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ABSTRACT

In this report, [ use least squares Kirchhoff (LSK) and reverse time migrations (LSRTM)
to analyze how least squares techniques behave in the presence of mismatches between the
physics that produce the data and the operators we use to predict them. By implementing
both approaches with similar algorithms I show that noise is added during the inversion
because of contributions to the residuals from poor operator approximations. When apply-
ing LSRTM with exact operators the method works really well, and we don’t observe any
noise. However, when the operators differ, errors start to accumulate very quickly from
inversion. Examples for Kirchhoff migration with different types of traveltime tables show
that noise in LSK is produced by multipathing and shadow zones and inaccurate traveltime
calculations. I interpret this noise as a consequence of calculating the gradient of the inver-
sion as a mapping from a wrong residual space to the model space. I interpret this noise
as a consequence of assuming that the prediction operator is linear and accurate when is
not. Finally, I analyze two well-known mechanisms based on data and model weights to
control this problem: regularization by adaptive residual (data space) and image (model
space) filtering.

INTRODUCTION

Inversion is a very common technique in seismic processing and other branches of
science, consisting of creating a model that can predict acquired data. This approach has
three main components, the model m, the data d, and the operator L that connects them
(Figure 1). Choosing the kind of model defines the operator. In seismic we use many
types of models. For example, in Full Waveform inversion (FWI) we use some function
of velocity, like slowness square. In Least squares migration (LSMIG) we use a model
that resembles reflectivity (Kirchhoff modeling), or velocity perturbations (scattering or
Born modeling). When the goal of our processing is to predict data, for example in noise
attenuation or interpolation, we have flexibility in choosing the model and the operator as
long as they predict the part of the data we want. In FWI and LSMIG, on the other hand, we
need to make sure that the operator resembles the physics that generated the data because
the goal is the model itself. In other words, a wrong operator may predict the data correctly
and the model incorrectly.

What is common to all these techniques is the approach we use to calculate the model
that best predict the data: we minimize the residual square or average difference between
data and predictions. This minimization always proceeds in some form of optimization,
which depends on whether the operator represents a linear transformation (the operator is
independent of the model we seek), or non-linear (the operator changes as we improve our
estimation of the model). This is, in fact, the main difference between FWI and LSMIG.
By keeping the operator independent of the model in LSMIG, the inversion procedure
is simplified, but at the same time, we make the assumption that all error present in the
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FIG. 1. Least squares migration and Hessian deconvolution
residuals can be mapped to and corrected by changes in the model.

The consequence of this assumption is far more reaching than it seems because residu-
als contain not only parts that can be improved by changing the model, but also parts that
are not predicted by the model-operator combination, and parts that are predicted but with
wrong amplitude and phase. Since the least squares mechanism is designed to reduce error
in the prediction, it will try to use any component of the model space to predict something
similar to the input data. For example, an aliased operator can use low frequencies to pro-
duce data with higher frequencies. A mismatch between physics and mathematics will not
only prevent the algorithm to produce zero residuals but also will produce models with
artifacts or noise. In this work, I will discuss this problem and show some ways of limiting
its effects.

LEAST SQUARES MIGRATION/MODELING

There are two different ways to define least squares migration, iterative and non-iterative.
In this work, I focus only on the iterative version. In LSMIG given the acquired data d, we
want to find a model m to predict them with minimum least squares error (Nemeth et al.,
1999). This process involves the choice of a mathematical operator L,

d =Lm. (1

This formulation is similar to what we use in many other problems in geophysics (Claer-
bout, 1992), but the meaning of the model m varies. The model for LSMIG is usually
reflectivity or velocity perturbation, making L to be either Kirchhoff or Born modeling re-
spectively. This operator is assumed to be independent of the model by using a linearized
wave equation. This is different from FWI, where the model is velocity or slowness, and
the operator changes with the model as well. We will see later that this choice imposes
some difficulties for the application of this technology. However, before that, we can make
our problem more general by extending the modeling operator with other operators that can
be used to modify data and model spaces. A general least squares formulation is:

minimize |W,,m/|/?
subject to [[Wy(d — Lm)||7 = ¢4 (2)
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where ¢, is some estimate of the noise level in the data plus a residual due to the failure
of the proposed model to explain the data. p and ¢ indicate that different norms can be
applied to measure the norm of vectors. W, could be a matrix or vector of data weights,
often a diagonal matrix containing the inverse of the standard deviation of the data, but
more generally it could be any kind of filter that leaves out bad data. W,,, is an operator
of model weights that can be customized to enhance our preferences regarding the model.
Regarding this equation, there are a few points to notice:

e The term ¢, represents a global measure of the failure to explain the data. In some
problems, it may be necessary to account for a local measure of the misfit instead of
global.

e W, is a tool to diminish the effect of bad data. The term “bad data” refers in general
to wrong measurements. However, “bad data” may also be “good data” that can’t be
predicted by a “bad operator”.

e W,, can account for certain types of undesired features of the model, as is usually
considered in standard regularization, but also, it can be used to change the mapping
between data and model space. In this sense, this operator is more a preconditioner
operator than a regularization term.

By minimizing the cost function obtained from equations (2) we can obtain the model
that better approximates the desired solution by solving the system of equations

AWIW,, + L"WIW,L)m = L"WIW,d, 3)

where ) is a trade-off parameter that gives different weights to the misfit and model con-
straints. To eliminate this parameter and simplify this system of equations, we incorporate
these weights and filters into a general operator L = WaLW !, which it is just a change
of variables in the fundamental equations, with m = W, m and d = W,d. This is
equivalent to a right and left preconditioning, transforming the modeling equation (1) to

W,d = W, LW, 'W,,m 4)
and the system of equations (3) to
(M +LTL)ym = L'd. (5)

The system (5) can then be solved by setting A = 0 (no regularization) and limiting the
number of iterations. This is a simplifies the problem because now the operator contains
all our choices. Also, this allows us to a generic numerical solver, for example an iterative
conjugate gradient method (CG).

LEAST SQUARES MIGRATION DEFINED IN TERMS OF MIGRATION

In Figure 1 we can see that LSMIG is the operation of the Hessian inverse acting on
a standard migration (referenced as “mapping” in the figure). Therefore, to understand
the differences of LSMIG and migration we have to look at the Hessian. Defining the
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true solution as the model that can predict the data exactly, migration gives the true model
distorted by the Hessian:
Mpigration = L' d = LTLm. (6)

On the other hand, the least squares solution is
mys = (LTL + AI) 'L"Lm (7)

In general, myq is closer to the true model than my;y,age because it removes the blurring
effect of the Hessian. The Hessian is often diagonal dominant, so the real improvement
achieved by LSMIG depends on how large the off-diagonal terms of the Hessian are. So,
what are these off-diagonal terms? Schuster (2017) shows that the Hessian corresponds,
for a linear or linearized problem, to a scaled version of the model covariance. Therefore
the diagonal elements of the Hessian are proportional to the variance of each element of
the model. Because the Hessian contains all the mapping information of the seismic exper-
iment, the variance of the model contains information on how well we can see each model
component (that is the illumination), and it is often used to correct for poor illumination
and improve the image without going through the work of calculating the full Hessian.
The off-diagonal components are cross-covariances between different model components.
They tell us how similar will be the effect of changing one model component to the ef-
fect of changing the other. In other words, they tell us how well the data, and therefore
the cost function, can distinguish effects for different model components. A well-designed
experiment, where data are very sensitive to different components of the model, will have
small off-diagonal elements and therefore LSMIG will not add much to our results. If the
experiment is deficient, for example, because of poor sampling, the use of LSMIG, should
be capable of removing interferences across model components and producing good results
in spite of the complications. This is the big promise of LSMIG, one that it has been really
difficult to take advantage in everyday imaging done by the industry (interpolation is used
much more often than LSMIG).

IMPLEMENTATIONS FOR KIRCHHOFF AND REVERSE TIME MIGRATION

I use the Conjugate Gradients framework to design both LSK and LSRTM as a lin-
earized inversion of forward-adjoint operator pairs. Since the inversion formulation is
identical, all differences are in the modeling operators, which leads to different degrees
of mismatch between physics and data. Next, let us discuss the form that the adjoint-pair
operators take for both Kirchhoff and RTM.

LSK implementation

At the heart of every Kirchhoff modeling operator, the fundamental operation that cre-
ates data from a reflector is given by:

data(mid, h, time)+ = W (V| h, depth, time) x model(mid, h, depth) (8)

where mid is midpoint, h is offset, V' is velocity and IV is an expression that connects
amplitudes and that is subject to different approximations (Dellinger et al., 1999). The
connection between time and depth is obtained through ray tracing (depth migration) or
parametric methods (time migration). The adjoint operator for Kirchhoff modeling is close,

4 CREWES Research Report — Volume 29 (2017)



LS Migration

but not equal, to Kirchhoff migration. To find out the exact form of the adjoint-pairs it helps
to think of any linear operator as a matrix vector multiplication, keeping in mind that the
adjoint of a matrix operator is its complex conjugate. Therefore we can write the adjoint
operator by:

model(mid, h, depth)+ = conj(W (V, h, depth, time)) x data(mid,of fset,time) (9)

Notice how the weights are conjugated (if complex) but not inversed. That is one of the
indicators that it is different to start from a modeling operator than from a migration op-
erator (Trad, 2016). Equations (8) and (9) are simplifications because other operators are
involved in real implementations, like antialiasing filtering, omega filter and interpolation.
Adding these filters, the adjoint pair looks more like:

Adjoint (migration)

e resample data to fine sampling (usually 1 ms for efficiency)

apply phase filter + double integration to input

calculate mapping and amplitude weights from traveltime tables (50 + treceiver)

calculate AAF length (which produces three different traveltimes)

add the three data samples to model with corresponding weights (—1,2, —1)

Modeling

e calculate mapping and amplitude weights from traveltime tables (5,0t + treceiver)
e calculate AAF length (which produces three different traveltimes)

e spread value from model to three different data samples with corresponding weights
(_ 17 27 - 1)

e apply conjugate phase filter + double integration to output

e resample data to sampling rate

LSRTM

The adjoint-pairs for LSRTM are more difficult to understand because it is not easy to
think of RTM as a matrix. Ji (2009) provides a quite complete discussion but only for the
post-stack RTM case. Xu and Sacchi (2016) and Chen and Sacchi (2017) provides detailed
discussions for the elastic case. For this report, I developed a RTM forward-adjoint pair
based on work from Penglyang Yang (Yang et al., 2014).
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Adjoint

We choose as starting point the RTM algorithm.

e LOOPI: inject source and forward propagate source wavefield from tzme = 0 to
time = tax

e at each time step save boundary conditions for wavefield (first and last two rows, first
and last two columns for wavefield). We use this to reconstruct the source wavefield
in next step

e LOOP2: inject data (or residuals) and reverse time propagate from time = t,,,, to
time = 0, to calculate the receiver wavefield

e imaging (crosscorrelation between source and receiver wavefields), for every time
step and sum

e reconstruct the source wavefield from the boundary conditions (forward time step)

Modelling

e Forward propagation of the source wavefield. Since the velocity model is smooth,
this wavefield is not the same as the one obtained when creating synthetic data.

e cross-correlate source wavefield with reflectivity to generate receiver wavefield

The forward model operator is calculated in such a way that it passes the adjoint test
in the CG algorithm. For this reason, we can not use the same approach as in FWI, but
we are restricted to Born modelling (since migration si linear, modeling has to be linear as
well). Notice how that introduces a mismatch between physics and operator. This can be
observed in particular when the data contains multiples as we will see in a later example.

A COMPARISON BETWEEN LS KIRCHHOFF AND LSRTM

In this section, we will look at results from LSMIG for both RTM and Kirchhoff. In
both cases, I use a similar implementation with adjoint-pairs that pass the adjoint test with
similar precision. Figure 2 shows a RTM for the Marmousi model using 25 shots, and
Figure 3 shows the LSRTM result after 9 iterations. I used a small number of shots to
illustrate the benefits from the inversion. LSRTM shows a better focusing, in particular in
the shallow. For example, it is possible to see the curvature of the events in the upper left
of the model that are not visible in the RTM image. Even without noise control mechanism
or filtering, there is no noise introduced by the inversion.

Much of the high-resolution definition of this last result comes from the almost ex-
act match between the wavefield simulation and the prediction operator inside LRTM, so-
called inverse crime (Schuster, 2017). In reality, there are some important differences: the
data are created with finite difference but RTM prediction operator is Born modeling ob-
tained by a crosscorrelation between source wavefield and reflectors. The RTM operator
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FIG. 3. LSRTM with accurate model and right physics. Best possible scenario for LSMIG.
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uses a 4th order FD in space, while the data are created with an 8th order accuracy in space.
In spite of these differences the match is very good because the source wavefield used in the
Born modeling is quite similar to the data. This high-resolution image may even include
a partial matching of internal multiples, probably with the addition of some low amplitude
cross-talk produced by the cross-correlation.

If we introduce some differences between the source wavefield and the data, for exam-
ple by smoothing the velocity model, we get the results in Figures 4 and 5. Although both
images are clean, the iterations have not changed much the result. There is a mismatch be-
tween Born demigration and finite difference data, and the source wavefields are different
as well. Internal multiples, for example, are not predicted by the RTM operator. Also, the
velocity changes may have decreased the coherence of the predicted data across different
angles, which would decrease the sharpness of the reflectors.

If we introduce a more serious mismatch, for example by allowing the RTM prediction
to generate surface multiples, then we get noise in the RTM image (Figure 6). This noise is,
however, much stronger in the LSRTM result (Figure 7), because inversion is using wrong
residuals, caused by wrong physics, to update reflectivity.

For LSRTM with synthetic data, it is possible to take a look at the matching between
physics and operator in detail by looking at the wavefields. Figure 8 shows a snapshot for
a shot generated in a sharp velocity model. We see the wavefield reflected on interfaces.
Figure 9 shows the same snapshot for the smooth velocity model. For LSRTM to fit the
data, it has to adjust the reflector amplitudes to be able to generate the wavefield in Figure
8 from the wavefield in Figure 9 (actually LSMIG does not match all the wavefields but
one sample per time step and receiver).

In Figure 10 we see the source wavefield just before hitting the reflectors and in Figure
11 the receiver wavefield just after. Comparing with the wavefield in Figure 8 we see
reflectors need to keep changing to get a better match. In reality, these fields would look
even more different when reflectors from all shots are included in the image. If the velocity
is different, then these wavefields may never be able to match each other even if the perfect
reflectivity were used. These figures give us a hint at why it is not easy to get LSMIG to
work well in real data. For acquired data, we don’t have the actual source wavefield but a
mimic we create from each time sample.

We saw in Figure 3 a very high-resolution image when the velocity is accurate with
sharp reflectors. To understand why in that case the method works so well, we can compare
the source and receiver wavefields (Figures 12 and 13) for a sharp velocity model. Because
the source wavefield already contains much of the details of the input data (almost perfect
match between physics and operator), the receiver wavefield can be made to match the input
data really well by changing reflectors. Still, some differences appear in the wavefields the
multiplication with reflectors must produce some cross-talk between internal multiples.
With some speculation, we could say that the image seems to be less affected by the extra
detail caused by the crosstalk, that is affected by the lack of complexity in the source
wavefield.
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FIG. 5. LSRTM with smooth model. Iterations do not seem to improve much results even when
fitting has improved.
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FIG. 8. Snapshot (wavefield at fixed time) for a synthetic shot (generated in a sharp model)
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FIG. 9. Snapshot for a shot generated in smooth velocity. LSRTM will try to convert this wavefield to
the one above by multiplying it with reflectors. The error of this conversion translates into corrections
to reflector amplitudes.
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FIG. 11. Receiver wavefield generated in forward modeling operator after hitting reflectors
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FIG. 13. Receiver wavefield generated in forward modeling operator after hitting reflectors.
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Figures 14 and 15 show the equivalent of Figures 2 and 3 but this time using Kirchhoff
operator. Although the shallow part has become a bit sharper after just a few iterations, we
see significant noise introduced by the inversion in the deeper part. This is quite different
from the encouraging result we saw in Figure 3.

We will see later a method to address this noise by residual filtering (Figure 17), but
first, let us discuss why this noise is much stronger with Kirchhoff than with RTM oper-
ators. The algorithms are equivalent so we can infer that the differences in the operators
are responsible for this noise. Since the Kirchhoff migration itself (Figure 14) is clean and
reasonably accurate, it is somewhat surprising that the combination of a correct migration
operator and a correct inversion algorithm gives incorrect results.

Different traveltime tables and LSMIG

Kirchhoff operator contains two somewhat independent components: amplitude and
phases. The amplitudes are mainly due to the weights used during the operator summation.
These weights can be calculated from ray tracing algorithms, but more often are simply ap-
proximated from shot and receiver times and a constant velocity approximation (Dellinger
et al., 1999). If the amplitudes used in the operator are wrong, the reflectors in the image
will have wrong amplitudes as well, but the effect in the inversion is not that critical (Trad,
2016). Phases, on the other hand, are obtained by tracing rays across a smooth velocity
model and stored in traveltime tables after smoothing. These tables have a very strong
effect on the quality of the image (coherence) and even more on the inversion.

Figure 18 shows traveltime tables (top) and rays (bottom) for the ray fan reconstruc-
tion method (Cerveny and Hron, 1980). The tables show many discontinuities caused by
shadow zones and multipathing. Of course, in reality, smooth velocity models are used for
ray tracing. This reduces the discontinuities but not completely. In fact, although the ray
fan method can be very precise, other methods can produce smoother tables. Figure 19
shows the comparison between tables from the ray fan method (above) and from the wave-
front reconstruction method (Vinje et al., 1993). When using the smooth tables, LSMIG
does not accumulate noise as much (Figures 20 and 21). However, the focusing suffers as
a consequence of errors in phase introduced when smoothing the wavefronts. It seems that
accurate tables with abrupt discontinuities produce accurate images but noisy inversions,
whereas inaccurate smooth tables reduce the capabilities of the inversion to improve focus-
ing. These results are very similar to what we observed for LSRTM, except that in the case
of Kirchhoff the effects are far more serious. Furthermore, none of the results for LSKirch-
hoff where able to match the improvements we saw in Figure 3. This is expected since
the Marmousi model is not very friendly to ray tracing algorithms. LSKirchhoff represents
a difficult challenge in complex structures because in these scenarios it is very difficult to
achieve a good match between wave propagation and ray tracing.

A CLOSE LOOK AT RESIDUALS AND THEIR COMPONENTS

In previous examples with LSRTM and LSKirchhoff migration, we have seen that mis-
matches between physics and operators result in accumulation of noise during LSMIG.
To understand why, let us look at the expression of the cost function that least squares
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FIG. 15. LSK migration for Marmousi model after 9 iterations
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FIG. 17. LSK migration for Marmousi model after 9 iterations, with noise control by residual filtering
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FIG. 19. Traveltime tables for ray fan method (top) and wavefront reconstruction method (bottom)
for smooth velocity model
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FIG. 21. LSK migration with wavefront tables
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migration is minimizing:

J =|d—-Lm|’ = |R|? (10)

where R = d — Lm are the residuals or error in predicted data from our current model m.
For LSMIG the model is the reflectivity, so the predictions are the result of demigrating
reflectors (Kirchhoff modeling) or scattering from velocity perturbations (Born modeling).
Similarly to FWI, we obtain model corrections by mapping (migrating) residuals from data
space to model space with the operator LT, which is the adjoint to the modeling operator
L:

Am =LTR. (11)

In this procedure there is an implicit assumption that all the prediction errors can be cor-
rected by a suitable correction in the model. However, in general, this is a wrong assump-
tion, because residuals contain several components: one that is the result of errors in the
model

Ry =d—-LAm, (12)

another that is the missing physics, or events in the data that the operator cannot predict

R, =d, (13)
and finally another component that results from errors in the operator
Rz = —ALm. (14)

The first component R is the only one that is useful to improve the model by diminishing
the cost function. The second component often falls outside of the mapping from data
to model as well (see below), in which case it will not have consequences (for example,
frequencies that we are not predicting). But also it may contain events that map to the
wrong model components (for example aliasing, direct wave, multiples), and will appear
as noise. The third component is always a problem, because it maps back to the model
space in the form of wrong model components.

In general, some of the components R, and all R3 will produce noise in the model
space. To address this issue is common practice to remove from the data before inversion
anything that can lead to R (attenuate multiples, direct waves and salt reflections). How-
ever, although these are examples of events we know the operator will not predict correctly,
we don’t know a priori everything that the operator cannot predict. In this work, I use an
adaptive filtering of the residuals to remove those events during inversion because that is
when they can be detected. For the events in Rg the situation is more difficult because they
always produce noise, and are difficult to eliminate because they are essentially remaining
errors in our procedures and a priori estimations (for example velocities). Notice that in
non-linear inversion techniques like FWI, we have a mechanism to account for at least part
of the operator errors (we change velocity and therefore the operator with iterations). In
linearized techniques like LSMIG, we assume there is no error in the operator. Sometimes
an extended operator can be defined to capture the wrong predictions into a separate model
space to prevent them from affecting the primary model space.
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As an aside note, the R, component is not eliminated by applying numerical regu-
larization to the inverse problem. Numerical regularization is a solution to the nullspace
problem, which is a different issue. The nullspace is defined as a component of the model
space that has no mapping to the data space:

0 = Lm,, (15)

The nullspace can grow to large numerical values because it has no mapping to the data
space and therefore minimizing the cost function has no control over its size. This is the
familiar situation of lost information during forward modeling, for example, the D.C com-
ponent of the data after convolution with a band limited wavelet. Numerical regularization
can control the nullspace because it demands to minimize the model space as well. This ef-
fectively eliminates anything that is not required by the data. When using CG, this problem
tends to disappear by itself because the adjoint operator cannot produce model components
in the null space Nichols (1997).

Following this argument we could think of the component R as the data that fulfills:
0=L"d (16)

Because the model in CG is built by sequences of adjoint pair operators, it is reasonable
to believe that this component has not effect on the inversion when performing conjugate
gradient. Experience has proven however that data components are not predicted properly
by the operator will still influence the inversion, but it is unclear to me why. A possible
explanation is that it can bias the step size calculation. Figure 22 shows an illustration of
how data and model spaces can map between each other.

Data and model space mappings in terms of SVD

It is useful to think of these mappings in a mathematical manner by looking at the
Singular Value Decomposition (SVD) of the operator. Given the operator L, its Singular
Value Decomposition (SVD) is

L =USVT, (17)

where U contains the singular vectors for the data space, V contains the singular vectors
for the model space and S is a diagonal matrix containing the singular values of the matrix.
A regularized solution for m that minimizes the cost

J = A|m| + [|d — Lm]}; (18)

can be obtained by the singular vector expansion of m (Hanke and Hansen, 1993) as

14 T n
u-d
m =Y ¢(o}) Vit > ufavy, (19)

i=1 i=p+1
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FIG. 22. Model and data spaces and many possible ways they can map
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FIG. 23. Model and data spaces mapping through singular values and singular vectors
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where n is the size of d, p is the rank of A, o; are the singular values of A, the ¢(0;) are
scalars between 0 and 1 that limit the contribution of the singular vectors in the rank of A
to the solution. The second term in the summation gives m*, the nullspace of the kernel A,

whose dimension is n — p. The filter functions ¢(o;) can be computed as
of
o2+ A

ploi) = (20)

A simpler approach is the truncated SVD that uses only those singular vectors associ-
ated with the singular values above some numerical threshold. In this case ¢(o;) = 0 or 1,
and the expansion is limited to

ko .T
u; d

m ; Vi 1)
where for example & can be chosen as rank(A). Even though these two solutions are differ-
ent, both minimize the ¢, model norm for the model space subject to the data constraints.
The difference is that in one case we minimize the model norm in the model space spanned
by all singular vectors, and in the other case, the minimum model norm solution is in the
model subspace span for only the singular vectors we use.

Noise control in data space and model space

A common way to control the noise in inverse problems is applying numerical regu-
larization in the form of a penalization of model components that have no mapping to the
data space (the model nullspace). This is normally achieved by a model weight function,
W, which can have many different expressions (Trad, 2016). For example, it can en-
force a minimum size model in terms of a chosen norm, typically either /; or /5 to enforce
sparseness or smoothness respectively. In LSMIG is more common to have filters instead
of weights, to eliminate abrupt variations in some direction of the model space that is, by
design, supposed to be smooth (for example the offset or angle direction in common image
gathers). As mentioned in the previous section, this type of regularization does not com-
pletely eliminate the problem of wrong physics. It helps because it enforces some type of
behavior in the model space that is most likely not to be fulfilled by the wrong residuals
obtained by wrong operators. However, these components on the residuals will still force
the updates in each model in the wrong direction. Another issue with this type of filters is
that they tell the problem what kind of solution we want. This is acceptable sometimes, but
it may become a pitfall since it will remove from the solutions unexpected but important
results.

It is also common in inversion to apply data weights or data space filters. This is known
as robust inversion. Data weight functions proportional to the inverse of residuals, for ex-
ample, transform the /5 norm in the cost function into the ¢; norm, decreasing the effect
of large residual components, also known as outliers, that do not fit the model. In the case
of wrong physics or wrong operators, we can not assume that the residual components we
want to isolate or down-weight are large. For example, a data component that is not prop-
erly predicted by the operator will appear as any other residual component. The problem is
how to identify these components in the data space.
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Although the total residual norm (that is a real number), decreases monotonically as the
model fits the data better, individuals parts of residuals will grow or keep constant if they
are not mapped correctly to the model space. In fact, the step size in inversion algorithms is
one number that represents the gradient scaling the optimally decreases the global residual
norm (as opposed to local residuals). Also, these poorly mapped parts of the data space
may actually decrease if certain combinations of the model space can predict the data. This
is exactly what happens in signal processing with aliasing, where low-frequency model
components can explain high-frequency data components. In the case of LSMIG, this
“impersonation” can take more complex shapes. Unphysical combinations or arrangements
of the model space can work together to decrease components of the data space that can
not naturally be predicted by an incomplete operator. Suitable model weight functions
can be used to downplay or remove these unphysical arrangements, but with the drawback
mentioned above: these components keep appearing in the residuals and therefore model
updates, and the model is enforced by our prior knowledge.

If on the other hand, we were able to detect these residual components and filter them
out during iterations, the inversion process will converge faster. In fact, it is common to
remove events we cannot predict properly before inversion. The problem is that there are
many parts of the data we do not know we can not predict, but we can try to use the in-
dividual residual evolution to detect these problem events. As a proof of concept, I use
a very simple approach of turning off components of the residual space that consistently
increase with iterations or do not decrease at all. In Figure 24 we can see an input shot, a
predicted shot, the difference (residuals) and the image after 9 iterations of LSMIG with
Kirchhoff operator for Marmousi data. The residuals show many events that are poorly
predicted. Migration of these (broken) events, in each CG iteration, will produce broken
reflectors that will be used to update the current image. These broken reflectors appear as
noise in the image. As the iterations proceed the energy accumulates and the final image
shows degrading. Figure 25 shows the same experiment but this time with a filter in the
data space that turns off residuals when they increase with iterations. The residual plot now
is much sparser because their components that have no proper mapping to the model space
were zeroed during previous iterations. Continuing iterations will still decrease compo-
nents we see on this filtered residual, but as we can infer from the image they are not very
significant for the solution. As a consequence, we see the image is somewhat cleaner than
the corresponding image in Figure 24.

Although this is not necessarily a solution to the problem we are considering, we can
obtain useful information from this test. We can find which are the parts of the image that
can be still improved by iterating longer. We can infer what parts of the operator have
wrong physics or poor approximations. Finally, we could improve noise attenuation in the
data space. In reality, neither the data or model weight functions should work alone. Both
components have a role to play. In this test, for example, I simultaneously use the model
weight component to emphasize updates in the deeper part of the model.

CONCLUSIONS

Although the mismatch between physics and operator is much stronger for Kirchhoff
migration than for RTM, in particular working with synthetic data generated by finite dif-
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FIG. 25. Migration and prediction with data weights
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ferences, we can also see some similar effects for LSRTM. I discussed above in the case of
real data there are numerous aspects of the acquired data that will not be explained properly
by finite difference modeling, like elasticity, attenuation, and anisotropy. We can, however,
illustrate these issues with simple finite difference modeling for the acoustic-isotropic case.
I will illustrate how this mismatch occurs for prediction of surface and internal multiples.
Surface multiples can be turned on and off by simple removing the absorbing boundary
condition (ABC) at the top of the model. The internal multiples can be turned on and off
by changing the degree of smoothness in the input velocity model to migration.
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