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ABSTRACT

During reverse time migration in anisotropic media, P- and SV-waves are coupled and
the elastic wave equation should be used. However, the crosstalks caused by the inter-
ference between different wave modes are detected. Even if an acoustic anisotropic wave
equation is used instead, an undesired SV-wave energy could be generated during modeling
and reverse time migration. To avoid this unwanted energy, we proposed an approxima-
tion of decoupled P-and SV- wave equation system for vertical transversely isotropic (VTI)
media. The qP- and qSV- phase velocities for the approximated equations are plotted and
compared with the exact and other approximations, which proves its accuracy with dif-
ferent Thomsen parameter sets. The H-PML in second order wavenumber domain is also
proposed to eliminate the artificial boundary reflections, comparisons of different absorbing
boundary layers are also illustrated to validate the wave number domain H-PML.

INTRODUCTION

Accurate and efficient numerical tools for modelling of seismic wave propagation in
reservoir rocks are becoming increasingly indispensable, in research and industry settings,
as full-waveform processing and inversion methods increasingly come on line. Represen-
tations of rocks with spatially-varying fracture orientations and densities, stress distribu-
tions, complex bedding, etc., through anisotropic models, are of particular importance.
Under idealized circumstances the SH-mode of the full elastic wavefield propagates inde-
pendently of the P-SV modes, and can be sensed approximately independently in multi-
component experiments. A first order pseudo-spectral method is proposed to simulate SH
wave propagation in VTI medium(Li et al., 2017). Because the computational cost to solve
elastic wave equation and the lack of efficient algorithms to compute wave mode separa-
tion during migration, the elastic imaging is usually replaced by the acoustic imaging in
anisotropic reverse time migration(RTM). However, the qP and qSV wave are usually cou-
pled in anisotropic media. Some cost-effective pseudo-acoustic approaches are thus pro-
posed to anisotropic RTM(Alkhalifah, 1998, 2000). However, undesirable S-wave modes
even in the weakly anisotropic regime can be noticed. Because this acoustic approximation
sets the shear-wave velocity to zero along the anisotropy symmetry axis, which doesn’t
mean shear-wave velocity is zero at all directions. Zhou et al. (2006) used a different auxil-
iary function to decomposed the fourth-order differential equation into a coupled system of
second-order differential equations. Bakker and Duveneck (2011) and Zhang et al. (2011)
proposed several variations to improve stability and efficiency. But the S-wave artifacts are
still present in the wavefield.

The mitigation of the S-wave in the pseudo-acoustic approximation has been an issue
since the original work of Alkhalifah (1998). Alkhalifah (2000) pointed out these arti-
facts can be reduced when the source is located in an isotropic layer, Zhang and Zhang
(2009)applied a filter in the wavenumber domain to extract approximate P-wave responses
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from the pseudo-acoustic simulation so as to reduce the S-wave energy. Alternatively, ap-
proximations of the pure acoustic anisotropic wave equations(Du et al., 2007; Etgen and
Brandsberg-Dahl, 2009; Crawley et al., 2010; Fowler et al., 2010; Pestana et al., 2011) are
also used to suppress the S-wave artifacts. The complete removal of shear-waves can be
achieved by factoring out the pure P-wave dispersion relation from the simplified TI P-SV
dispersion relation(Liu et al., 2009). Pestana et al. (2012) derive an alternative approxima-
tion for the exact factorization which is valid for weak anisotropy and can be implemented
using finite difference in time and pseudo-spectral method in space. More sophisticated
approximations of this factorization can be found in Du et al. (2013).

Besides the S-wave noise, the periodically extended wavefield on either side of the com-
putational domain caused by the discrete Fourier transform results in numerical contami-
nation of waves. This phenomenon is called wraparound. To avoid this, Fornberg (1996)
suggested the Chebyshev PSM be employed, which increases the grid density requirement
to π nodes per minimum wavelength. Alternatively, absorbing boundaries (Cerjan et al.,
1985), or perfectly matched layers (or PML, Collino and Tsogka, 2001) can also be used
to damp the wraparound phases through a gradual reduction of the wavefield amplitude
in the vicinity of the grid boundary. Liu (1998) combined the conventional Fourier PSM
with perfectly matched layers (PML) to effectively eliminate the wraparound effect. Li
et al. (2017) proposed to use the H-PML into first order staggered-grid PSM to simulate
SH-wave propagation in heterogeneous VTI media.

In this paper, we first extend the temporal fourth-order PSTD scheme to 3D qP-wavefield
simulation in heterogeneous VTI media by using Zhou’s eauation(Zhou et al., 2006) and
the S-wave energy is still detected. Therefore, a new approximation of the decoupled qP-
and qSV-wave equation set is proposed. The comparisons of phase velocities between the
new decoupled wave equations and the other approximations are illustrated to validate the
precision in different anisotropic medium. The qP- and qSV-wavefield propagation are thus
simulated using the new proposed approximations by Fourier pseudo-spectral time-domain
PSTD method. A second-order Hybird-PML (Li et al., 2016, 2017) boundary condition
is combined with PSTD method to eliminate wraparound effects and boundary reflections.
To make comparative conclusions, in this paper, we also implement the H-PML, with a
C-PML and M-PML. Finally, qP- and qSV-wave simulation for some numerical models
are illustrated.

DECOUPLED WAVE EQUATIONS IN VTI MEDIA

According to Tsvankin (1996), the exact dispersion relation for P and SV waves in VTI
media is

v2(θ)

v2p0
= 1 + ε sin2 θ − f

2
± f

2

[
1 +

2ε sin2 θ

f

][
1− 2(ε− δ) sin2 2θ

f(1 + 2ε sin2 θ
f

)2

]1/2
, (1)
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where θ is the phase angle measured from the symmetry axis, v(θ) is the phase velocity of
the coupled wave modes; ε and γ are the Thomsen parameters Thomsen (1986):

ε =
c11 − c33

2c33
,

δ =
(c13 + c44)

2 − (c33 − c44)2

2c33(c33 − c44)
,

(2)

and f = 1 −
(
vs0
vp0

)2
, where vp0 and vs0 are the P- and SV-wave velocities vpo =

√
c33/ρ

and vso =
√
c44/ρ along the VTI symmetry axis. The plus and minus signs correspond to

the P and SV-waves, respectively.

Based on Alkhalifah’s approximation, different space/time-domain wave equations have
been proposed. If we use the weak anisotropy assumption(Thomsen, 1986), the P-wave and
SV-wave phase velocity formula can be simplified by expanding the radical in a Taylor se-
ries and dropping the quadratic and higher terms of the anisotropy parameters ε and δ as

V 2
p (θ)

v2p0
= 1 + 2δsin2(θ)cos2(θ) + 2εsin4(θ),

V 2
s (θ)

v2p0
= 1− f + 2(ε− δ)sin2(θ)cos2(θ).

(3)

Alkhalifah (2000) obtained the acoustic wave equation for anisotropic VTI media by
setting the shear velocity along the symmetry axis to be zero from equation (1), which can
be written as

v2(θ)

v2p0
=

1

2
+ ε sin2 θ +

1

2

√(
1 + 2ε sin2 θ

)2 − 2(ε− δ)sin22θ, (4)

The dispersion relation for qP waves in 3D acoustic VTI media is thus written as

ω4 −
[
vh(k

2
x + k2y) + v2p0k

2
z

]
ω2 − v2p0(v2n − v2h)(k2x + k2y)k

2
z = 0, (5)

where, kx,ky and kz are wavenumbers in the x , y and z directions; ω is angular frequency;
vp0 is the vertical qP-wave velocity; By setting an auxiliary wavefield function q, Du et al.
(2008) derived the pseudo-acoustic wave equations as

∂2p

∂t2
= v2h(

∂2p

∂x2
+
∂2p

∂y2
) + v2p0

∂2q

∂z2
,

∂2q

∂t2
= v2n(

∂2p

∂x2
+
∂2p

∂y2
) + v2p0

∂2q

∂z2
.

(6)
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The first order SH wave equations are proposed in (Li et al., 2018), which can effec-
tively simulate the wavefield propagation in VTI media. Similarly, by introducing pseudo-
velocity components up, vp and wp of wavefield p and uq, vq and wq of wavefield q based on
the split-field technique (Chew and Weedon, 1994; Collino and Tsogka, 2001), the above
equation can be further manipulated into

∂p

∂t
= ρv2h(

∂up
∂x

+
∂vp
∂y

) + ρv2p0
∂wq
∂z

,

∂q

∂t
= ρv2n(

∂up
∂x

+
∂vp
∂y

) + ρv2p0
∂wq
∂z

,

∂up
∂t

=
1

ρ

∂p

∂x
,

∂uq
∂t

=
1

ρ

∂q

∂x
∂vp
∂t

=
1

ρ

∂p

∂y
,

∂vq
∂t

=
1

ρ

∂q

∂y
,

∂wp
∂t

=
1

ρ

∂p

∂z
,

∂wq
∂t

=
1

ρ

∂q

∂z
.

(7)

However, when we applied the first-order staggered grid PSTD method into the qP-wave
simulation, some unwanted energy traveling with a lower speed than the qP-wave can be
detected, which is shown in Figure (1). It was pointed out by Grechka et al. (2004) that this
unwanted signal is caused by the SV-component, because simply setting vs = 0 does not
mean the shear wave phase velocity will vanish in every direction in a VTI medium (Liu
et al., 2009). To avoid the undesired SV-wave energy, different approaches have recently
been proposed to model the pure P-wave mode.

An easy way is to surround the source with either isotropic or elliptically anisotropic
material (Duveneck et al., 2008). In this section, we will formulate a new set of qP and qSV
decoupled wave equation set to separate the two wave modes. Instead of setting Vs0 = 0
as Alkhalifah’s approximation, we reformulated equation (1) by expanding the square root
into the approximations for decoupled P and SV wave phase velocities

v2(θ)

v2p0
≈ 1 + ε sin2 θ + A ∗ F +B ∗ F 2 +O(F 3),

v2(θ)

v2p0
≈ 1− f + C ∗ F +D ∗ F 2 +O(F 3),

(8)

where,

F =
2(ε− δ) sin2 2θ

f(1 + 2ε sin2 θ
f

)2
(9)

A,B and C,D are the first and second order parameters of F after Taylor expansion,
respectively (in particular, A = −f+2ε sin2 θ

4
, C = f+2ε sin2 θ

4
, B = −f+2ε sin2 θ

16
, C =
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FIG. 1. qP-wave snapshot obtained by the first-order staggered grid PSTD method. The SV-wave
energy is detected in the middle of the snapshot.
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f+2ε sin2 θ
16

). O(F 3) are the residuals of the Taylor expansion. We further let F1 = (ε −
δ) sin2 2θ. If we keep the first order term, then the above equations can be further reformu-
lated into

v2(θ)

v2p0
= 1 + 2ε sin2 θ + A1 ∗ F1 +O(F 2),

v2(θ)

v2p0
= 1− f + C1 ∗ F1 +O(F 2),

(10)

where, A1 = − 1

2(1+ 2ε sin2 θ
f

)
and C1 = 1

2(1+ 2ε sin2 θ
f

)
.

To evaluate the accuracy of the above wave equations, the P-wave phase velocity ver-
sus phase angle using ε = 0.1, δ = −0.1; ε = 0.25, δ = 0.1; ε = 0.4, δ = 0.1 and
ε = 0.4, δ = 0.25 are plotted, as shown in Figure 2. Only some slight difference among
the curves can be detected. Alkhalifah’s formula is closest to the exact solution. The
accuracy of the new formula is higher than weak anisotropy approximation while sav-
ing considerable computational time compared with the AlkhalifahâĂŹs formula. The
above approximations work really well for the P- and SV-wave dispersion relations when
|F � 1|. The qSV-wave phase velocity versus phase angle for different Thomson’s pa-
rameter sets are also plotted in Figure (3), the comparison with the exact formula and weak
formula shows, both the new formula and the weak formula fit the exact formula in weak
anisotropic medium (Figure (3)(a)). With the increase of anisotropy, the precision for the
new qSV approximation is lower than that of the qP-wave approximated equation, however,
the precision of weak formula is the lowest.

Therefore, the above two new equations are to be used for decoupled qP- and qSV-
wave simulation. Based on relations sinθ = V (θ)kr

ω
and cosθ = V (θ)kz

ω
with k2r = k2x + k2y ,

where ω is the angular frequency, kx, ky, kz are spatial wavenumbers, equation (10) can be
expressed as

ω2 =
[
v2h(k

2
x + k2y) + v2p0k

2
z

]
+ 2A1(v2h − v2n)

(k2x + k2y)k
2
z

k2x + k2y + k2z
= 0,

ω2 =
[
v2p0(1− f)(k2x + k2y + k2z)

]
+ 2C1(v2h − v2n)

(k2x + k2y)k
2
z

k2x + k2y + k2z
= 0.

(11)

Multiplying both sides by wavefield p(ω, kx, ky, kz) in the Fourier domain and followed
by an inverse Fourier transform, and using the relation iω ↔ ∂

∂t
, the decoupled P wave

equation in time-domain is thus derived from equation (11) as

∂2p

∂t2
=

[
v2h(

∂2

∂x2
+

∂2

∂y2
) + v2p0

∂2

∂z2

]
p− (v2h − v2n)

1 + ε
(
∂2

∂x2
+

∂2

∂y2
)
∂2

∂z2
p

∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

,

∂2sv

∂t2
=

[
v2p0(1− f)(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
)

]
sv − 2

(v2h − v2n)

2 + ε
(
∂2

∂x2
+

∂2

∂y2
)
∂2

∂z2
sv

∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

,

(12)
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FIG. 2. P-wave phase velocities for a TI medium. In each graph, the green dashed line is the
Alkhalifah formula and the dashed blue line plots the P-wave phase velocity using weak formula,
the red line is the P-wave phase velocity with exact formula, and the black dashed line corresponds
to P-wave phase velocity with the new formula.The qP- and qSV-wave velocities of the medium are
3000m/s and 1500m/s in the direction parallel to the symmetry axis.Different Thomsen parameter
sets (a) ε = 0.1, δ = −0.1; (b) ε = 0.25, δ = 0.1; (c) ε = 0.4, δ = 0.1 and (d)ε = 0.4, δ = 0.25 are
used.
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FIG. 3. S-wave phase velocities for a TI medium. In each graph, the dashed blue line plots the
P-wave phase velocity using weak formula, the red line is the P-wave phase velocity with exact
formula, and the black dashed line corresponds to P-wave phase velocity with the new formula.The
qP- and qSV-wave velocities of the medium are 3000m/s and 1500m/s in the direction parallel to
the symmetry axis.Different Thomsen parameter sets (a) ε = 0.1, δ = −0.1; (b) ε = 0.25, δ = 0.1; (c)
ε = 0.4, δ = 0.1 and (d)ε = 0.4, δ = 0.25 are used.
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FIG. 4. Snapshots of qP-wave simulation using (a)equation (7) and (b) the new proposed wave
equation in a homogeneous VTI medium model. In (a), the SV energy is detected in the middle of
the snapshot.

To solve the above equations, we transform the equation set from space-time domain
into wave number-time domain as

∂2p

∂t2
=
[
v2h(k

2
x + k2y) + v2p0k

2
z

]
p− (v2h − v2n)

1 + ε

[
(k2x + k2y)

k2x + k2y + k2z

]
k2zp,

∂2sv

∂t2
=
[
v2p0(1− f)(k2x + k2y + k2z)

]
sv − 2

(v2h − v2n)

2 + ε

[
(k2x + k2y)

k2x + k2y + k2z

]
k2zsv,

(13)

We use the pseudospectral method (Fornberg, 1987) that has higher accuracy than lower
order finite-difference methods in spatial domain to simulate the wavefield propagation.
For the time iteration, a second order center finite difference is applied.

We compare the qP-wave simulation using the above new proposed wave equation with
equation (7) in a homogeneous VTI medium model, the snapshots are shown in Figure
(4). In Figure (4)(a), the snapshot is simulated by equation (7), in which, the SV energy is
detected in the middle of the snapshot. The snapshot shown in Figure (4)(b) is simulated
by equation (13), where the pure qP-wave is present without any SV energy.

We also plot the wave comparison at a certain point simulated by the above two equa-
tions, which is shown in Figure (5). The waveform in red is simulated by equation (7),
compared with the waveform in black simulated by equation (13), the second arrival at
about 0.32 s is the SV energy.

SECOND ORDER HPML IN WAVENUMBER DOMAIN

During the forward wavefield modeling, absorbing boundary layers should be added to
eliminate artifical boundary reflections when the wavefield propagates to boundaries of a
computational model. The hybrid PML (H-PML) method, that combines the advantages
of both the C-PML and the M-PML through the optimization of the damping profile, has
recently been proposed and proved to be efficient in both isotropic and anisotropic me-
dia(Li, et al., 2017). But this method is primarily designed for systems of first-order wave
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FIG. 5. Wave comparison at a certain point simulated by Zhou’s equations(Red) and the new
proposed approximation(Black)

equations and cannot be applied directly to second-order systems. Li (Li, et al., 2018, ac-
cepted by Pure and applied geophysics) applied the H-PML into the second order in time
displacement-stress wave equations, however, the H-PML is still implemented in the first
order spacial derivatives of the stress components.

In order to apply the H-PML into the PSTD wave equations with second order spacial
derivatives, we start the derivation based on Pasalic and McGarry (2010), in which a de-
tailed derivation of CPML for the second-order acoustic wave equation in space domain
are proposed, except the space domain are to be changed into wavenumber domain.

In the H-PML approach, the operators

∂

∂x̃
=

1

sx

∂

∂x
,

∂

∂ỹ
=

1

sy

∂

∂y
, and

∂

∂z̃
=

1

sz

∂

∂z
(14)

are introduced. The complex, frequency-shifted, stretched-coordinates sx, sy and sz are

sx = κx +
dx+mx/ydy+mx/zdz

αx+iω

sy = κy +
my/xdx+dy+my/zdz

αy+iω

sz = κz +
mz/xdx+mz/ydy+dz

αz+iω

, (15)

where κx, κy, and κz are real and ≥1, and where dx, dy, and dz are damping profiles,
ω is the angular frequency and αx, αy, and αz are assumed to be positive and real. The
additional damping profiles mi/j for i,j=(1, 2, 3), i 6= j, are weighting factors.

In wavenumber domain, the first-order Fourier derivative of a function u(x) can be
discretized over a finite grid of N points by Witte and Richards (1990)

Dxu(xi) = DFT−1

[
− jkxDFT [u(xi)]

]
, (16)

where j =
√
−1, and xi = i∆x, and i = 1, ..., N −1, with ∆x being the sampling interval.

The quantity kx = 2nπ/(N∆x) is the discrete wavenumber in the x direction. For even
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values of N , n should be chosen as −N/2 ≤ n ≤ N/2, where n = −N/2 corresponds to
the Nyquist wavenumber. For odd values of N , we choose −N/2 < n < N/2. In this case
the Nyquist wavenumber does not correspond to one of the grid points. The operators DFT
and DFT−1 are the forward and inverse discrete Fourier transforms, respectively.

Therefore, equations (14) can be expressed as

DFT−1

[
− jkx̃DFT

]
= 1

sx
DFT−1

[
− jkxDFT

]

DFT−1

[
− jkỹDFT

]
= 1

sy
DFT−1

[
− jkyDFT

]

DFT−1

[
− jkz̃DFT

]
= 1

sz
DFT−1

[
− jkzDFT

]
(17)

Using the recursive convolution algorithm deduced by Luebbers and Hunsberger (1992),
the operator in equation (17) may therefore be written as

DFT−1

[
− jkx̃DFT

]
= 1

κx
DFT−1

[
− jkxDFT

]
+ ψx

DFT−1

[
− jkỹDFT

]
= 1

κy
DFT−1

[
− jkyDFT

]
+ ψy

DFT−1

[
− jkz̃DFT

]
= 1

κz
DFT−1

[
− jkzDFT

]
+ ψz

(18)

where(we take ψx as an example) ψx is a memory variable updated at each time step n:

ψnx = bxψ
n−1
x + cx(∂x)

n− 1
2 , (19)

in which

bx = exp

[
−
(
dx +mx/ydy +mx/zdz

κx + αx

)
4t
]

cx =

[
dx +mx/ydy +mx/zdz

κx
(
dx +mx/ydy +mx/zdz

)
+ κxαx

]
(bx − 1)

. (20)

Introducing new auxiliary variables φx, φy, φz, the second order spatial derivatives in
terms of the first-order derivatives can be rewritten as (Pasalic and McGarry, 2010)

DFT−1

[
(−jkx̃).2DFT

]
= 1

κx
DFT−1

[
− jkxDFT

(
1
κx

DFT−1(−jkxDFT) + ψx

)]
+ φx,

(21)
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FIG. 6. Snapshots obtained by different boundary conditions at two propagation time. When there
is no ABC layers, the boundary reflections are the strongest. The M-PML and H-PML can effectively
eliminate the boundary reflections, whereas the C-PML still suffers from boundary reflections.

in wavenumber domain, where

φx = bxφ
n−1
x + cx

(
1

κx
DFT−1

[
(−jkx)2DFT

](n− 1
2
)

+
∂ψ

(n− 1
2
)

x

∂x

)
, (22)

We perform a numerical experiment on a VTI medium, whose spatial grid interval is
15m, and the grid number of the physical area is 151× 151. The source is a Ricker wavelet
with a dominant frequency of 20 Hz. To make a comparison, we compare boundary re-
flections using different PMLs: the C-PML, M-PML, the new proposed H-PML and no
boundary layers. A total number of 15 boundary reflection layers are added at each side
of the physical model. Figure (6) shows the snapshots obtained by different boundary con-
ditions at two propagation time. When there is no absorbing boundary condition(ABC)
layers, the boundary reflections are the strongest. For the M-PML and C-PML, as is dis-
cussed in (Li et al., 2017), the M-PML can effectively eliminate the boundary reflections
in VTI media as H-PML, but the C-PML suffers from the boundary reflections, shown in
Figure (6).

NUMERICAL EXPERIMENTS

In this section, we present several numerical examples whose purpose is to validate and
verify important features of the combination of H-PML and PSM used for qP- and qSV-
wave simulation developed in the previous sections.
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FIG. 7. The normalized qP-(Upper row) and qSV-(lower row) wavefield snapshots for a two-layer
model.The qP- and qSV- wave have been separated completely. And the H-PML eliminates the
boundary reflections when the wave travels to the boundaries.

Two-layer model

We make use of a two-layer medium to carry out benchmarking. The computational
grid is 441 × 441 with grid spacing 4x = 4z = 15m, including a H-PML of 20 grid
points beyond each computational boundary. Waves are initiated with a Ricker wavelet
whose central frequency is f0 = 20Hz. We select the time step 4t = 1 × 10−4s.
The vertical p-wave velocity vp0 and sv-wave velocity vs0 are 3000m/s, 1700m/s and
4000m/s, 2300m/s in first and second layer, respectively. The Thomsen parameters ε
and δ are ε = 0.4, δ = 0.25 and ε = 0.25, δ = 0.1 in first and second layer, respectively.
The total simulation time is 1.5s. As is shown in Figure (7), the upper snapshots are the
decoupled qP wavefield propagation with the increase of the time; and the lower snapshots
are the decoupled qSV wavefield. The qP and qSV-wave are separated completely. When
the propagation time is 1.2s, no boundary reflections are detected in the qP-wave snapshot.

In Figure (8), shot gathers of qP- and qSV-wave are also illustrated, respectively. With
a total recording time of 1.5s, besides the qP-and qSV-direct waves, the qP-reflection wave
is also detected in qP-wave shot gathers. For the qSV-wave, because the velocity is smaller
than the qP-wave, no reflection energy is recorded.

Thrust fault model

A heterogeneous anisotropic model with complicated thrust faults is used to examine
the stability of the new scheme. The model is 2000m × 2500m with a grid of 400 × 500.
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FIG. 8. Shot gathers of qP- and qSV-wave with a total recording time of 1.5s.
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FIG. 9. The normalized qP-(Upper row) and qSV-(lower row) wavefield snapshots.The decoupled
qP- and qSV- wave doesn’t interfere with each other and no wrap-around, GibbsâĂŹ phenomena
are detected

The first layer of the model is isotropic, with P-wave and S-wave velocities at 2400m/s and
1280m/s respectively. The vertical P-wave velocity of the model ranges from 2400 m/s in
first layer to 6000 m/s in the bottom layer. The source is located upper middle of the model
and emits a Ricker wavelet with dominant frequency of 20Hz. The space and time interval
used in this model are 5m and 0.1 ms respectively.

In Figures (9) the normalized qP- and qSV- wavefield snapshots are plotted in the
upper and lower planes, respectively. As time evolves, the decoupled qP- and qSV- wave
passes from the isotropic regions of the model into the anisotropic layered regions without
generating wrap-around errors. No evidence of GibbsâĂŹ phenomena appears. And when
the qP wave travels to the boundaries, there is no boundary reflections.

DISCUSSION AND CONCLUSIONS

A new approximation of decoupled qP- and qSV-wave equation set has been proposed,
which appears to separate the qP-wave completely from the qSV-wave. The approximated
qP- and qSV-phase velocities with different phase angle are illustrated and comapred with
some other methods. Compared with equations with higher accurancy, the new equation set
doesn’t have to deal with the high order wavenumber, which increases the computational
cost and the complexity of the wave equations.

In order to eliminate the wrap-around effect and boundary reflections, the H-PML is
modified to be applicable for the new decoupled wave equations, which are basically com-
posed of second-order wave number parameters. Numerical comparisons between H-PML,
C-PML and M-PML in the second-order wavenumber domain are illustrated and verifies
the effectiveness of the H-PML for the new approximation.

Finally, some numerical examples are illustrated, where, the qP- and qSV-wave are
separated completely. This new scheme is inspired by previous study on the SH amplitude
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in borehole environment, a more detailed study on migration and full waveform inversion
using this new scheme will be our further work after some benchmarks. Nevertheless, it
should also be noticed that the displacement components as well as the velocity component
are measured by the new proposed method, which can be directly used for full waveform
inversion.
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