =

∑
ω

∑
s Re

[
(̃fk)T (W−1)T

(
ũ− d̃

)∗]
= −

∑
ω

∑
s Re

[
ũT ∂WT

∂mk
(W−1)T

(
ũ− d̃

)∗]
.

(20)

This equation shows the gradient can be built as a product between the incident wave-
fields ũ and the back-propagated wavefields (W−1)T

(
ũ− d̃

)∗
, with residuals at receiver

positions as a back-propagated source. The operator ∂WT

∂mk
with respect to elastic constants

in VTI media can be calculated based on equation (11). Take ∂WT

∂c11
as an example, it can be

expressed as

∆Wxx(x, ω)/∆c11 = − ∂
∂x

∂
∂x

∆Wxz(x, ω)/∆c11 = 0

∆Wzx(x, ω)/∆c11 = 0

∆Wzz(x, ω)/∆c11 = 0

(21)

By scaling the gradients of model parameters, the inversion convergence can be accel-
erated. Considering the computational overburden, the pseudo-Hessian matrix instead of
the full Hessian matrix is applied to scale the gradients (Shin et al., 2001). The gradient for
each parameter is then calculated using

∇mk
E(mk) =

∑
ω

(∑
s Re[(̃fk)T (W−1)T (ũ−d̃)

∗
]∑

s[diag((̃fk)T (̃fk)∗)+λI]

)
, (22)

in which λ is the damping factor and I is the identity matrix in Marquardt-Levenberg regu-
larization. We choose λ = 0.01 in this paper.

Combining all the ingredients, we can calculate the gradients with respect to different
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FIG. 3. The wavefields of an X-component
back propagated source with a P-wave
anomaly in the middle.
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FIG. 4. The wavefields of n Z-component
back propagated source in z-direction with
a P-wave anomaly in the middle.

parameters. We start from an isotropic model with P- and S-wave velocity of 1500 m/s and
1200 m/s for the background velocities, respectively. A round anomaly (P-wave velocity in
this anomaly is 1800 m/s) with a radius of 50 m is located in the middle of the model (the
size of the model is 1560 ∗ 1560m2, with a PML of 50m at each side, the space-sample is
10m. ). A vertical point source Sz is located at Sz = (200m, 780m), and a receiver R is
located at R = (200m, 780m). The inverted frequency is 7 Hz. The wavefields of this true
model is shown in Figure 1. Take the background without the P-wave velocity anomaly
as the initial model, the wavefields wlth respect to x- and z-component can be obtained
with the same source-receiver distribution, which are shown in Figure 2. Take the residuals
of receivers in both x- and z-components for the true and initial models as sources, the
wavefields of horizontal and vertical sources can thus be calculated, shown in Figure 3 and
4. Taking each part as a matrix, the gradient in equation (17) can be written as matrix form

∇mk
E(mk) =

∆Wxx

∆mk

∆Wxz

∆mk

∆Wzx

∆mk

∆Wzz

∆mk

ũx

ũz

T [
Wxx(x, ω) Wxz(x, ω)
Wzx(x, ω) Wzz(x, ω)

]−1 [ũx − d̃x
ũz − d̃z

]∗
(23)

In Figure 5, the gradients of VP , VS and density are calculated for this isotropic
medium. If we change this isotropic medium into VTI medium, whose stiffness tensor
is

c
V TI

=

23.87 9.79 0
9.79 15.33 0

0 0 2.77

× 109N/m2, (24)

The gradients with respect to different stiffness tensor can also be calculated with equa-
tion (21), which are shown in Figure 6.

As an inversion problem, FWI requires intensive computation. An efficient step-length
formula is extremely important to accelerate the convergence rate. In this study, we es-
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g
c11

0 500 1000 1500

0

500

1000

1500

g
c13

0 500 1000 1500

0

500

1000

1500

g
c33

0 500 1000 1500

0

500

1000

1500

g
c44

Unit (m)

 

 

0 500 1000 1500

0

500

1000

1500

FIG. 6. Sensitivyty kernels for stiffness tensors in VTI media.

CREWES Research Report — Volume 29 (2017) 7



Li et. al

−5 0 5 10

x 10
12

0

2

4

6

8

10

12

14

16

18
x 10

5

Original Minimum

Step length

M
is

fit
 fu

nc
tio

n

−5 0 5 10

x 10
11

1

2

3

4

5

6

7

8

9
x 10

4

Original Minimum
Modified Minimum

Step length

M
is

fit
 fu

nc
tio

n

(a) (b)

FIG. 7. Illustration that schematically outlines the principle of the modified quadratic interpolation
step-length formula. (a) Original step length obtained by line search method and (b) Modified step
length after interpolation.

timate the step length by a modified quadratic interpolation method. A step length that
minimizes the misfit function can be found by using the line search method, shown in Fig-
ure 7(a). Unlike directly using the step length in the iteration, the adjacent left and right
closest step lengths are also used (red curve in Figure 7(b)) to interpolate a modified step
length that minimizes the misfit function.

EXAMPLES

Two-anomalous model

In this section, a VTI model with two finite-sized anomalous circles of radius 100 m is
presented, shown in Figure 8(Left). The background VTI model parameters are the same
as in equation (24). The parameter values of the stiffness tensors are increased into 1.4
times of the background parameter values. The stiffness tensor matrix in the anomalies is

c
V TI

=

33.18 13.71 0
13.71 21.46 0

0 0 3.88

× 109N/m2, (25)

The numerical grid size is 116 by 116 points with a spatial step of 10 m. The source-
receiver distribution is shown in Figure 8(Right)(red dots are the receiver locations with
a spacing of 20m, the sources are located in the same areas, except the spacing is 50m).
We have a total of 54 sources and each source is recorded by 156 geophones located at
each side of the model. We choose a start frequency of 2 Hz to 16 Hz with a sample of 2
Hz. The initial medium is the constant background VTI model in equation (24). For each
iteration, the updated initial model comes from the previously inverted model with different
frequencies.
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a

D
ep

th
 (

m
)

Inverted C
11

 Model, 1st iteration

 

 

0 500 1000

0

200

400

600

800

1000 2.4

2.5

2.6

2.7

x 10
10

b

Inverted C
11

 Model, 2nd iteration

 

 

0 500 1000

0

200

400

600

800

1000 2.4

2.5

2.6

2.7

x 10
10

c

Inverted C
11

 Model, 3rd iteration

 

 

0 500 1000

0

200

400

600

800

1000 2.4

2.5

2.6

2.7

x 10
10

d

D
ep

th
 (

m
)

Lateral Depth (m)

Inverted C
11

 Model, 4th iteration

 

 

0 500 1000

0

200

400

600

800

1000 2.4

2.5

2.6

2.7

x 10
10

e

D
ep

th
 (

m
)

Lateral Depth (m)

Inverted C
11

 Model, 5th iteration

 

 

0 500 1000

0

200

400

600

800

1000 2.4

2.5

2.6

2.7

x 10
10

f
D

ep
th

 (
m

)

Lateral Depth (m)

Inverted C
11

 Model, 6th iteration

 

 

0 500 1000

0

200

400

600

800

1000 2.4

2.5

2.6

2.7

x 10
10

FIG. 9. Inversion results of c11 with the increase of iteration steps.

The inversion results of c11 and c33 are shown in Figure 9 and 10. Both the shape of
the anomalies and parameter amplitudes are reconstructed gradually with the increase of
iteration times. The inversion results depend on the selected frequencies. The more the
inverted frequencies are to be used, the more finely the inversion results would be. It’s
also obvious that c33 converges faster than does c11, as is noticed by Mora (1987) that
convergence rate varies between different inverted parameters.

For parameters c13 and c44, we also illustrate the inverted results, which are shown in
Figure 11. The inverted result of c13 contains some noise, but the shape and values of the
anomalies are reconstructed. However, for c44, we can not get satisfying result by using
the same frequency set. The value of c44 in the true model is smaller than the other three
parameters, and its perturbation can be neglected compared with those of the other three
parameters, which might be a reason for this poor inversion of c44.
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FIG. 10. Inversion results of c33 with the increase of iteration steps.
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CONCLUSIONS

In this paper, the frequency-domain elastic inversion algorithm for elastic constants in
VTI media has been discussed. According to the frequency domain forward modeling, the
gradient direction can be easily calculated in forms of matrix multiplication. To accelerate
the convergence of inversion, the pseudo-Hessian matrix is applied to constrain the step
length. we estimate the step length by a modified quadratic interpolation method. Unlike
directly using the step length in the iteration, the adjacent left and right closest step lengths
are also used to interpolate a modified step length that minimizes the misfit function. Nu-
merical examples demonstrated that parameters c11, c13 and c33 can be inverted properly,
yet the inversion result of c44 is not satisfying.

ACKNOWLEDGMENTS

The authors thank the sponsors of CREWES for continued support. This work was
funded by CREWES industrial sponsors and NSERC (Natural Science and Engineering
Research Council of Canada) through the grant CRDPJ 461179-13. Author 1 was also
supported by SEG scholarship.

REFERENCES

Barnes, C., Charara, M., and Tsuchiya, T., 2008, Feasibility study for an anisotropic full waveform inversion
of cross-well seismic data: Geophysical Prospecting, 56, No. 6, 897–906.

Chang, H., and McMechan, G., 2009, 3d 3-c full-wavefield elastic inversion for estimating anisotropic pa-
rameters: A feasibility study with synthetic data: Geophysics, 74, No. 6, WCC159–WCC175.

Gholami, A., and Siahkoohi, H., 2010, Regularization of linear and non-linear geophysical ill-posed problems
with joint sparsity constraints: Geophysical Journal International, 180, No. 2, 871–882.

Gholami, Y., Brossier, R., Operto, S., Ribodetti, A., and Virieux, J., 2013, Which parameterization is suitable
for acoustic vertical transverse isotropic full waveform inversion? part 1: Sensitivity and trade-off analysis:
Geophysics.

Kamath, N., and Tsvankin, I., 2016, Elastic full-waveform inversion for vti media: Methodology and sensi-
tivity analysis: Geophysics, 81, No. 2, C53–C68.

Lailly, P., 1983, The seismic inverse problem as a sequence of before stack migrations.

Lee, H.-Y., Koo, J. M., Min, D.-J., Kwon, B.-D., and Yoo, H. S., 2010, Frequency-domain elastic full wave-
form inversion for vti media: Geophysical Journal International, 183, No. 2, 884–904.

Mora, P., 1987, Nonlinear two-dimensional elastic inversion of multioffset seismic data: Geophysics, 52,
No. 9, 1211–1228.

Pan, W., Innanen, K. A., Margrave, G. F., Fehler, M. C., Fang, X., and Li, J., 2016, Estimation of elas-
tic constants for hti media using gauss-newton and full-newton multiparameter full-waveform inversion:
Geophysics, 81, No. 5, R275–R291.

Plessix, R.-É., 2009, Three-dimensional frequency-domain full-waveform inversion with an iterative solver:
Geophysics.

Pratt, R. G., Shin, C., and Hick, G., 1998, Gauss–newton and full newton methods in frequency–space seismic
waveform inversion: Geophysical Journal International, 133, No. 2, 341–362.

CREWES Research Report — Volume 29 (2017) 11



Li et. al

Pratt, R. G., and Worthington, M., 1988, The application of diffraction tomography to cross-hole seismic
data: Geophysics, 53, No. 10, 1284–1294.

Shin, C., Jang, S., and Min, D.-J., 2001, Improved amplitude preservation for prestack depth migration by
inverse scattering theory: Geophysical prospecting, 49, No. 5, 592–606.

Shin, C., and Min, D.-J., 2006, Waveform inversion using a logarithmic wavefield: Geophysics, 71, No. 3,
R31–R42.

Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation: Geophysics, 49, No. 8,
1259–1266.

Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51, No. 10, 1954–1966.

Virieux, J., and Operto, S., 2009, An overview of full-waveform inversion in exploration geophysics: Geo-
physics, 74, No. 6, WCC1–WCC26.

12 CREWES Research Report — Volume 29 (2017)


