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ABSTRACT 
The inverse problem in exploration geophysics usually consists of two parts: seismic 

imaging and velocity model constructing. In this paper, we compare the algorithms for 
least-squares reverse time migration (LSRTM) and full-waveform inversion (FWI) and use 
numerical examples to understand the differences. LSRTM uses Born approximation as 
the modelling method because it requires the adjoint of migration (linear inversion), while 
FWI uses finite-difference modelling because it does not require an adjoint-pair operator 
(non-linear inversion). Linearized Born modelling can update model perturbations by a 
linear conjugate gradient method, but may have severe inaccuracies and inversion noise if 
the initial model is poor. Both, FWI and LSRTM depend on the initial model largely, but 
FWI has a mechanism to improve the velocities and LSRTM does not. Conversely, FWI 
suffers from cycle skipping while LSRTM does not. For LSRTM, the long wavelength 
components of the gradient are considered to be noise, while for FWI they are considered 
to be signal. In this work we try to use a FWI algorithm to solve for reflectivity instead of 
using standard LSRTM.  

INTRODUCTION 
Reverse time migration (RTM) was proposed in 1970s, but because of its high 

computational cost it did not become common until after 2000. Because it is a two-way 
migration method, it represents a significant improvement over computational cheaper 
one-way migration algorithms. This characteristic gives RTM higher accuracy than other 
methods for imaging of steep dips. Therefore, RTM has become one of the most important 
migration algorithms because of the progress of computational technology. However, 
because RTM uses the adjoint operator, which is not the same as the inverse, there will be 
amplitude problems in RTM, which can be solved by applying a least-squares scheme in 
the migration. Also, if the velocity model has some strong impedance contrast, low-
frequency artifacts will be generated which are usually eliminated by Laplacian filters. 

Least-squares migration (LSM) is an alternative to migration that can, potentially, 
reduce migration artifacts and improve lateral resolution. It was first proposed by Schuster 
(1993), and applied for the first time to a real data set by Nemeth et al. (1999). Since then 
much research has been done on this topic although its application to real data by industry 
remains elusive.  This problem is often solved by considering migration as a linear problem, 
which is a common approximation in seismic processing if multiple reflections are not 
considered. LSM uses iterative methods to match the observed data for every iteration and 
can solve the amplitude inaccuracy of RTM. Therefore, RTM can be implemented by a 
least-squares scheme, which is LSRTM. 

Generally, linear operators are used in geophysical modelling calculations that predict 
data from models. A common task is to find the inverse of these calculations, i.e., given 
the observed data, find a model that can predict these data. For linear operators, it is 
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possible to use iterative algorithms which require forward and adjoint operators to solve 
the inverse problem (Claerbout, 1992). Although in general these adjoint operators are 
different from the inverse operators, often they approximate the inverse quite well and are 
more stable and faster. In fact, most commonly used migration algorithms are very similar 
to the respective adjoint operators but not exactly the same, because they are good 
approximations to the inverse of the modeling operator. In some cases, the exact adjoint 
operators are not easy to design, and that is the particular case of RTM. The importance of 
knowing the exact adjoint operator for RTM is that provides a practical method to calculate 
LSRTM. Without the adjoint, more computational algorithms for linear search are required, 
as is often applied for related techniques like FWI. In those cases, the forward problem of 
data modeling has to be applied many times to calculate the magnitude of corrections 
applied at each iteration. The adjoint, on the other hand, permits to calculate these step 
sizes with the cost of only one forward and one adjoint operation. 

The methods mentioned above are all linear problems. However, the observed data 
depend nonlinearly on the parameters of the earth in reality. FWI is a nonlinear inversion 
method which uses all information in the seismogram to get the earth model. Classical FWI 
involves the minimization of square objective function for the observed and synthetic data 
and then moving from the initial model to the minimum of that objective function. For the 
synthetic data, FWI uses finite-difference method rather than Born modelling to calculate 
wavefield and may update the initial model in every iteration. The gradient and Hessian 
operator are calculated in the conjugate gradient algorithm to decide how much the model 
should move in a certain direction. In the following section, we review the theories of 
LSRTM and FWI and compare them to find the relationship and use numerical examples 
to illustrate the merits and weakness of each method.  

THEORY 
Least-squares Reverse Time Migration 

The 2D acoustic wave equation with constant density in time domain is: 

 1
𝑣𝑣2(𝑥𝑥)

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

(𝑥𝑥, 𝑡𝑡) − ∇2𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥, 𝑥𝑥𝑠𝑠), (1) 

where x is the is the position of the earth, 𝑣𝑣(𝑥𝑥) is the acoustic wave velocity, 𝑢𝑢(𝑥𝑥, 𝑡𝑡) is the 
acoustic wave potential, ∇2 is the Laplacian operator and 𝑓𝑓(𝑡𝑡, 𝑥𝑥, 𝑥𝑥𝑠𝑠) is the source term. In 
frequency domain, this equation turns into: 

 � 𝜔𝜔2

𝑣𝑣2(𝑥𝑥) + ∇2�𝑢𝑢(𝑥𝑥,𝜔𝜔, 𝑣𝑣) = 𝑓𝑓(𝜔𝜔, 𝑥𝑥, 𝑥𝑥𝑠𝑠), (2) 

where 𝜔𝜔 is the angular frequency. The conventional imaging condition of RTM can be 
described as the following equation: 

 𝐼𝐼(𝑥𝑥) = ∫𝑑𝑑𝑥𝑥𝑠𝑠𝑑𝑑𝑥𝑥𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥𝑠𝑠, 𝑥𝑥, 𝜏𝜏)𝐺𝐺(𝑥𝑥, 𝑥𝑥𝑟𝑟 , 𝑡𝑡 − 𝜏𝜏)𝑑𝑑�𝑥𝑥𝑠𝑠, 𝑥𝑥𝑟𝑟,𝑡𝑡�. (3) 

This is the most typical forms of RTM and the image can be formed at every location where 
the wavefields coexist in space and time. 𝐺𝐺(𝑥𝑥𝑠𝑠, 𝑥𝑥, 𝜏𝜏) and 𝐺𝐺(𝑥𝑥, 𝑥𝑥𝑟𝑟 , 𝑡𝑡 − 𝜏𝜏) are the source and 
receiver Green’s function respectively and 𝑑𝑑�𝑥𝑥𝑠𝑠, 𝑥𝑥𝑟𝑟,𝑡𝑡� is the seismic reflection data in 
common RTM imaging. However, in LSRTM, 𝑑𝑑�𝑥𝑥𝑠𝑠, 𝑥𝑥𝑟𝑟,𝑡𝑡� is usually the data residual for 
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every iteration. As can be seen, this imaging condition is very stable because it only 
contains multiplication and summation. Unfortunately, this algorithm will provide  
amplitude inaccuracies and low-frequency artifacts, especially when the velocity model 
has some strong impedance contrasts. Therefore, the Laplacian filter is usually applied to 
the migration results to attenuate the low-frequency artifacts. The mathematical form of 
the Laplacian filter is given by: 

 𝐼𝐼𝐿𝐿(𝑥𝑥, 𝑧𝑧) = −�𝜕𝜕
2𝐼𝐼

𝜕𝜕𝑥𝑥2
+ 𝜕𝜕2𝐼𝐼

𝜕𝜕𝑧𝑧2
�, (4) 

where 𝐼𝐼𝐿𝐿(𝑥𝑥, 𝑧𝑧) is the filtered image and 𝑥𝑥, 𝑧𝑧 is the 2D spatial directions respectively. For 
the imaging condition in equation (3), the source and receiver wavefields are correlated in 
the space. The imaging result maybe separated into illuminated and unilluminated areas. 
The illuminated area contains the imaging points where the correlation is non-zero, while 
in the unilluminated area the source energy did not pass through or did not reach receivers. 
Between these two areas, the correlation values vary slowly and smoothly. In the 
homogeneous area, there is only transmission and the wavefield is not perturbed. Therefore, 
the correlation value of the imaging is a constant in the homogeneous area. In the boundary, 
this value changes from one constant to another constant, which is corresponding to the 
velocity and density properties of the medium. To highlight the impedance boundaries, one 
need to zero-out all constant-valued homogeneous layers and only map impedance 
boundaries. A divergence operator should be able to carry this out. However, the 
correlation values vary from zero in the unilluminated area to a constant in the illuminated 
area smoothly and this will contaminate the divergence result. To handle this problem a  
Laplacian operator is often used. The problem with the Laplacian operator is some changes 
in phase and amplitude which can be solved by applying phase-shift filter and LSRTM 
respectively. 

RTM uses the adjoint operators to calculate the phase correctly, but not the amplitude 
because adjoint operators are not the same as the inverse operators. LSM calculates an 
inverse operator and can solve the amplitude problem and produce image with fewer 
artifacts and more accurate amplitudes. Therefore, the combination of RTM and LSM is 
necessary, which is LSRTM. The linear geophysical modelling process is present as 
follows: 

 𝑑𝑑 = 𝐴𝐴𝐴𝐴, (5)  

where 𝑑𝑑  is the observed data, 𝑚𝑚 is the geophysical model and 𝐴𝐴 is the linear operator 
which maps 𝑚𝑚 to 𝑑𝑑. In LSRTM, we use Born modelling (BM, see Appendix) to calculate 
the data residual for every iteration, which is the operator 𝐴𝐴 in equation (5).  In Born 
approximation, we assume the velocity of the earth model can be split into a smooth part 
𝑚𝑚0 and a singular part ∆𝑚𝑚: 

 𝑚𝑚 = 𝑚𝑚0 + ∆𝑚𝑚. (6) 

As a result, the equation can be re-written in: 

 ∆𝑑𝑑 = 𝐴𝐴∆𝑚𝑚, (7) 
Therefore, the objective function is: 
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 𝐽𝐽(∆𝑚𝑚) = �|∆𝑑𝑑 − 𝐴𝐴∆𝑚𝑚|�
2

. (8) 

To get the 𝑚𝑚 that produces the best predictions, the objective function should be minimum, 
which happens when: 

 𝜕𝜕𝜕𝜕(∆𝑚𝑚)
 𝜕𝜕∆𝑚𝑚

= 0. (9) 

This condition implies 

 𝐴𝐴†𝐴𝐴∆𝑚𝑚 − 𝐴𝐴†∆𝑑𝑑 = 0, (10) 

where † is the conjugate transpose. Therefore, we may get the least-squares solution below: 

 ∆𝑚𝑚 = (𝐴𝐴†𝐴𝐴)−1𝐴𝐴†∆𝑑𝑑, (11)  
which is usually not stable and expensive to calculate. Fortunately, we have iterative 
methods, such as steepest-descent (SD) or conjugate gradient (CG) to solve this problem. 
Table 1 shows the specific preconditioned conjugate gradient algorithm to solve for the 
best ∆𝑚𝑚.  

Table 1. Preconditioned Conjugate Gradient Method 

Given ∆𝑚𝑚0, preconditioner 𝑀𝑀; 

Set 𝑟𝑟0 ← 𝐴𝐴∆𝑚𝑚0 − ∆𝑑𝑑; 

Solve 𝑀𝑀𝑦𝑦0 = 𝑟𝑟0 for 𝑦𝑦0; 

Set 𝑝𝑝0 = −𝑦𝑦0, 𝑘𝑘 ← 0; 

While 𝑟𝑟𝑘𝑘 ≠ 0 

α𝑘𝑘 ←
𝑟𝑟𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

𝑝𝑝𝑘𝑘
𝑇𝑇𝐴𝐴𝑝𝑝𝑘𝑘

; 

∆𝑚𝑚𝑘𝑘+1 ← ∆𝑚𝑚𝑘𝑘 + α𝑘𝑘𝑝𝑝𝑘𝑘; 

𝑟𝑟𝑘𝑘+1 ← 𝑟𝑟𝑘𝑘 + α𝑘𝑘𝐴𝐴𝑝𝑝𝑘𝑘; 

Solve 𝑀𝑀𝑦𝑦𝑘𝑘+1 = 𝑟𝑟𝑘𝑘+1; 

𝛽𝛽𝑘𝑘+1 ←
𝑟𝑟𝑘𝑘+1
𝑇𝑇 𝑦𝑦𝑘𝑘+1
𝑟𝑟𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

; 

𝑝𝑝𝑘𝑘+1 ← −𝑦𝑦𝑘𝑘+1 + 𝛽𝛽𝑘𝑘+1𝑝𝑝𝑘𝑘; 

𝑘𝑘 ← 𝑘𝑘 + 1; 

End (while) 

 

When given the initial smoothed model 𝑚𝑚0 and the observed data 𝑑𝑑, the initial data  𝑑𝑑0 
can be calculated by the forward modelling operators and thus the data residual ∆𝑑𝑑 is 
obtained. Inject the data residual into the CG algorithm. When the iterations are finished, 
one can get the model perturbation ∆𝑚𝑚 from the output. Figure 1 shows the workflow for 
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the LSRTM. One can use BM to get data residuals for every iteration, but they will depend   
not only on the reflector amplitudes but also on the initial model 𝑚𝑚0. Because RTM focuses 
on the high frequency components and treat the low frequency components as the noise, 
the quality of the initial model would have significant influence on the inversion result. 
This is the limitation of LSRTM comparing with FWI. 

 

FIG. 1. A flowchart for LSRTM 

Full Waveform Inversion 
Full waveform inversion is a nonlinear inversion method. Similar to LSRTM, it starts 

from a least-squares problem: 

 𝐽𝐽(𝑚𝑚) = ��𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠��
2

, (12) 

where 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 are the observed data generated by the true model and 𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 are the synthetic 
data obtained by the current model for every iteration. In the frequency domain, the Green’s 
function can be separated into two parts:  

 𝐺𝐺(𝑚𝑚0 + 𝛿𝛿𝛿𝛿) = 𝐺𝐺0(𝑚𝑚0) + 𝛿𝛿𝛿𝛿(𝑚𝑚0,𝛿𝛿𝛿𝛿), (13)   

where 𝑚𝑚0 represents the long wavelength components of the model and 𝛿𝛿𝛿𝛿 indicates the 
short wavelength components or model perturbations. 𝛿𝛿𝛿𝛿(𝑚𝑚0, 𝛿𝛿𝛿𝛿)  is the wavefield 
perturbation which has a linear relationship with 𝛿𝛿𝛿𝛿: 
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 𝛿𝛿𝛿𝛿(𝑚𝑚0, 𝛿𝛿𝛿𝛿)(𝑥𝑥𝑟𝑟 ,𝜔𝜔, 𝑥𝑥𝑠𝑠) = 𝜔𝜔2 ∫𝑑𝑑𝑑𝑑𝐺𝐺0(𝑥𝑥𝑟𝑟 ,𝜔𝜔, 𝑥𝑥)𝐺𝐺(𝑥𝑥,𝜔𝜔, 𝑥𝑥𝑠𝑠)𝛿𝛿𝛿𝛿(𝑥𝑥). (14) 

This is the conventional kernel of the Born operator (also see in Appendix). However, 
FWI is usually a nonlinear method for the inversion problem. Figure 2 shows a basic 
workflow for the FWI. First, we have the true model and the initial model, which is 
formulated by the finite-difference method to get the data. By subtracting the synthetic data 
from the observed data, one can get the data residuals, and from them the model 
perturbations by a mapping (migration) from data to model space. Once the perturbation is 
obtained, the initial model can be updated and used to generate new synthetic data in the 
next iteration. 

Back to the objective function, we have 

 𝜕𝜕𝜕𝜕(𝑚𝑚+∆𝑚𝑚)
 𝜕𝜕𝜕𝜕

= 0, (15) 

when the minimum value of the misfit function is reached. Ignoring the high-order terms, 

 𝜕𝜕𝜕𝜕(𝑚𝑚+∆𝑚𝑚)
 𝜕𝜕𝜕𝜕

≈ 𝜕𝜕𝜕𝜕(𝑚𝑚)
 𝜕𝜕𝜕𝜕

+ 𝜕𝜕2𝐽𝐽(𝑚𝑚)
𝜕𝜕𝜕𝜕2 ∆𝑚𝑚 = 0, (16) 

and  

 ∆𝑚𝑚 = −(𝜕𝜕
2𝐽𝐽(𝑚𝑚)
𝜕𝜕𝜕𝜕2 )−1 𝜕𝜕𝜕𝜕(𝑚𝑚)

 𝜕𝜕𝜕𝜕
. (17) 

The first order derivative is the gradient and the second order derivative is the Hessian. 
Unfortunately, the Hessian is an extremely large and dense matrix for large scale inverse 
problems and its inverse has a large computation cost. If the model dimension is 𝑀𝑀 ∗ 𝑁𝑁, 
the Hessian will be a 𝑀𝑀𝑀𝑀 ∗ 𝑀𝑀𝑀𝑀  symmetric square matrix. Therefore, there are many 
approximations of the Hessian. The nonlinearity of FWI occurs because the initial model 
is updated for every iteration to generate synthetic data. Also, the Hessian changes from 
point to point in model space. In comparison, LSRTM uses the data residuals to find the 
best model perturbation by the CG method and does not change the initial model while the 
FWI updates the initial model before doing forward modeling at every iteration. LSRTM 
focuses on the short wavelength components to get the reflectivity image but it depends on 
the initial model largely. If the initial model is not accurate, the migration result will be 
wrong. FWI can correct for model errors but it also has problems if the initial model is 
inaccurate. To address this issue, FWI starts from low frequency components of the data 
which are less sensitive to cycle-skipping and corrects large wavelengths components of 
the background velocity model before using the higher frequency part of the data.  
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FIG. 2. A flowchart for basic FWI algorithm 

NUMERICAL EXAMPLES 
In this section we show some simple numerical examples for LSRTM and FWI using 

an inaccurate version of the Marmousi velocity model, resampled in a grid with 126*288 
cells. The horizontal and vertical sampling are both equal to 8m. We use a constant density 
in this example. There are 285 shots and 287 receivers on the surface and the frequency is 
5-25 Hz for RTM and LSRTM and 3-12 Hz for FWI. 

 Figure 3 shows the true velocity model and the initial model, which was obtained by 
applying a Gaussian smoother on the true velocity model. In Figure 4 we see the results 
when the smooth initial model is used for RTM and LSRTM. The RTM image is distorted 
by the low-frequency components severely. LSRTM image has better result which recovers 
the amplitude problem but still have poor resolution. This is because of the poor quality of 
the initial model. RTM and LSRTM are designed to focus on the reflections to generate 
the reflectivity image of the model, but they require a good initial model. Now we use FWI 
from the same initial model and see in Figure 5 the results. We use this result as the starting 
model and get RTM and LSRTM results which are showed in Figure 6. The accuracy of 
the model is improved. Because FWI starts the inversion from low frequency components 
first and build the background model before using the high frequencies, it can deal with the 
inaccuracies in the velocities. This simple example suggests that using the non-linear 
approach of  FWI for LSRTM could be useful to provide better images. Our goal in future 
work is to explore how a LSRTM based on the ideas of FWI would compare with the 
cascade approach FWI+LSRTM shown in this example 
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FIG. 3. The true velocity model of Marmousi and the initial model applied Gaussian smoother 

 

FIG. 4. RTM image and LSRTM image of the initial model 

 

FIG. 5. FWI result from the smoothed model 
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FIG. 6. RTM and LSRTM image using FWI result 

SUMMARY 
We have discussed differences between LSRTM and FWI. LSRTM uses a linearized 

wave equation based on the Born approximation, which allows one to use a linear inversion 
method with parameterized step size calculation. FWI uses the finite-difference method 
which is more precise than Born modeling because it produces first and multiple scattering 
waves, but it requires to use a non-linear inversion algorithm to correct for the model 
updates at each iteration. In LSRTM the high frequency components are emphasized to 
produce a model of reflectivities. FWI focuses on the low frequency components to correct 
for the background velocity model. In LSRTM the inversion result will be correct only if 
the background velocity model is accurate, but not otherwise. FWI will update the 
background velocity model if it can avoid local minima produced by cycle-skipping. If 
LSRTM can be implemented by using non-linear inversion with finite difference modeling, 
it may be possible to overcome its sensitivity to inaccuracies in the model.  
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APPENDIX 
Born Approximation 

In the Born approximation, we assume the velocity of the earth model can be split into 
a smooth part 𝑣𝑣0 and a singular part 𝛿𝛿𝛿𝛿 : 

 𝑣𝑣(𝑥𝑥) = 𝑣𝑣0(𝑥𝑥) +  𝛿𝛿𝛿𝛿(𝑥𝑥). (A-1) 

𝑣𝑣0(𝑥𝑥) represents the long-wavelength smooth background velocity model and  𝛿𝛿𝛿𝛿(𝑥𝑥) is 
the short-wavelength velocity model, which contains the singular features. This short-
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wavelength component will produce reflections and contains high resolution features, 
which is the main object of the LSRTM. 

In time domain, the first order wavefield perturbation 𝛿𝛿𝛿𝛿 corresponding to 𝛿𝛿𝛿𝛿 may be 
expressed in the form of the Green’s function and the background velocity 𝑣𝑣0. The Born 
modeling is formulated as followed: 

 (𝐹𝐹[𝑣𝑣0]𝛿𝛿𝛿𝛿)(𝑥𝑥𝑠𝑠, 𝑥𝑥𝑟𝑟 , 𝑡𝑡) = ∂2

∂𝑡𝑡2 ∫ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥𝑠𝑠, 𝑥𝑥, 𝜏𝜏) 2𝛿𝛿𝛿𝛿(𝑥𝑥)
𝑣𝑣0(𝑥𝑥)3

𝐺𝐺(𝑥𝑥, 𝑥𝑥𝑟𝑟 , 𝑡𝑡 − 𝜏𝜏) (A-2) 

where 𝐹𝐹[𝑣𝑣0] is the Born modelling operator, 𝐺𝐺(𝑥𝑥𝑠𝑠, 𝑥𝑥, 𝜏𝜏) and 𝐺𝐺(𝑥𝑥, 𝑥𝑥𝑟𝑟 , 𝑡𝑡 − 𝜏𝜏) is the source 
wavefield and receiver wavefield respectively. This equation gives us the wavefield 
perturbation 𝛿𝛿𝛿𝛿  by a simple linear relationship. Correspondingly, the inverse Born 
modelling operator is given by the 𝐹𝐹[𝑣𝑣0]∗, which is adjoint to 𝐹𝐹[𝑣𝑣0]  and applied to the 
wavefield perturbation 𝛿𝛿𝛿𝛿: 

(𝐹𝐹∗[𝑣𝑣0]𝛿𝛿𝛿𝛿)(𝑥𝑥) =
2

𝑣𝑣0(𝑥𝑥)3
�𝑑𝑑𝑥𝑥𝑠𝑠𝑑𝑑𝑥𝑥𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥𝑠𝑠, 𝑥𝑥, 𝜏𝜏) 

 𝐺𝐺(𝑥𝑥, 𝑥𝑥𝑟𝑟 , 𝑡𝑡 − 𝜏𝜏) ∂2

∂𝑡𝑡2
𝛿𝛿𝛿𝛿(𝑥𝑥𝑠𝑠, 𝑥𝑥𝑟𝑟 , 𝑡𝑡). (A-3) 

In the frequency domain, the Green’s function can also be separated into the background 
velocity component and perturbation as: 

 𝐺𝐺(𝑥𝑥, 𝑥𝑥𝑠𝑠,𝜔𝜔|𝑣𝑣) = 𝐺𝐺(𝑥𝑥, 𝑥𝑥𝑠𝑠 ,𝜔𝜔|𝑣𝑣0) + 𝛿𝛿𝛿𝛿(𝑥𝑥, 𝑥𝑥𝑠𝑠 ,𝜔𝜔|𝑣𝑣0, 𝛿𝛿𝛿𝛿), (A-4) 
where the perturbation term can be expressed as: 

  𝛿𝛿𝛿𝛿(𝑥𝑥, 𝑥𝑥𝑠𝑠,𝜔𝜔|𝑣𝑣0, 𝛿𝛿𝛿𝛿) = 𝜔𝜔2 ∫𝑑𝑑𝑥𝑥′𝐺𝐺 �𝑥𝑥, 𝑥𝑥′,𝜔𝜔�𝑣𝑣0� 𝛿𝛿𝛿𝛿 �𝑥𝑥′�𝐺𝐺 �𝑥𝑥′, 𝑥𝑥𝑠𝑠,𝜔𝜔�𝑣𝑣� 

                                        = 𝜔𝜔2 ∫𝑑𝑑𝑥𝑥′𝐺𝐺 �𝑥𝑥, 𝑥𝑥′,𝜔𝜔�𝑣𝑣0� 𝛿𝛿𝛿𝛿 �𝑥𝑥′�𝐺𝐺 �𝑥𝑥′, 𝑥𝑥𝑠𝑠,𝜔𝜔�𝑣𝑣0� 

 +  𝜔𝜔4 ∫ 𝑑𝑑𝑥𝑥′𝐺𝐺 �𝑥𝑥, 𝑥𝑥′,𝜔𝜔�𝑣𝑣0� 𝛿𝛿𝛿𝛿 �𝑥𝑥′� ∫𝑑𝑑𝑥𝑥′′𝐺𝐺 �𝑥𝑥′, 𝑥𝑥′′,𝜔𝜔�𝑣𝑣0� 𝛿𝛿𝛿𝛿 �𝑥𝑥′′� 𝐺𝐺�𝑥𝑥′′, 𝑥𝑥𝑠𝑠 ,𝜔𝜔�𝑣𝑣0� 

 +⋯ (A-5) 
The Born approximation can be obtained by discarding the high order terms in equation 
(A-5) as 

 𝛿𝛿𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑥𝑥, 𝑥𝑥𝑠𝑠,𝜔𝜔|𝑣𝑣0, 𝛿𝛿𝛿𝛿) = 𝜔𝜔2 ∫𝑑𝑑𝑥𝑥′𝐺𝐺 �𝑥𝑥, 𝑥𝑥′,𝜔𝜔�𝑣𝑣0� 𝛿𝛿𝛿𝛿 �𝑥𝑥′� 𝐺𝐺 �𝑥𝑥′, 𝑥𝑥𝑠𝑠,𝜔𝜔�𝑣𝑣0� ,(A-6) 

 𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑥𝑥, 𝑥𝑥𝑠𝑠,𝜔𝜔|𝑣𝑣) = 𝐺𝐺(𝑥𝑥, 𝑥𝑥𝑠𝑠,𝜔𝜔|𝑣𝑣0) 

 +𝜔𝜔2 ∫ 𝑑𝑑𝑥𝑥′𝐺𝐺 �𝑥𝑥, 𝑥𝑥′,𝜔𝜔�𝑣𝑣0� 𝛿𝛿𝛿𝛿 �𝑥𝑥′� 𝐺𝐺 �𝑥𝑥′, 𝑥𝑥𝑠𝑠,𝜔𝜔�𝑣𝑣0� .  (A-7) 

In this formulation, the nonlinear relationship between the model perturbation 𝛿𝛿𝛿𝛿 and the 
scattered wavefield 𝛿𝛿𝛿𝛿(𝑥𝑥, 𝑥𝑥𝑠𝑠,𝜔𝜔|𝑣𝑣0, 𝛿𝛿𝛿𝛿) is linearized by the Born approximation, which is 
that the wavefield perturbation can be calculated by the integration between the Green’s 
function and model perturbation 𝛿𝛿𝛿𝛿 . This approximation is often used in LSRTM 
iteratively to get the best 𝛿𝛿𝛿𝛿  in the inverse problem. In addition, the background and   
perturbation Green’s function can be expressed in the following equation: 
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 [𝜔𝜔2𝑣𝑣0(𝑥𝑥) + ∇2]𝐺𝐺(𝑥𝑥, 𝑥𝑥𝑠𝑠,𝜔𝜔|𝑣𝑣0) = −𝛿𝛿(𝑥𝑥 − 𝑥𝑥𝑠𝑠), (A-8)   

 [𝜔𝜔2𝑣𝑣0(𝑥𝑥) + ∇2]𝛿𝛿𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑥𝑥, 𝑥𝑥𝑠𝑠,𝜔𝜔|𝑣𝑣0, 𝛿𝛿𝛿𝛿) = −𝜔𝜔2𝛿𝛿𝛿𝛿 �𝑥𝑥′� 𝐺𝐺 �𝑥𝑥′, 𝑥𝑥𝑠𝑠,𝜔𝜔�𝑣𝑣0�. (A-9) 
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