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ABSTRACT

Cross-talk, where data signatures of different physical properties are confused, is a ma-
jor concern in multi-parameter FWI. This can be mitigated by using a good estimate of the
Newton update in the inversion procedure, but such an approach is typically too computa-
tionally intensive to be pursued. In this report, the cost of approximating the Newton update
is reduced by considering a multi-resolution approach, in which the grid defining the model
is varied with frequency. This approach allows for a smaller computational burden at low
frequencies, and effectively mitigates the cost of approximating the Newton update. This
allows for cross-talk to be more effectively prevented.

INTRODUCTION

When full waveform inversion (FWI) is used to recover multiple physical properties
of the subsurface, there is a risk of confusing the data signatures of different properties.
This can result in cross-talk, where different variables are confused in the inversion result.
The prevention of cross-talk is a major priority in multi-parameter FWI, and is the focus of
substantial research. Consideration of the second derivative of the objective function in the
model update is well understood to play an important role in the prevention of cross-talk.
Unfortunately, making use of this second derivative information is very computatationally
intensive.

Keating and Innanen (2017) discussed the multigrid approach, a strategy for reducing
the computational expense of minimizing cross-talk at the long wavelength scales in the
model. In this approach, the grid on which the model was defined was changed during
the inversion based on the frequencies being considered at each stage of the inversion. By
considering a smaller inversion problem at the low frequencies more powerful optimization
techniques were made feasible, and this led to a reduction in cross-talk on the correspond-
ing model scales. The main focus of Keating and Innanen (2017) was on the use of exact
Gauss-Newton optimization. While this approach is very powerful, the frequencies needed
for practical application may be extremely low. Application of this approach can be ap-
plied to less demanding optimization approaches. This report builds on the previous work
by investigating numerical simulations of the multigrid approach when using the truncated
Gauss-Newton (TGN) method for numerical optimization.

THEORY
The multi-resolution approach

In conventional FWI using two dimensional, finite-difference wave modeling, the vari-
ables considered in the inversion are coefficients. These coefficients describe the values of
physical properties in regions of size dz by dx in the subsurface, where dz and dx are the
position and depth increments used in the forward modeling. In effect, the inversion is for
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the variables used in the finite-difference wave propagation calculations. When the prob-
lem is extended to three dimensions, or finite element modeling is used, the variables used
are still just the coefficients used in the forward modeling engine. The multi-resolution
approach is a strategy based on the work of Bunks et al. (1995) that was proposed by Keat-
ing and Innanen (2017) which uses a different parameterization for the inversion. In this
approach, the variables used in the inversion are still coefficients for a region of the model,
but this region is allowed to have a length of %, where \ is the wavelength of the highest
frequency considered at a given iteration in the background medium. This is different from
the conventional approach because the frequencies considered change at each iteration of
the FWI problem, and so at low frequencies much larger regions are defined in the multi-
resolution inversion. The conventional model « is related to the multi-resolution model m
at each iteration through the relation

a= Pm, (D

where P is a matrix defining the multi-resolution variables. Because the variables defined
in P are spatially large at low frequencies, m has far fewer elements than a at these fre-
quencies. Keating and Innanen (2017) showed that the smaller problem size allows for
more effective optimization techniques to be used, allowing for multiparameter FWI prob-
lems like cross-talk to be more effectively prevented.

Truncated Newton optimization

Full waveform inversion is typically posed as an optimization problem, in which a
scalar objective function quantifying the current level of mismatch between predicted data
and those measured is minimized. The minimization of this objective function requires the
use of an optimization strategy. In Newton optimization descent directions are generated
by solving the system

HAm = —g, 2)

where ¢ is the gradient of the objective function, H is the Hessian (second derivatives),
and Am is the model update being calculated. Solving this system is very computationally
intensive for a large, non-sparse /7. The main purpose of Keating and Innanen (2017) was
to develop an optimization strategy in which Newton optimization could be used in the
multiparameter FWI problem for long length scales. The multi-grid approach described
there defines a model parameterization which changes with frequency. At low frequencies
the model can be characterized by relatively few variables describing large spatial regions
of the model. This allows for the use of Newton optimization at very low frequencies,
where the number of required variables is quite small. In this way the approach is similar
to the global optimization strategy of Debens et al. (2015). The multi-resolution approach
is not specific to Newton optimization however, and offers efficiency improvements for
other optimization strategies, including the truncated Gauss-Newton method.

In truncated Newton optimization the solution of equation 2 is approximated instead
of being solved directly. The truncated Gauss-Newton (TGN) method approximates the
solution of the same system, but with H replaced by H, the residual independent part of
the Hessian. The solution to this system is approximated through iterative minimization of
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the function

1
d(Am) = §AmTHGNAm +Am'yg (3)
with respect to the update Am. This problem is equivalent to solving equation 2 because
at a minimum ai—‘fn =0, and
99
——— = HgyA . 4
TAm aNAM + g 4)

This problem is referred to as the ‘inner loop’, because its solution is iteratively solved at
each step of the iterative FWI problem. Minimizing ¢ is a problem of the same dimension
as the FWI problem, but because it is a linear problem it is generally easier to solve. The
cost of solving this problem is also highly dependent on the dimensionality of the problem.
Conjugate gradient and BFGS methods are effective approaches for solving a linear prob-
lem. In the absence of rounding errors, these methods have guaranteed convergence in a
number of iterations less than or equal to the number of variables in the problem. Conse-
quently, these methods can obtain a much more accurate approximation of the Newton step
in a given number of iterations is the number of variables is decreased. This will make the
TGN method more effective. Because of this problem size dependence, TGN optimization
should perform considerably better in a multi-resolution framework.

Gradient and Hessian-vector product calculation

To perform the inner loop optimization problem, it is necessary to calculate the gradient
of ¢ (equation 4). This means that g and the product of H with a given vector need to be
calculated. These terms are derived in a general way in, for example, Metivier et al. (2013).
This derivation is repeated here, with reference to how these terms with respect to m can
be related to the traditional terms with respect to a and the matrix P.

We assume here an objective function of the form
1 2
0 = 3l|Ru - DI, )

where u is the modeled wavefield, D is the measured data, and R is a matrix applying
receiver sampling. The minimization problem in FWI then becomes

min,,0 subject to S(m)u = f, (6)

where S is a Helmholtz matrix enforcing a model of wave propagation, and f is a source
term. This objective penalizes the L, norm of difference between measured data and mod-
eled data with the current model m. The Lagrangian of this problem is

L = ||Ru— D|3+ (S(m)u — f,\), (7)

where ) is an as-yet unconstrained Lagrange multiplier, and (, ) represents an inner product.
If uw = u, where @ satisfies S(m)u = f, then L = 6. The derivative of # with respect to m
is then equal to the derivative of L with respect to m at « = u. This derivative is

dL 0L 0u oL

am " auom T am ®)
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g" is prohibitively expensive to calculate, we choose to eliminate the

contribution of this term by choosing A = X such that the term aL becomes zero. This
requirement becomes

Because the term

oL
ou

This means that ) is calculated by back-propagating the data residuals. This choice reduces
equation 8 to

= R"(Ru— D)+ S™A=0. 9)

dL  OL <8S
dm  Om  Om
Because gs is typically very sparse, this can be quickly calculated for many variables m,

with the main cost being the calculation of @ and A. The derivative with respect to the
variables m is related to the derivative with respect to traditional variables a through the

relation
oL 0L Oa 7OL

om _ daom =F da’ (D

, \). (10)

The Hessian-vector product term is calculated in a similar way. Again, we follow the
derivation of Metivier et al. (2013). The Gauss-Newton Hessian is given by the relation

JRTRJ, (12)

where .J is the Jacobian matrix % dm The matrix J is too costly to directly calculate, so the
adjoint state method is used to prevent direct calculation of this term. We note that the
derivative of the function

p = (u(m),w), (13)

where w is an arbitrary vector, with respect to m is
Vg = Jw. (14)

Consequently, if w is chosen to be RT R.Jv, then the Hessian-vector product Hg v is equal
to the derivative of p. This derivative can be calculated in exactly the same way as the
gradient was by considering the Lagrangian

L = (u(m),w) + (S(m)u — f,\) (15)

instead of equation 7. The same procedure follows but instead of requiring Lagrange
multiplier A to satisfy equation 9, the removal of - requires that the Lagrange multiplier
for this problem, &, satisfies

Ste = —w. (16)

As before, if the Lagrange multiplier satisfies this condition, then

dL 0L oS

am - am <8m_ £). (17)

The calculation of ¢ still requires that w is known, and we cannot directly calculate .J. We
calculate the product of J with the vector v through consideration of the derivative of the
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forward problem with respect to variables m; multiplied by vector elements v;. Using the
relation Su — f = 0, we find

o(Su — i 0 )
9(Su = flu _ S(u) = —u(v). (18)

87711‘ i

A sum over i is equal to the product S(Jv) for the left hand side, so

oS
S(Jv) = —u) (5 i) (19)

This equation can be solved for the product Jv. Using this term to define w as RT R.Jw,
we can solve equation 16 for £. With this choice for £, the derivative % from equation 17
becomes the Gauss-Newton Hessian vector product Hgyv.

Once again, this calculation can be related back to the equivalent expression for the
conventional FWI variables. In terms of the Jacobian matrix with respect to variables a, .J,,
the Gauss-Newton Hessian becomes

P'JIR"RJ,P (20)

in comparison to equation 12. This can be calculated by replacing J with P7.J,. The steps
which must be modified are equation 17, which becomes

Hoy = P"— = PT{(——u,§), 21)

and equation 19, which becomes

S(Jv) =—u) (Pf?—i) v;, (22)

where F; is the ¢th column of P.
NUMERICAL EXAMPLES

To investigate the effectiveness of this approach, we perform numerical tests of a vis-
coacoustic inversion, where P-wave velocity ¢ and quality factor () are the only variables
considered in the inversion. This problem is prone to cross-talk (e.g. Keating and Innanen,
2016), which the second derivative information considered in the TGN method should be
able to help prevent. The viscoacoustic wave propagation we consider in this report is given
by

[w?s(r) + V?] u(r,w) = f(r,w), (23)

where the model parameter s is given by

=)

and wy is a reference frequency (Innanen, 2015).
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FIG. 1. Velocity (left) and reciprocal Q (right) model used for the numerical examples.

The model to be inverted is shown in figure 1. Finite difference modeling was used with
a grid spacing of 10 m. A surface acquisition was simulated, with 225 receivers placed at
the surface, and 112 sources placed at 10 m depth. The starting models used were constant
values, infinite () and 1700 m/s velocity. Frequencies from 1 Hz to 25 Hz were used in
the inversion. At each FWI iteration, five frequencies were inverted. These frequencies
changed every two iterations, and were equally spaced from 1 Hz to a maximum frequency
which increased throughout the inversion. This frequency began at 2 Hz, and increased to
25 Hz at the final frequency band. At each FWI iteration, 30 inner loop iterations were
performed in the TGN approach.

In the first test, the TGN method was used in the inversion with a fixed grid spacing
of 10 m. This is the conventional approach, in which the variables a are inverted for. The
result of this inversion is shown in figure 2. Cross-talk is evident in this result, especially
away from the center of the () model between 300 m and 500 m depth, where the % model
has decreased to negative values instead of increasing. The velocity model is poorly recov-
ered below 500 m depth, likely a consequence of inadequate () recovery. This cross-talk
occurs despite the use of TGN optimization, implying that insufficient second derivative
information is being considered in the inversion.

In the second test, the same inversion is attempted with a multi-resolution strategy.
The results of this approach are shown in figure 3. While the negative () artifacts of the
previous example are not completely eliminated, they are substantially reduced. Both the ()
and velocity models recovered are closer to the true models in this inversion, despite using
the computational cost as the previous inversion. This suggests that the multi-resolution
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FIG. 2. Inverted velocity (left) and reciprocal Q (right) for a fixed resolution inversion.

strategy has successfully improved the capacity of the inversion to prevent cross-talk.
DISCUSSION

The TGN method has a computational cost that can be easily changed by altering the
number of inner iterations performed. This allows it to be applied on problems much larger
than those which Newton optimization would be appropriate for. This should allow for
more efficient cross-talk reduction in most multi-parameter FWI problems.

CONCLUSIONS

The multiparameter FWI problem is very computationally difficult to solve, and is
heavily affected by cross-talk effects. By reducing the dimensionality of the problem in
a multi-grid approach, significantly better step directions can be calculated to hellp prevent
cross-talk. The truncated Gauss-Newton optimization step can be considerably improved
at low frequencies by using a multi-resolution approach. Unlike exact Gauss-Newton op-
timization, this method is applicable for very large problem sizes, and should result in
improved model updates even at relatively high frequencies.
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FIG. 3. Inverted velocity (left) and reciprocal Q (right) for a multi-resolution inversion.
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