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ABSTRACT

I applied a bi-objective optimization strategy to search the best seismic survey design
in illumination and cost senses. Due to the conflicting goals of obtaining a good subsurface
illumination at the lowest possible cost it is not possible to obtain an optimum survey in
both senses simultaneously, but instead it is possible to get a set of surveys, called Pareto
Front, that shows the trade-off between these conflicting objectives. As a result, the Pareto
Front could be used as a decision tool to tune quality versus cost. I used the mixed-integer,
free-derivative, nonlinear optimization algorithm called Particle Swarm Optimization and
Mesh Adaptive Direct Search. The Particle Swarm Optimization part is used to escape
local minima while the mixed-integer part is used to deal with integer aspects of a seismic
survey design like the number of receivers and sources, to name but a few. I tested the
optimization using a synthetic model and compared the final migrated seismic images. The
results show good quality imaging and better cost.

INTRODUCTION

Seismic surveys are commonly designed by following a set of rules based on the CMP
assumption (Cordsen et al., 2000) and by performing seismic modelling on a small set of
survey proposals to measure the imaging quality of each one of them.

In Ozdenvar et al. (1996) it is proposed to model a complete survey before it is ac-
quired to evaluate the survey characteristics prior to field deployment. Some authors have
proposed optimization schemes for designing seismic surveys that automatically look for
a design that minimizes certain criteria. In Liner et al. (1998) the possibility of optimizing
the survey design is exposed by using an objective function based on the common rules of
survey design. In the work of Alvarez et al. (2004) an objective function based on the qual-
ity of the illumination of the subsurface target is used instead. In Djikpesse et al. (2012) a
Bayesian optimization methodology for designing surveys that minimize the uncertainty of
the model parameters is developed. Mohammad Hosseini Dokht et al. (2013) used a genetic
algorithm to optimize a survey design in the southwest of Iran. Coles et al. (2015) describes
an optimal survey design method to improve the big data applications of the seismic data.

There are many optimization techniques that can be used in survey design but the ones
that can escape local minima, manage integer variables and optimize multiple variables at
the same time are preferred due to the nature of the problem. Particle Swarm Optimization
(Eberhart and Kennedy, 1995) and Mesh Adaptive Direct Search (Audet and J. E. Dennis,
2006) are two optimization algorithms that have been used together (PSO-MADS) in oil
field plan optimization (Isebor et al., 2014). The first one is a global search method while
the second is a local optimizer. These algorithms have potential in survey design for their
managing of integer variables and the possibility of performing a bi-objective optimization
of target illumination and survey cost at the same time.

In the first part of this report the survey design bi-objective optimization methodology
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will be explained. In the second, this methodology will be applied to a synthetic example.
METHOD

The survey design bi-optimization is composed of the following steps:

1. Choose a set of parameters that describe the acquisition with their upper and lower
bounds. Some of these parameters could be integers while others are real numbers.

2. Define the illumination and cost objective functions.

3. These functions will guide the PSO-MADS algorithm in the search of seismic sur-
veys with high illumination quality and low cost.

4. The Pareto Front that will be produced by the bi-optimization will show the trade-off
between illumination and survey cost.

Survey parametrization

Conventional seismic surveys can be described by an extensive set of parameters. Here
I concentrate in only six of them, although the method allows to use more. The parameters
I use are first and last source positions, source and receiver spacing, and first and last live
receivers. To simplify, all surveys are regular split spread.

Model extension or block exploration size is what constraints first and last source po-
sitions. For source and receiver space I define a minimum spacing, Ar, and allow receiver
space Ag to be an integer multiple of Ar, that is, only Ar, 2Ar, ..., NAr, where the max-
imum receiver spacing, IV, is also set by the user. In the same way, the source spacing As
is limited to a finite number of multiples of the receiver spacing. Similarly, the first and last
live receivers in a shot can take an integer between 1 and a maximum number of receivers
per shot, M, that is also defined by the user.

As an example, if I set Ar = 20m, I can describe a split spread survey with receivers
located every Ag = 2Ar = 40m, shots between 1005m and 6485m every As = 4Ag =
160m, the shortest source-receiver offset equal to 3Ag = 120m and the largest equal to
68Ag = 2720m with the following parametrization:

Shot positions (m) | Live stations (Ag units) | Ag (Ar units) | As (Ag units)
1005-6487 3-68 2 4

Illumination objective function

The approach used here is based on the one found in Alvarez et al. (2004). To quan-
tify the illumination provided by a particular seismic survey I trace rays from the desired
subsurface positions towards the surface. For each pair of specular rays, i.e. corresponding
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rays with the same angle respect to the horizon normal, I calculate their intersection points
with the surface.

If for a specular ray ¢ these two points are x; and y; I measure the set of distances
d(sk,x;) and d(r;,y;), where sy is a source and r; is one of the receivers in the spread of
S. Then I look for the minimum sum of the distances

Si = min(d(sg, z;) + d(r;,y:)). (1)

This minimum sum says how far is the seismic survey from being able to record this
pair of specular rays. The sum of all distances S; is the illumination objective function:

Or = Zmin(d(sk,xi)—l—d(rj,yi)). (2)

The best survey from the illumination point of view is the one that minimizes the value
of Oy because in this case the specular rays are nearer, in the average, to a source-receiver
pair than when Oy is greater.

Cost objective function

There are many costs associated to a seismic survey like drilling, receiver positioning,
equipment rent, crew salaries, etc. To simplify, I assume that the cost of a seismic survey is
proportional to the number of sources, although a more complete cost function can be used
instead. The objective function is then defined as

Oc = N;, 3)

where N, is the number of sources. The best survey from the cost point of view is the one
that minimizes O.

Particle Swarm Optimization algorithm

Particle Swarm Optimization (PSO) is a stochastic search procedure which uses a group
of points that explores the solution space at different velocities (Eberhart and Kennedy,
1995). The velocity of each particle in the group is dictated by a procedure that imitates
the social interplay of groups of animals. Each particle x; in iteration ¢ advances using the
following expressions:

Xi+1 = X; + ViAt, (4)
Vigr = av; + 0D (% —yi) + o Eiya (x; — ¥i). (5)
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FIG. 1. MADS algorithm performing the polling around a point. The concentric ellipses are level
curves of the objective function surface.

In the first expression v; is the velocity and At the time step that usually is set to 1.
In the second expression each term on the right hand side represents three different forces.
The first one is the inertial term that tries to maintain the velocity equal to the previous one
using coefficient a. The second term is the cognitive term that tries to be near the previous
particle best position y;. The third term is the social term that tries to be attracted to the
current best position, ¥;, in the vicinity of x;. I use a random vicinity for each particle. The
diagonal matrices D;; and E;;, have random values between 0 and 1 and help to obtain
variety in the velocities. Clerc (1999) recommends using a = 0.729 and b; = by = 1.494.

Mesh Adaptive Direct Search algorithm

Mesh Adaptive Direct Search (MADS) is an optimization algorithm which explores
locally an objective function (Audet and J. E. Dennis, 2006) using polling around a point.
Polling begins by choosing a set of points or stencil around the initial point as Figure 1
shows. If one of the stencil points has a better objective function value than the current
point and the other stencil points, the current point takes the value of this stencil point.
The central part in Figure 1 shows how the central point advances by taking the place of
the stencil point with the lowest objective funtion value. If none of the stencil points has a
better objective function value that the current point, the size of the stencil is decreased as
the right part in Figure 1 illustrates.

MADS also changes the directions of the stencil points from one iteration to the next
choosing the new one from an asymptotically dense set of directions (Audet and J. E. Den-
nis, 2000).

PSO-MADS algorithm

The idea behind the combination of PSO and MADS algorithms is to be able to search
locally with MADS and at the same time, escape from local minima using PSO. The algo-
rithm is the following (Isebor et al., 2014):
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Algorithm 1 PSO-MADS
1: Generate initial particle swarm S
2: for k = 1 to maxiter do
3:  repeat

4 success = PSO(.5)

5 until success is false

6 repeat

7 success = MADS(best point in S)
8 until success is false

9: end for

In the pseudocode the function PSO updates the swarm .S and returns true if the swarm
has points with better objective function values. The function MADS is applied to the best
point found by PSO and returns true if a better point is found.

Pareto Front

The Pareto Front is defined in terms of dominance. If there are two surveys z(!) and
2? with illumination and cost values (Ogl), O(C1 )) and (Of), Og )), respectively, it is said
that (Y dominates z(? if Ogl) < 052), C’}l) < Cf) and at least one of these relationships
1s a strict inequality (Isebor et al., 2014).

To illustrate this point consider Figure 2 left. This figure shows part of the dominance
area of survey z(¥. It can be seen from the dominance definition that 2(*) dominates all
surveys inside this area, including their boundaries. The right part of the same figure shows
the combined dominance areas of all surveys. The Pareto Front is defined as the set of

surveys that are not dominated by any other survey. From the figure this set is composed
by 21, 2 and z(®.

Each point z in the Pareto Front have some merit because the points that have better
illumination than x do not have better cost and the ones that have better cost, do not have
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FIG. 2. Dominance relationship. Left: Dominance zone of 2(*). Right: Combined dominances. Non
dominated points (1), z(*) and () belong to the Pareto Front.
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better illumination. For example, consider (% in Figure 2. Surveys ("), (?) and z* have
better illumination than z(®), but none of them have better cost. In this way, the Pareto Front
exposes the trade-off between illumination and cost that gives more insight to the survey
designer.

On the other hand, if x does not belong to the Pareto Front, by the definition of domi-
nance it can not be better than its dominant survey in any sense, and should be considered
a suboptimal survey.

Bi-objective optimization

In order to optimize the two objective functions O; and O¢, I minimize a convex com-
bination of them:

min(w; 07 + wy0¢), 6)

for several values of w; and w, using the PSO-MADS algorithm. This procedure generates
surveys along the Pareto Front in most cases. A more sophisticated strategy is to use the
approach proposed in Audet et al. (2008).

RESULTS

To test the survey design bi-objective optimization a synthetic velocity model was cre-
ated. Figure 3 left shows part of this model. The model is 10km wide and 2.5km deep. It
has a curved reflector in the right that sweeps from 0° to 90°. This curved reflector is the
region of interest that I want to illuminate.

I used a Huygens wavefront ray tracer (Sava and Fomel, 1998) to trace specular rays
from points in the region of interest every 50m towards the top of the model. At each point
121 equally spaced rays were traced from —60° to 60° respect to the reflector normal at that
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FIG. 3. Left: Velocity model with the region of interest is highlighted. Right: Specular rays traced
from the region of interest.
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FIG. 4. Pareto Front obtained from the bi-objective optimization.

point. Figure 3 right displays some of the specular rays traced from a point in the region of
interest.

The minimum separation Ar was set equal to 10m. The following table shows the
limits of the survey parameters.

Shot position (Km) | Live stations (Ag units) | Ag (Ar units) | As (Ag units)
Min 0 1 1 1
Max 10 100 10 5

From the table the separation between receivers Ag varies between 10m and 100m
while the source separation As varies between 10m and 500m.

I obtained the Pareto Front shown in Figure 4 after the PSO-MADS bi-objective op-
timization algorithm was run with the described parameters. Each plus sign represents a
survey with objective values O; and O¢. The circles are the points that compose the Pareto
Front. It can be observed the trade-off between illumination and survey cost along them.

I selected three of the surveys located at three different sections of the Pareto Front,
shown as diamonds in Figure 4, to analyze the seismic image of the region of interest
after a prestack depth migration is performed to data obtained using them. The following
table exhibits the characteristics of each one of the selected surveys, named S1, S2 and
S3, respectively. Survey S1 has 15 shots, S2 has 45 and S3 has 96. The Figure 5 shows
graphically the shot zone of each survey.

Name | Shot zone (m) | Live stations | Ag (m) | As (m)
S1 6125 — 9085 1—100 50 200
S2 5495 — 9985 1—100 50 100
S3 4665 — 9455 1—100 50 50
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FIG. 5. Source locations of the selected surveys. S1 is marked by circles, S2 by plus signs and S3
by asterisks.

The shot modelling was made with a four order in space and second order in time
optimized finite difference scheme with hybrid one-way absorbing boundary condition.
The prestack migration was performed using a reverse time migration algorithm. Figure 6
shows the results after prestack depth migration around the region of interest. The level of
detail that I can get from this region is good in all surveys.

As a reference I also performed two more surveys. The first one is a usual survey with
sources and receivers only above the target with 100 shots every 20m and 200 receivers
per shot also every 20m in a split spread configuration. The other was a complete survey
that covers all the horizontal model extension with receivers and sources spaced every 10m.
Figure 7 displays the results of the prestack depth migration using these surveys. The usual
survey shows less definition in the region of interest than the three surveys obtained by
optimization. Also, the complete survey does not show more detail than the optimized
ones.

DISCUSSION

The chosen surveys from the Pareto Front produced a good image of the region of
interest because they located sources and receivers where the actual specular rays emerge
at the surface. The optimization algorithm reached this kind of design automatically.

With knowledge of the region of interest a person could have proposed similar designs
with similar results in this simple case. However, in more complex cases, the use of the
computational power and the optimization should provide survey designs that are more
difficult to obtain using usual design rules.

The usual survey used in the comparison was proposed having in mind only the CMP
assumption by only allowing sources and receivers above the region of interest. Although
this assumption does not hold here, it is in the very core of the usual design rules.

In this work I used two relatively simple objective functions but it is possible to include
a more realistic cost function and more advanced imaging quality measures.
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FIG. 6. RTM migrations of the selected surveys of Figure 4. Above are S1 with 15 shots and S2
with 45 shots. Below is S3 with 96 shots.

As the objective was deep and there were no concerns about spatial aliasing the op-
timized surveys showed very long spacings between sources and between receivers. As

already mentioned, a more complete objective function should take care of that in more
realistic cases.

CONCLUSIONS

I proposed an approach to seismic survey design that uses bi-optimization of two very
important objectives: illumination and cost. Previous survey design optimization schemes
were mainly focused in optimizing the illumination of subsurface targets or some other

measure of the imaging quality while leaving the economic part free or as an optimization
constraint.

The method uses an algorithm that not only does local optimizations but also searches
the complete survey space. This algorithm can also handle real and integer quantities and
this is very useful because survey design has both types of variables.

As illumination and survey cost are contradictory objectives, the bi-optimization ap-
proach does not provide a unique answer but a set of surveys called Pareto Front that shows
the trade-off between objectives. This offers insight into the interdependence of objectives
that could be used not only as a design tool but as a decision tool.

The technique was tested with a synthetic example. Some surveys obtained by bi-
optimization were used to generate seismic data and compare their migrated images with a
the image obtained by a more traditional design. The results are promising because a good
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FIG. 7. RTM migrations from a usual survey (100 shots) and the complete survey (1000 shots).
image was achieved with a better cost.
FUTURE WORK

I propose some ideas for improving this work:

1. Test the technique with more complex synthetic examples that will show how the
bi-optimization obtains designs more difficult to reach using usual design rules.

2. Test more complete objective functions. For example for the illumination part I could
use rose diagrams (Cao et al., 2012), point spread functions (Routh et al., 2005) or
image resolution measures (Richard L. Gibson and Tzimeas, 2002).

3. Besides aiming the design to obtain a good migrated image of the region of inter-
est I could also try to predict the response of the survey to other processes like 5D
interpolation or footprint noise suppression, for example.

4. Extend the technique to 3D models and to multicompoment data by trying to improve
the response of the S-wave image too.

5. Propose a field experiment to test the optimized designs.
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