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ABSTRACT

The problem of seismic wave scattering from anisotropic and attenuative inclusions is analyzed
within the mathematical framework of the Born approximation. Specifically, a Born scattering
model is used to extract scattering potentials, which generalize linearized reflection coefficients
and sensitivity kernels, and which in the latter form are a basis for multi-parameter seismic full
waveform inversion (FWI) updates. To derive the scattering potentials, a point scatterer comprising
a perturbation in each medium property is inserted in a homogeneous isotropic background. The
amplitudes, or scattering radiation patterns, associated with incoming and outgoing wave vector
pairs provide the weights used to simultaneously invert for viscoelastic and anisotropic medium
properties. Analysis of the angle-dependence of the scattering patterns provide qualitative and
quantitative insight into inter-parameter trade-offs and cross-talk. We explicitly derive scattering
potentials for elastic and viscoelastic P-to-P, P-to-SV and P-to-SH waves in a weak anisotropic,
low-loss viscoelastic orthorhombic media. We assume the background or reference medium to
be either isotropic-elastic or isotropic-viscoelastic. The results generalize reflection coefficient
expressions derived from linearization of exact solutions of the Zoeppritz equation for transversely
isotropic viscoelastic media with both vertical (VTI) and horizontal (HTI) axes of symmetry.

INTRODUCTION

The Born approximation is a mathematical framework within which a linearized relationship
can be determined between scattered seismic wave fields and the perturbations in medium proper-
ties which cause the scattering. Amongst its applications, it provides the sensitivity expressions by
which seismic full waveform inversion (FWI) determines simultaneous variations in multiple pa-
rameters. Sensitivity, or parameter-resolution, analysis is a key step in determining optimal model
parametrization (Gholami et al., 2013b,a), especially in the context of multiparameter updates (Oh
and Alkhalifah, 2016a,b; Masmoudi and Alkhalifah, 2016). Some of the earliest discussions of
multiparameter FWI predicted that model parameterizations could aggravate or suppress density
artifacts (Tarantola, 1986), and in recent field data studies of elastic FWI, slightly different param-
eterization choices have been shown to lead variously to unambiguous reservoir model estimates
which are consistent with rock physics models, or to noisy and un-interpretable results (Pan et al.,
2018).

In an isotropic elastic earth model a range of types of parameterization is available, principally
involving combinations of density with P and S velocities, P and S impedances or elastic moduli. A
study of the radiation patterns induced by each of these models of parameters provide some insights
on the most suitable subsurface parameterization for FWI. Recently the influence of the model
parameterization on teleseismic FWI for lithospheric imaging has been investigated by Beller et
al Beller et al. (2017). Based on the analysis of scattering radiation patterns they concluded that
the density model recovered from elastic modulus based parameterization is resolved better than
the P and S velocity model and the density model recovered from P and S wave impedances,
which are much smoother. Born scattering and FWI model parameterization analyses focusing
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on anisotropic media are typically carried out in the acoustic approximation (Plessix and Rynja,
2010; Plessix and Cao, 2011; Masmoudi and Alkhalifah, 2016). In elastic anisotropic media, the
sensitivity of the FWI objective function with respect to model parameters for Vertical Transverse
Isotropic (VTI) media was analyzed by Kamath and Tsvankin Kamath and Tsvankin (2016). To
understand the possible leakage and trade off between the model parameters when the seismic
data mainly contain reflection data from horizontal layers, He and Plessix He and Plessix (2017)
investigated parameterization selection for compressional body waves in elastic VTI media.

For the case of a viscoelastic background, there are three main types of waves, classified by
Borcherdt Borcherdt (2009) as P-wave, S-type I (SI) and S-type II (SII) waves. The polarization
and slowness vectors for viscoelastic waves are complex, which in turn lead to complex scatter-
ing potentials. Within the Born approximation, the problem of scattering of viscoelastic seismic
waves by heterogeneities in both isotropic and anisotropic viscoelastic media has been investigated
(Moradi and Innanen, 2015, 2017).

In a series of paper by Bakulin, the seismic characterization of naturally fractured reservoirs
was investigated in various types of anisotropic media, including single vertical fracture systems
within an isotropic background rock (HTI media)(Bakulin et al., 2000a), two orthogonal fracture
sets in an isotropic host rock (orthorhombic media)(Bakulin et al., 2000b), and media with two
nonorthogonal sets of rotationally invariant fractures (monoclinic media)(Bakulin et al., 2000c).
Fracture characterization of this kind plays a significant role in determining fluid flow during hy-
drocarbon production (Far, 2011; Far et al., 2013a; Chen et al., 2018). The effects of natural frac-
tures on azimuthal variations in reflected compressional wave-to-compressional wave (hereafter
PP) data has been extensively investigated, for fractured gas sands (Sayers and Rickett, 1997),
and reservoirs containing multiple fracture sets (Sayers and Dean, 2001) and non-orthogonal frac-
ture sets (Sayers, 2009; Far et al., 2013b). It has been shown that reflection amplitude variations
with offset and azimuth for converted PS-waves can reveal more information relevant to reservoir
characterization than does the PP-wave reflection amplitudes (Far and Hardage, 2016).

Amplitude variation with offset (AVO) and amplitude-variation-with-azimuth (AVAz) are broadly
applied seismic amplitude analysis techniques applied in quantitative reservoir characterization,
parameter imaging and migration/inversion (Tsvankin et al., 2010; Castagna and Backus, 1993).
The generalization of the AVO equations to encompass volume/point scattering (Stolt and Weglein,
2012) connects them, furthermore, to multi-parameter sensitivity calculations in full waveform in-
version, or FWI (Innanen, 2014). The management and use of seismic attenuation in both AVO-
AVAz (Chapman et al., 2006; Innanen, 2011; Wu et al., 2014; Behura and Tsvankin, 2009; Chen
et al., 2018) and elastic-anisotropic FWI (Burridge et al., 1998; Causse et al., 1999; Charara et al.,
2000; Pan et al., 2016, 2017; Fichtner, 2010; Fichtner and van Driel, 2014; Hak and Mulder, 2011;
Métivier et al., 2015; da Silva et al., 2016; Yang et al., 2016; Kamei and Pratt, 2013; Keating and
Innanen, 2017) is an important and complicating issue. Media which exhibit both viscoelastic and
anisotropic features simultaneously are significantly more challenging to quantitatively describe
than their elastic-anisotropic counterparts, and are only beginning to receive attention (Carcione
et al., 1998; Bai and Tsvankin, 2016; Bai et al., 2017).

The research summarized in this paper is part of an effort to derive interpretable and useable
formulas for both AVO-AVAz and full waveform inversion (FWI) sensitivity analysis, in the pres-
ence of anisotropy and attenuation. The FWI and AVO goals can be accomplished more or less
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simultaneously because of the close connections that can be found between linearized reflection
coefficients, e.g., the Aki-Richards approximation (Aki and Richards, 2002), scattering potentials
(Stolt and Weglein, 2012), and FWI sensitivity kernels (Tarantola, 1986; Fichtner, 2010). The
problem of volume scattering from viscoelastic-anisotropic inclusions alone is of interest, and
contains some almost entirely unexplored features, but it lends itself well to the double task of
AVO/FWI sensitivity determination. We begin by setting up a scattering framework to describe the
interaction of seismic waves with arbitrary perturbations in viscoelastic orthorhombic media. We
consider two cases. First, we assume that the reference wave field propagates in an isotropic-elastic
background medium, and is scattered by general viscoelastic-orthorhombic perturbations. The pla-
nar interface/specular reflection analog of this involves an isotropic-elastic upper half-space and
an orthorhombic lower half-space. Second, we assume that the background medium is isotropic-
viscoelastic, and that waves scatter from viscoelastic-orthorhombic perturbations. In both cases we
analytically examine the relationship between the scattering potentials and the results of lineariza-
tion of the exact anisotropic-viscoelastic Zoeppritz equations. We show that the former reduce to
the latter.

VISCOELASTIC ORTHORHOMBIC MEDIA

The most common model of orthorhombic symmetry involves parallel vertical fractures em-
bedded in a vertical transversely isotropic (VTI) background. The stiffness matrix for an elastic
orthorhombic medium has six diagonal element Cii, i = 1, 2, ..., 6 and three off diagonal elements
C12, C13 and C23. If the medium is attenuative, the stiffness tensor is complex, with an imagi-
nary part related to attenuation. The imaginary part is parameterized by a set of quality factors,
Qij = Cij/C

Im
ij , whereCij andCIm

ij are real and imaginary parts of the stiffness tensor components;
each independent component of the stiffness tensor has a corresponding quality factor. Which, and
how many, of these parameters can be practically constrained in FWI or AVO settings is presently
unclear. But, in both cases, quantification of scattering, whether from point or planar perturbations,
is the first step in providing answers to such questions. The most useful parameterization is based
on the assumption of weak-anisotropy. The real part of the stiffness tensor is characterized by P-
and S-wave velocities and seven Thomsen parameters, and the imaginary part by P- and S-wave
quality factors and seven Q-dependent anisotropic parameters (Appendix ). Thomsen Thomsen
(1986) originally defined three parameters to characterize weakly-anisotropic media with a verti-
cal or horizontal axis of symmetry. These parameters vanish in isotropic media as the result of the
symmetry of the stiffness tensor. For orthorhombic media with symmetries in x-z and y-z planes,
the anisotropy is analogously characterized by seven dimensionless parameters. These parameters
reduce to the original three in the VTI/HTI limiting case (Tsvankin, 1997). Ultimately, the stiffness
tensor components are defined in terms of anisotropic parameters as
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C22 = C33

(
1 + 2ε(1)

)
,

C11 = C33

(
1 + 2ε(2)

)
,

C66 =
1

2
(C55 + C44) + γ(1)C55 + γ(2)C44,

C23 =
√

2δ(1)C33(C33 − C44) + (C33 − C44)2 − C44 ≈ C33

(
1 + δ(1)

)
− 2C44,

C13 =
√

2δ(2)C33(C33 − C55) + (C33 − C55)2 − C55 ≈ C33

(
1 + δ(2)

)
− 2C55,

C12 =
√

2δ(3)C11(C11 − C66) + (C11 − C66)2 − C66 ≈ C11

(
1 + δ(3)

)
− 2C66.

(1)

Where we have linearized C23, C13 and C12 respectively in terms of anisotropic parameters δ(1),
δ(2) and δ(3) based on the assumption of weak anisotropy. In attenuative media, the same definitions
apply, but with the Cij replaced by complex Ĉij . Here the Thomsen parameters are complex with
real and imaginary parts connected to what are referred to as the anisotropic-viscoelastic Thomsen
parameters (Appendix ).

SCATTERING POTENTIALS

The main assumption behind the Born approximation states that the actual medium where the
wave propagates in it, slightly differs from a homogeneous background medium. The difference
between the actual and background media represents the small perturbations of the medium. An
elastic homogeneous model of background medium is characterized by its density ρ0 and its stiff-
ness tensor C(0)

ijkl, such that the actual medium properties can be written as

ρ = ρ0 + ∆ρ, (2)

Cijkl = C
(0)
ijkl + ∆Cijkl. (3)

The Born approximation assumption is equivalent to ∆ρ� ρ, ρ0 and ∆Cijkl � C
(0)
ijkl, Cijkl. Wave

propagation is described by the Green’s function or propagator. The scattered wave, which is the
difference between the waves propagating in the background and perturbed media, is expanded as
a series. The first term of the series describes the sum of all instances of single scattering from the
tensor potential. The scattered wave field can be expressed as the quantity scattering potential S
(Beylkin and Burridge, 1990)(Appendix )

S = (S · I)
∆ρ

ρ0
− ηmn

∆Cmn
ρ0

= (S · I)
∆ρ

ρ0
− (SikSc

j IkkIn
l )

∆Cijkl
ρ0

, (4)

where S and I are the scattered and incident polarizations, and kSc and kIn are the scattered and
incident slowness vectors emerging from the application of the derivatives in equation (44) to the
Green functions. In addition, m = ij and n = kl are the Voigt indices, with 11 → 1, 22 →
2, 33 → 3, (23, 32) → 4, (13, 31) → 5, (12, 21) → 6. Figure 1a illustrates the geometry of
the point scattering at location x inserted in a homogeneous background medium. The source is
positioned at a location xs, and the receiver is located at xr above the scatter point. The vector kIn

is the slowness vector that is tangent to the ray connecting the source point xs to the scatter point x,
whereas kSc is the vector that is tangent to the ray connecting the scatter point to the receiver point
xr. The incident (scattered) angle θIn (θSc) is defined as an angle between the incident(scattered)
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slowness vector kIn(kSc) and k = kIn − kSc. The sum of incident and scattered angles is called
opening angle or scattering angle. Two slowness vectors kIn and kSc define a scattering plane that
makes the azimuth angle ϕ with respect to the x-axis.

The derivation of scattering potential is given in Appendix . To expose the effects of anisotropy
on radiation patterns, we express the perturbation in the stiffness tensor in terms of the perturba-
tions in both viscoelastic and anisotropic parameters. In the case of a background medium that is
isotropic and elastic, we have

∆C11 = ∆C33 + 2C
(0)
33 ε

(2),

∆C22 = ∆C33 + 2C
(0)
33 ε

(1),

∆C66 =
1

2
(∆C55 + ∆C44) + C

(0)
55

[
γ(1) + γ(2)

]
,

∆C23 = ∆C33 − 2∆C44 + C
(0)
33 δ

(1),

∆C13 = ∆C33 − 2∆C55 + C
(0)
33 δ

(2),

∆C12 = ∆C33 − (∆C55 + ∆C44) + C
(0)
33

[
δ(3) + 2ε(2)

]
− 2C

(0)
55

[
γ(1) + γ(2)

]
.

(5)

Figure 1a illustrate the configuration of the two model parametrization for orthorhombic me-
dia. Each model is decomposed into a background medium with scattering points. One model
parametrization is based on the stiffness tensor and the other based on the anisotropic Thomsen
parameters. In this paper, we consider a homogeneous isotropic background such that the pertur-
bations in anisotropic parameters are the anisotropic Thomsen parameters in actual medium. This
assumption makes our analysis more simpler since we can use the isotropic slowness and polariza-
tion vectors rather than their complicated counterparts in anisotropic media. Inserting equation (5)
into equation (4), we obtain the general form of the scattering potential

S =[ρ]
∆ρ

ρ0
− [C33]

∆C33

ρ0
− [C44]

∆C44

ρ0
− [C55]

∆C55

ρ0

− [γ(1)]γ(1) − [γ(2)]γ(2) − [ε(1)]ε(1) − [ε(2)]ε(2) − [δ(1)]δ(1) − [δ(2)]δ(2) − [δ(3)]δ(3).

(6)

Where the straight bracket [...] denotes the sensitivity of scattering potential to each parameter
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FIG. 1. a) Schematic description of Born scattering. Background medium is characterized by ρ0 and
C

(0)
ijkl; x is the location of the scatter point; xs and xr respectively are the location of source and receiver;

kIn is the slowness vector for incident ray and kSc slowness vector for scattered ray; k, is the difference
of incident and scattered slowness vectors and these three vectors define the scattering plane; θIn, the
angle between kIn and k is incident angle; θSc, the angle between kSc and k is the scattered angle; angle
between kSc and k is scattered angle, σ, the angle between kIn and kSc is the opening angle. The bottom
of Figure a is the schematic illustration of breakdown of the orthorhombic media into isotropic background
medium and differences in medium properties for Thomsen (top) and stiffness tensor model parametrization
(bottom). b) Viscoelastic orthorhombic volume scattering model. PIn is the incident propagation vector; PSc

is the reflected(scattered) propagation vector; AIn is the incident attenuation vector; ASc is the scattered
attenuation vector; δIn is the incident attenuation angle and δSc is the scattered attenuation angle.
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[ρ] =S · I,
[C33] =(S · kSc)(I · kIn),

[C55] =− (S1kSc
1 I2kIn

2 + S2kSc
2 I1kIn

1 )− 2(S1kSc
1 I3kIn

3 + S3kSc
3 I1kIn

1 )

+ (S1kSc
3 + S3kSc

1 )(I1kIn
3 + I3kIn

1 ),+
1

2
(S1kSc

2 + S2kSc
1 )(I1kIn

2 + I2kIn
1 )

[C44] =− (S1kSc
1 I2kIn

2 + S2kSc
2 I1kIn

1 )− 2(S2kSc
2 I3kIn

3 + S3kSc
3 I2kIn

2 )

+ (S2kSc
3 + S3kSc

2 )(I2kIn
3 + I3kIn

2 ) +
1

2
(S1kSc

2 + S2kSc
1 )(I1kIn

2 + I2kIn
1 ),

[γ(1)] =[γ(2)] = V2
S0

[
(S1kSc

2 + S2kSc
1 )(I1kIn

2 + I2kIn
1 )− 2S1kSc

1 I2kIn
2 − 2S2kSc

2 I1kIn
1

]
,

[ε(1)] =2V2
P0S2kSc

2 I2kIn
2 ,

[ε(2)] =2V2
P0

(
S1kSc

1 I1kIn
1 + S1kSc

1 I2kIn
2 + S2kSc

2 I1kIn
1

)
,

[δ(1)] =V2
P0

(
S2kSc

2 I3kIn
3 + S3kSc

3 I2kIn
2

)
,

[δ(2)] =V2
P0

(
S1kSc

1 I3kIn
3 + S3kSc

3 I1kIn
1

)
,

[δ(3)] =V2
P0

(
S1kSc

1 I2kIn
2 + S2kSc

2 I1kIn
1

)
.

(7)

Since anisotropy is assumed to be week, the difference in C44 reduces to

∆C44 ≈ ∆C55 + 2C
(0)
55

(
γ(1) − γ(2)

)
. (8)

This then generalises the previous expression of scattering potential in equation (6) in terms of the
perturbations in density, velocity and anisotropic parameters

S = {[ρ]− [C33]− [C44]− [C55]}
∆ρ

ρ0
− 2[C33]

∆VP
VP0

− 2([C44] + [C55])
∆VS
VS0

−
{

[γ(1)] + 2V 2
S0[C44]

}
γ(1) −

{
[γ(2)]− 2V 2

S0[C44]
}
γ(2)

− [ε(1)]ε(1) − [ε(2)]ε(2) − [δ(1)]δ(1) − [δ(2)]δ(2) − [δ(3)]δ(3).

(9)

As anisotropy vanishes, the above equation reduces to the scattering potential for an elastic
wave traveling in an isotropic elastic medium interacting with perturbations in density and P- and
S-wave velocities (Stolt and Weglein, 2012). We have now seen that it is not too hard to measure
the sensitivity of the scatter wave to the changes in anisotropic parameters. This simplicity and
the high efficiency are the main reasons why Born approximation appear more attractive than the
approach based on the solution of the Zoeppritz equation.

Scattering of P-wave to P-wave

First we restrict ourselves to the case of isotropic elastic background filled with perturbations
in both elastic and anisotropic properties. The perturbations in isotropic parameters that cause
scattering are, then, fractional changes in density ∆ρ/ρ = (ρ−ρ0)/ρ, P-wave velocity ∆VP/VP =
(VP − VP0)/VP and S-wave velocity ∆VS/VS = (VS − VS0)/VS. Because the background medium
is isotropic, the anisotropic parameters themselves act as perturbations. The angle between the
incident and scattered wavefield, referred to as the opening angle, is denoted by σPP = 2θP. From
the results that we obtained in previous section, it follows that the elastic scattering potential for

CREWES Research Report — Volume 30 (2018) 7



PP-wave is given by SE
PP = SIE

PP+SEA
PP where the isotropic-elastic (IE) and anisotropic-elastic (AE)

parts are

SIE
PP =− (1 + cos σPP − 2V 2

SP sin2 σPP)Aρ − 2AVP + 4V 2
SP sin2 σPPAVS ,

SAE
PP =

[
4V 2

SP cos2 ϕ(γ(1) − γ(2))− 2−1(sin2 ϕδ(1) + cos2 ϕδ(2))
]

sin2 σPP

− 2
[
cos2 ϕ sin2 ϕδ(3) + sin4 ϕε(1) +

(
cos2 ϕ+ cos2 ϕ sin2 ϕ

)
ε(2)
]

sin4 σPP
2
.

(10)

Here Aρ is the fractional perturbation in density, AVP is the fractional perturbation in the P-wave
velocity, AVS is the fractional perturbation in the S-wave velocity and VSP = VS0/VP0. It is appar-
ent that: (1) the anisotropic parameters do not influence the scattered wave for a vertically-incident
wave (σPP = 0), and (2) to recover the isotropic scattering potential, one may set the anisotropic
parameters to zero.

By inspection of (10), the scattered wave is observed to be sensitive to the difference γ(S) =
γ(1) − γ(2) rather than γ(1) and γ(2) individually. For VTI media, ε(1) = ε(2) = ε, δ(1) = δ(2) = δ
and γ(S) = δ(3) = 0, and as a result the anisotropic part of the scattering potential reduces to
(Moradi and Innanen, 2017)

SAE
PP,VTI = −2 sin2 σPP

2
δ − 2 sin4 σPP

2
(ε− δ). (11)

In fact, for small angles of incidence, the second term is negligible compared to the first term, that
is, the effect of δ dominates over that of ε. For HTI media, ε(1) = 0, ε(2) = ε(V ), δ(1) = δ(2) = δ(V )

and γ(S) = γ, δ(1) = 0, δ(2) = δ(V ) and δ(3) = δ(V ) − 2ε(V ) (Tsvankin, 1997, 1996) so the
anisotropic part of the scattering potential reduces to

SEA
PP,HTI =2−2 sin2 σPP cos2 ϕ

[
8V 2

SPγ − δ(V )
]
− 2 cos2 ϕ

[
sin2 ϕδ(V ) + cos2 ϕε(V )

]
sin4 σPP

2
.

(12)
Figure 2 shows the radiation patterns generated by anisotropic parameters inserted in an isotropic
background as a function of the scattering angles for different azimuth angle.

Each plot is labeled by the corresponding anisotropic parameter which generate the radiation
pattern. In all plots, the scatter point is placed at the center of origin. To determine how azimuth
angle affect the radiation pattern, we plot the scattering potentials for different values of azimuth
angle. Anisotropic parameter δ(3) has small influence on the radiation pattern and its influence for
azimuth angles 0◦ and 90◦ goes to zero. Although the radiation patterns generated by δ(1) and δ(2)

are similar, they behave differently for different values of azimuth angles.

We have thus far considered only an elastic background. Let us now explicitly include the vis-
coelastic component of the stiffness tensor components. In Figure 1b, a viscoelastic-orthorhombic
medium broken up into an isotropic-viscoelastic background medium with perturbations in both
viscoelastic and anisotropic parameters, is illustrated. Perturbations in isotropic parameters, as in
the non-attenuating cases, are expressed in terms of fractional changes in density, and P- and S-
wave velocities, but now additionally with P- and S-wave quality factors; perturbations in anisotropic
parameters are the values of anisotropic and viscoelastic-anisotropic parameters of the actual
medium. A key aspect of the viscoelastic extension of the scattering potential is the inclusion of
the attenuation angle, which is the angle between the propagation and attenuation vectors (Figure
1b).
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FIG. 2. P-to-P radiation patterns induced by anisotropic parameters versus opening angle σPP = 2θP for
different values of azimuth angles ϕ = 0◦, 30◦, 45◦ and 90◦. The six anisotropic Thomsen parameters are
placed into the homogeneous isotropic background with VSP = VS0/VP0 = 1/2. All plots in this figure are
plotted at the same scale.
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FIG. 3. Inhomogeneous part of the P-to-P scattering potential induced by anisotropic parameters ver-
sus opening angle σPP = 2θP for different values of azimuth angles ϕ = 0◦, 30◦, 45◦ and 90◦. The six
anisotropic Thomsen parameters are placed into the homogeneous isotropic background medium with
VSP = VS0/VP0 = 1/2, QP0 = 10 and QS0 = 8. All plots in this figure are plotted at the same scale.
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The anelasticity of the medium supports two classes of waves: those with parallel propagation
and attenuation vectors, called homogeneous waves, and those with a non-zero angle between the
attenuation and propagation vectors, called inhomogeneous waves. For a homogeneous incident
wave we furthermore have SPP = SE

PP + iSH
PP, where SH

PP is the contribution of the anelasticity
to the scattering potential (superscript H refers to the homogeneity of the incident wave). This
contribution is, in detail,

SH
PP =2(Q−1

S0 −Q−1
P0)V 2

SP sin2 σPP(Aρ + 2AVS) + Q−1
P0AQP

− 2Q−1
S0 V

2
SP sin2 σPPAQS

+ 2Q−1
S0 V

2
SP sin2 σPP cos2 ϕ(γ

(1)
Q − γ

(2)
Q )−Q−1

P0 sin2 σPP
2

cos2
σPP
2

(sin2 ϕδ
(1)
Q + cos2 ϕδ

(2)
Q )

−Q−1
P0 sin4 σPP

2

[
cos2 ϕ sin2 ϕδ

(3)
Q + sin4 ϕε

(1)
Q +

(
cos2 ϕ+ cos2 ϕ sin2 ϕ

)
ε
(2)
Q

]
.

(13)
For incident inhomogeneous wave, scattering potential is given by SPP = SE

PP + iSH
PP + iSIH

PP,
where contribution of the inhomogeneity of the wave is

SIH
PP = Q−1

P0 tan δP(sinσPP + V 2
SP sin 2σPP)Aρ + 4V 2

SP sin 2σPPAVS ,

+ Q−1
P0 tan δP

[
4V 2

SP cos2 ϕγ(S) − 2−1(sin2 ϕδ(1) + cos2 ϕδ(2))
]

sin 2σPP

− 2Q−1
P0 tan δP

[
cos2 ϕ sin2 ϕδ(3) + sin4 ϕε(1) +

(
cos2 ϕ+ cos2 ϕ sin2 ϕ

)
ε(2)
]

sin2 σPP
2

sinσPP.

(14)
Where δP = δInP = δScP is the attenuation angle for either incident or scattered waves. Equation (14)
is a function of the fractional change in S-wave velocity, the fractional change in density, and only
the non attenuative Thomsen parameters. It is evident that the non attenuative Thomsen parameters
influence the imagionary part of the scattering potentials only for inhomogeneous waves. Figure 3
shows the radiation pattern associated with the Thomsen parameters for inhomogeneous incident
P-wave. In this figure six Thomsen parameters are inserted in an isotropic viscoelastic background.

Scattering of P-wave to SV-wave

Similar to the P-to-P case, first we consider to the non-attenuative anisotropic medium, and
then refine our model by including attenuation as well as inhomogeneity of the wave. Since
the background medium is isotropic the scattering potential for converted PSV-wave is given by
SE
PSV = SIE

PS + SAE
PS , with the isotropic part

SIE
PSV = [sin(θP + θS) + sin 2(θP + θS)VSP]Aρ + 2VSP sin 2(θP + θS)AVS ,

and anisotropic part

SAE
PS = [sin 2(θP + θS)] NPSV1 + [sin θS cos θS] NPSV2 +

[
sin2 θP sin θS cos θS

]
NPSV3,

characterized by azimuth dependent coefficients NPS1, NPS2 and NPS3

NPSV1 =2VSP sin2 ϕγ(S),

NPSV2 =− VPS(sin2 ϕδ(1) + cos2 ϕδ(2)),

NPSV3 =2VPS

[
(sin2 ϕδ(1) + cos2 ϕδ(2))− sin2 ϕ cos2 ϕδ(3)

]
− 2VPS

[
sin4 ϕε(1) +

(
cos4 ϕ+ 2 cos2 ϕ sin2 ϕ

)
ε(2)
]
,
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FIG. 4. P-to-SV radiation patterns induced by anisotropic parameters versus opening angle σPS = (θP +θS)
for different values of azimuth angles ϕ = 0◦, 30◦, 45◦ and 90◦. The six anisotropic Thomsen parameters
are placed into the homogeneous isotropic background with VSP = VS0/VP0 = 1/2. All plots in this figure
are plotted at the same scale.
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FIG. 5. P-to-SH radiation patterns induced by anisotropic parameters versus opening angle σPS = (θP +θS)
for different values of azimuth angles ϕ = 15◦, 22◦, 30◦ and 45◦. The six anisotropic Thomsen parameters
are placed into the homogeneous isotropic background with VSP = VS0/VP0 = 1/2. All plots in this figure
are plotted at the same scale.

where VPS = VP0/VS0. We can see that the isotropic-elastic part of the scattering potential is a
function of opening angle between the incident P-waveand scattered SV-wave number, i.e. (θP +
θS), however for the anisotropic part only γ(S) term varies with opening angle. For incident and
scattered waves in opposite directions, where the opening angle is zero, scattering potential is
sensitive only to the changes in δ and ε parameters. For a VTI media, the scattering potential
reduces to (Moradi and Innanen, 2017)

SVTI
PSV = SIE

PSV − VPSδ [sin θS cos θS] + 2VPS(δ − ε)
[
sin2 θP sin θS cos θS

]
. (15)

As it is expected no dependency to the azimuth angle for VTI scattering potential, however for
HTI media the scattering potential is azimuth dependent

SHTI
PSV = SIE

PSV + 2VSP sin2 ϕγ [sin 2(θP + θS)]− VPS cos2 ϕδ(V ) [sin θS cos θS]

+ 2VPS cos4 ϕ(δ(V ) − ε(V ))
[
sin2 θP sin θS cos θS

]
.

(16)
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Figure (4) shows the radiation patterns generated by the six anisotropic scatter points inserted in an
isotropic elastic background. Similar to the PP scattering potentials parameter δ(3) has the minimal
infeluence on the scattering potential. The effect of attenuation of medium and inhomogeneity of
the wave will be analysed in the next section when we discussed the AVO/Az for converted wave
scattering.

Scattering of P-wave to SH-wave

The P-SH converted wave occurs at the anisotropic media when the axis of symmetry is not
vertical everywhere. This kind of wave can be observed in teleseismic P-waves (Levin and Park,
1997). For an incident P-wave scattered to the SH wave, the scattering potential is

SPSH = 2VSP sin 2ϕγ(S) [cos θP sin(θP + θS)]− 1

2
sin 2ϕδ(S)

[
sin θP cos2 θP

]
+

1

2
sin 2ϕ

[(
sin2 ϕ− cos2 ϕ

)
δ(3) − 2 sin2 ϕε(S)

] [
sin3 θP

]
,

where δ(S) = δ(1) − δ(2) and ε(S) = ε(1) − ε(2). It is obvious that there is no isotropic term as
in an isotropic media P-wave does not scatter to the SH wave. For (θP + θS) = 0, where the
incident and scatter waves are in opposite direction, the first term goes to zero, which means that
the scattering potential is not influenced by γ(S) anymore. For a VTI media the scattering potential
is zero, however for HTI media we have

SHTI
PSH = 2VSP sin 2ϕγ [cos θP sin(θP + θS)] +

1

2
sin 2ϕδ(V )

[
sin θP cos2 θP

]
+

1

2
sin 2ϕ

[(
sin2 ϕ− cos2 ϕ

)
δ(V ) + 2 cos2 ϕε(V )

] [
sin3 θP

]
.

Figure 5 shows the sensitivity of the PSH scattering potential to the anisotropic Thomsen parame-
ters. It is worth noting here that for larger azimuth angles the effects of γ and ε parameters on the
scattering potential dominates over δ parameters. We will discuss the effects of attenuation on the
scattering in the AVO/Az section.

AMPLITUDE VARIATION WITH OFFSET EQUATIONS

Specular reflection (involving two homogeneous half-spaces separated by a plane boundary)
and volume scattering from a point perturbation from a homogeneous background, are asymptoti-
cally equivalent with diminishing contrast and opening angle. In our case the corresponding sys-
tem of isotropic/anisotropic half-spaces involves a low contrast medium with boundary separating
an isotropic elastic half-space from an anisotropic elastic medium with weak anisotropic proper-
ties. The illustration of the low contrast medium in this study is as follow. The upper layer is an
isotropic-elastic medium defined by (ρ1,VP1,VS1) in contact with a plane interface separating the
upper layer from the anisotropic elastic lower layer defined by

(
ρ2, ,VP2,VS2, δ

(1)
2 , δ

(2)
2 , δ

(3)
2 , ε

(1)
2

, ε
(2)
2 , γ

(1)
2 , γ

(2)
2

)
. Fractional changes in isotropic properties are given by the fractional change in

P-wave velocity, AVP
= ∆VP/V̄P where ∆VP = VP1−VP2 and V̄P = (VP1 +VP2)/2 are respec-

tively the difference and average of the the P-wave velocity in the lower and upper media; fractional
changes in S-wave velocity, AVS

= ∆VS/V̄S where ∆VS = VS1 −VS2 and V̄S = (VS1 + VS2)/2,
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Azimuthally-dependent scattering potentials

and fractional changes in density, Aρ = ∆ρ/ρ where ∆ρ = ρ2 − ρ1 and ρ = (ρ2 + ρ1)/2 (Table
1). Linearizations are performed based on the anisotropic parameters in the lower layer rather than
the differences in anisotropic parameters.

The scattering potentials that we obtained in the previous section can be used to obtain the am-
plitude variation with offset equations previously derived using the linearization of the Zoeppritz
equations (Ruger, 1997). This can be seen intuitively from the fact that reflection coefficient is
related to the scattering potential by

RE
PP = −(2 cos θP )−2SE

PP = RIE
PP + RAE

PP , (17)

where the isotropic-elastic reflection coefficient is (Aki and Richards, 2002)

RIE
PP = 2−1AZp +

(
2−1AVp − 2V2

SPAµ

)
sin2 θP + 2−1AVp tan2 θP sin2 θP , (18)

and anisotropic elastic reflection coefficient is (Ruger, 1997)

RAE
PP =2−1

{
δ
(2)
2 + sin2 ϕ

[
δ
(1)
2 − δ

(2)
2 − 8V2

SPγ
(S)
2

]}
sin2 θP

+ 2−1
{

cos2 ϕ sin2 ϕ
[
δ
(3)
2 + ε

(2)
2 − ε

(1)
2

]
+ sin2 ϕ

[
ε
(1)
2 − ε

(2)
2

]
+ ε

(2)
2

}
tan2 θP sin2 θP ,

(19)
and where ZP = ρVP is the P-wave impedance, µ = ρV2

S is the shear modulus, with the corre-
sponding fractional changes AZP

and Aµ. Equation (19) is the linearized reflection coefficient as
commonly expressed in the literature (Ruger, 1997; Vavrycuk and Psencik, 1998; Ruger, 2002) for
weak contrast interfaces separating two weakly orthorhombic media. As the incident half-space
(i.e., the upper layer) is anisotropic, these authors used the complicated form of the polarization
and slowness vectors for incident and reflected waves. After solving of the Zoeppritz equations,
the amplitude of the reflected wave is linearized, obtaining equation (19). In our derivation, we
used the incident half-space as an isotropic background medium and used the polarizations and ve-
locities for an isotropic media and obtained the same results. We conclude that for a low-contrast
medium with two weakly-anisotropic half-spaces the linearized reflection coefficients are the same
as those for which the incident half-space is isotropic.

For an isotropic upper half-space over a VTI medium, the anisotropic part of the reflectivity
reduces to 2−1(sin2 θP tan2 θP ε2+sin2 θP δ2). For HTI media, the anisotropic part of the reflectivity
reduces to (Ruger, 2002)

REA
PP,HTI =2−1

(
δ
(V )
2 cos2 ϕ− 8V2

SP sin2 ϕγ2

)
sin2 θP

+ 2−1 cos2 ϕ
(

sin2 ϕδ
(V )
2 + cos2 ϕε

(V )
2

)
tan2 θP sin2 θP .

(20)

The result in equation (10), which embodies our formulation of the anisotropic scattering potential,
is therefore consistent with the previously-derived reflection coefficients for a boundary separating
an isotropic medium from an anisotropic medium. In our derivation we have assumed that the
actual medium is anisotropic-elastic and decomposable into an isotropic background with pertur-
bations in both elastic and anisotropic parameters for actual medium. This is (within the linearized
Zoeppritz solution framework) equivalent to the case of a low contrast planar boundary between an
isotropic medium over an anisotropic medium. However, we saw that the linearized reflection coef-
ficients are the same as those for which an anisotropic medium overlies an anisotropic medium, i.e.,
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Volume scattering Low-contrast reflection
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Table 1. A table illustrating the perturbation terms used in volume scattering and low-contrast reflec-
tivity models. Medium properties are classified into isotropic-elastic, isotropic-viscoelastic, anisotropic-
elastic and anisotropic-viscoelastic. In volume scattering scheme, the actual medium which is anisotropic-
viscoelastic splits into the isotropic background medium filled by the perturbations in medium properties.
Since the background medium is isotropic, anisotropic parameters in actual medium act as perturbations.
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the case that background medium is also anisotropic. If we replace the anisotropic parameters in
the lower medium with fractional differences in properties, the linearized reflection coefficient for
an orthorhombic medium is obtained. To obtain the first order reflection coefficients in anisotropic
media, in other words, we do not need to consider the anisotropic form of the polarizations and
slowness vectors. To examine how attenuation influences the scattered, or AVO, response, we
consider the two layer model in which the upper layer is isotropic-viscoelastic and lower layer is
anisotropic-viscoelastic. The linearized PP reflection coefficient is RPP = RE

PP + iRH
PP, where the

contribution due to attenuation is

RH
PP = −(2 cos θP )−2SH

PP = AH
PP + BH

PP sin2 θP + CH
PP sin2 θP tan2 θP , (21)

where

AH
PP =− (4QP0)

−1AQP

BH
PP =− 2(Q−1

S0 −Q−1
P0)V 2

SPAµ − (4QP0)
−1AQP

+ 2Q−1
S0 V

2
SPAQS

− 2Q−1
S0 V

2
SP cos2 ϕ(γ

(1)
Q − γ

(2)
Q ) + 4−1Q−1

P0(sin2 ϕδ
(1)
Q + cos2 ϕδ

(2)
Q ),

CH
PP =− (4QP0)

−1
{
AQP

−
[
cos2 ϕ sin2 ϕδ

(3)
Q + sin4 ϕε

(1)
Q +

(
cos2 ϕ+ cos2 ϕ sin2 ϕ

)
ε
(2)
Q

]}
.

(22)
It has been shown that attenuation affects both the intercept and gradient of the linearized PP reflec-
tion coefficients in viscoelastic-isotropic media (Moradi and Innanen, 2016; Samec and Blangy,
1992). Analysis of the exact PP reflection coefficient near the critical angle indicates that the
attenuation and anisotropy do not affect the normal incident reflectivity (Carcione et al., 1998).
Our linearized reflection coefficient forms predict that only the P-wave quality factor influences
vertically-incident waves— there is no influence of anisotropic and anisotropic-viscoelastic pa-
rameters on the reflection coefficient at normal incidence. In the case that anisotropy goes to zero,
our results reduce to the AVO equations PP-waves in low-loss viscoelastic media, for homogeneous
incident wave (Moradi and Innanen, 2016).

For incident inhomogeneous waves, the reflectivity formula is RPP = RE
PP + iRH

PP + iRIH
PP,

where the contribution of the inhomogeneity of the wave is

RIH
PP =−Q−1

P0 tan δPV2
SP sin 2θPAµ + 2−1Q−1

P0 tan δP tan θP (1 + tan2 θP )AVp

+ 4−1Q−1
P0 tan δP

(
δ
(2)
2 + sin2 ϕ

[
δ
(1)
2 − δ

(2)
2 − 8V2

SPγ
(S)
2

])
sin 2θP

+ 2−1Q−1
P0 tan δP

(
cos2 ϕ sin2 ϕ(δ

(3)
2 + ε

(2)
2 − ε

(1)
2 ) + sin2 ϕ(ε

(1)
2 − ε

(2)
2 ) + ε

(2)
2

)
tan3 θP .

At normal incidence, the inhomogeneity of the wave has no effect on the reflectivity. This term
is controlled by changes in density, P- and S-wave velocity and anisotropic parameters δ(2), ε(2)

and γ(S). It is not sensitive into the changes in P- and S-wave quality factors, nor is it sensitive to
changes in anisotropic-viscoelastic parameters. For azimuth angle ϕ = 0◦, the inhomogeneous part
of the reflection coefficient is sensitive only to δ(2), however it doesn’t have any effect on reflectivity
for azimuth angle ϕ = 90◦. To derive the linearized reflection coefficients for converted PSV and
PSH we use the relationship between the scattering potential and reflection coefficient (Moradi and
Innanen, 2016)

RPS =
sin θP

cos θS sin(θP + θS)
SPS = RIE

PS + RAE
PS .
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For PSV wave, the isotropic-elastic part of the reflectivity is given by

RIE
PSV = −1

2

∆ρ

ρ̄

[
sin θP
cos θS

]
− VS
VP

Aµ [sin θP cos θS] +

(
VS
VP

)2

Aµ

[
sin3 θP
cos θS

]
.

Additionally the anisotropic-elastic part

RAE
PSV = AAE

PSV1

[
sin θP
cos θS

]
+ AAE

PSV2 [cos θP sin θP ] + AAE
PSV3

[
sin3 θP
cos θS

]
+ AAE

PSV4

[
cos θP sin3 θP

]
+ AAE

PSV5

[
sin5 θP
cos θS

]
.

(23)

With coefficients depend to P- and S-wave velocity and anisotropic Thomsen parameters (Ap-
pendix ). If the incident half-space where the incident wave propagates is anisotropic, the values
on the anisotropic parameters in lower layer is replaced by the contrasts between the anisotropic
parameters (Jílek, 2002b,a). On the other hand if the incident half-space is anisotropic and the
lower layer is isotropic, the reflection coefficients are the same as eq.(23) with opposite signs of
the anisotropic parameters. Our results in the case that the lower medium is VTI/HTI coincides to
the approximate converted PSV reflection coefficients derived by Rüger Ruger (2002). For normal
incident of angle in contrast to the PP case, both isotropic and anisotropic terms go to zero. Now
let us consider to the case that the background medium is isotropic-viscoelastic. This is equivalent
to the low-contrast medium with isotropic-viscoelastic top layer over a viscoelastic-orthorhombic
media. In this case an imaginary term added to the scattering potential and consequently to the
reflectivity which can be break into two terms

RH
PSV =AH

PSV1

[
sin θP
cos θS

]
+ AH

PSV2 [cos θP sin θP ] + AH
PSV3

[
sin3 θP
cos θS

]
+ AH

PSV4

[
cos θP sin3 θP

]
+ AH

PSV5

[
sin5 θP
cos θS

]
,

(24)

RIH
PSV = AIH

PSV1 + AIH
PSV2 sin2 θP + AIH

PSV3 sin4 θP + AIH
PSV4 sin6 θP . (25)

For homogeneous part, the coefficients (Appendix ) are the function of P- and S-wave velocity,
P- and S-wave quality factors and Q-dependent Thomsen parameters, dependency of this term to
the P- and S-wave angles is the same as anisotropic term in eq. (23). For very small angles of
incidence the first two term dominates over other terms, which means that reflectivity depends to
the γ(S), δ(1) and δ(2) and corresponding Q-dependant Thomsen parameters γ(S)Q , δ(1)Q and δ(2)Q .

On the other hand for inhomogeneous part, coefficients varies with incident P-wave angle θP,
scattered S-wave angle θS, incident P-wave attenuation angle δP, scattered S-wave attenuation
angle δS. In terms of dependency to medium properties, the inhomogeneous part depends to the
anisotropic Thomsen parameters, Q-dependent Thomsen parameters has no influence on this part.
In the case that incident wave is homogeneous this terms vanishes. For normal incident wave
the anisotropic and homogeneous terms go to zero however the inhomogeneous terms is not zero.
In this case only, γ(S), δ(1) and δ(2) affect the reflection coefficients. Consequently, for incident
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inhomogeneous wave the reflection coefficient is given by RPSH = RAE
PSH + iRH

PSH + iRIH
PSH, with

the following components

RAE
PSH = APSH1 sin θP + APSH2

cos θP sin θP
cos θS

+ APSH3 sin3 θP + APSH4
cos θP sin3 θP

cos θS
,

RH
PSH = AH

PSH1 sin θP + AH
PSH2

cos θP sin θP
cos θS

+ AH
PSH3 sin3 θP + AH

PSH4

cos θP sin3 θP
cos θS

,

RIH
PSH = AIH

PSH1 + AIH
PSH2 sin2 θP + AIH

PSH3 sin4 θP ,

(26)

with coefficients defined in Appendix A. Here, RAE
PSH is the linearized reflection coefficients for

converted P-wave to SH-wave in absence of attenuation in medium (Jílek, 2002b,a). For in-
cident homogenous P-wave in an isotropic-viscoelastic medium reflecting from a viscoelastic-
orthorhombic media, the second term added to the reflectivity. Finally, RIH

PSH is the contribution
of the inhomogeneity of the wave in reflectivity which is zero when the incident wave is homoge-
neous. Similar to the PSV-wave, PSH reflection coefficient for normal incident wave is not zero
due to the inhomogeneous term RIH

PSH. For very small angle of incident, PSH-reflection coefficient
varies only with γ(S), δ(S) and corresponding Q-dependant Thomsen parameters γ(S)Q and δ

(S)
Q .

Neither δ3(δ3Q) nor ε(S)(ε(S)Q ) affect the reflectivity for small angle of incidence.

DISCUSSION

Determination, by seismic full waveform inversion (FWI), of the anisotropic and attenuative
properties of a geological volume, is a challenging task. One of the challenges is that seismic
amplitudes are co-determined by the simultaneous variations of several properties, and the separa-
tion of these mixing effects is a complex and generally ill-posed problem. To optimally formulate
multi-parameter updates in FWI, detailed parameter resolution analysis is required. Quantitative
predictions regarding the resolution of any set of parameters can be made based on the scattering
radiation patterns generated by local changes in medium parameters. Radiation patterns are com-
puted via the Born approximate model of volume scattering. Scattering amplitudes as a function
of opening angle provide information regarding the variations two independent parameters will
cause in the data; if they are similar in character over some range of opening angles, one con-
cludes that the two parameters will be difficult to distinguish with data spanning that angle range.
For example, within an anisotropic acoustic medium with three parameters, it has been posited
that updating the vertical wave velocity with FWI and holding two Thomsen parameters fixed is
an optimal choice; however, a parameterization combining two wave velocities and one Thomsen
parameter is suitable for wide-azimuth/wide-aperture surface data (Gholami et al., 2013b).

This study is the first effort to establish a framework for parameter resolution analysis for FWI
in complex media with both anisotropy and attenuation. Just like any other model parameteri-
zation analysis, our approach relies on the Born approximation. We developed radiation pattern
formulae for a viscoelastic orthorhombic medium with seven anisotropic Thomsen parameters and
seven attenuation-anisotropic parameters. The derived radiation patterns expose to analysis the
sensitivity of the scattered wave field the anisotropic parameters in terms of scattering angle. In
our analysis, the effects of inhomogeneity, or attenuation angle (the angle between the real and
imaginary parts of the wave vector), has been fully taken into account in radiation patterns. The
influence of the inhomogeneity angle in regions of high attenuation in (say) unconventional reser-
voir rocks is not negligible, but its effect on inversion has received almost no attention in the FWI
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/ seismic community as yet.

Amplitude variation with offset is normally described using the approximate solutions of the
Zoeppritz equations assuming low contrast medium variations. Calculations require determina-
tion of slowness and polarization vectors. Exact solutions yield complicated functions in terms of
the medium properties describing upper and lower half-spaces as well as incident and transmitted
phase angles. Similar results emerge from the Born approximations based on first order pertur-
bation theory. In this paper, using the latter Born approach, scattering potentials and linearized
reflection coefficients for a weak anisotropic, low-loss viscoelastic orthorhombic media are de-
rived for P-to-P, P-to-SV and P-to-SH waves. An elastic orthorhombic stiffness tensor is described
by nine real independent parameters including vertical P- and S-wave velocities, and seven gener-
alized Thompson parameters which characterize the weak anisotropy in the medium. If attenuation
is taken into account, the stiffness tensor components become complex, with imaginary parts re-
lated to the associated quality factors and Q-Thompson parameters. In deriving our results, we
assume that the background medium is isotropic and viscoelastic, and are perturbed by anisotropic
and isotropic-(visco)elastic inclusions. Compared to previously derived converted wave AVAZ
equations our derivations are new in two ways. First, we avoid the complications of the solution of
Zoeppritz equations by using the Born approximation based on the first order perturbation theory.
Second, we obtain extra terms in the AVAz equations due to both the anelasticity of the medium
and the inhomogeneity of the wave. We note that the reflection coefficient, which is generally
complex, has a real part which is sensitive to the isotropic and anisotropic parameters. For an
incident inhomogeneous wave, we show that the approximate reflection coefficients break up into
four terms. The first term is real and fully isotropic-elastic, and is sensitive to fractional changes
in density and S-wave velocity. The second term, which we have called the homogeneous term
is sensitive to the vertical P- and S-wave velocities, P- and S-wave quality factors and anisotropic
Thomsen parameters. Third term comes into existence when the incident wave is inhomogeneous,
and is sensitive to specifically anisotropic-viscoelastic parameters.

CONCLUSION

Scattering potentials for attenuative anisotropic media provides a simple tool to evaluate the
Fréchet kernels, and this is relevant to FWI applications where Fréchet kernels are regarded as
a sensitivity kernels. Moreover, the study of scattering potentials highlights the dependency of
linearized reflection coefficients to anisotropy and attenuation. Attenuation and anisotropy are es-
sential in amplitude variation with offset (AVO) trends as they changes the amplitude and phase of
the scattered wave field from geological interfaces. In this research, we derived the analytic forms
of the components of the scattering potentials for scattering of the homogeneous and inhomoge-
neous waves in attenuative orthrohmobic media. These expressions for scattering potentials which
are the sensitivity kernels are involved in building the framework for FWI. Furthermore we showed
that how these scattering potentials reduce to the linearized reflection coefficients. We study two
cases: first we assume that the wave propagates in the isotropic elastic background medium and
scattered by the perturbations in anisotropic orthorhombic media. This is equivalent to the low-
contrast media with an incident isotropic elastic media over an anisotropic orthorhombic media.
In second case it is assumed that the background medium is isotopic viscoelastic media scattered
by the perturbations in attenuative anisotropic orthorhombic media. We show that there is no an-
alytical distinction between the behaviour of the amplitude variation with offset and azimuth for
isotropic over anisotropic and anisotropic over anisotropic low-contrast media. Whenever we deal
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with the first order approximation, we can use the isotropic polarization and slowness vectors for
background medium. This greatly simplifies the analytical expressions, which is complicated by
using the analytical form of the polarization and slowness vectors in anisotropic media.

For P-to-P reflection coefficients, it can be seen that for normal incident or zero offset only
attenuation in medium affect the P-wave reflection coefficient. Anisotropic-viscoelastic parame-
ters affect the nonnormal incidence part of the reflectivity. Only gradient term is sensitive to the
changes in S-wave quality factor, however the changes in P-wave quality factor affects the both
intercept and curvature terms. For converted wave, due to the inhomogeneity of the incident wave,
in contrast to the elastic case, normal incident reflection coefficient is not zero. As a result we
can utilize the inhomogeneous part of the converted wave in AVO/Az to invert the inhomogeneous
angle.

We believe the results presented in this paper might be a very fruitful approach to development
of the theory of seismic modeling and inversion, especially in the new applications of FWI, such as
in identifying quality factors and anisotropic-viscoelastic parameters and improving the imaging
of subsurface materials. There are also other avenues to pursue, including any inversion scenario
where attenuation presence in anisotropic media. It is useful to inspect the results of scattering
potentials to determine whether we can construct a framework for full waveform inversion for a
medium with both attenuation and anisotropy.
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APPENDIX A: ANISOTROPIC-VISCOELASTIC THOMSEN PARAMETERS

First let use introduce the Thompson parameters in orthorhombic media introduced by Tsvankin Tsvankin (1997)
and Zhu Zhu and Tsvankin (2005)

the VTI parameter ε in the [x2, x3] plane

ε(1) =
C22 − C33

2C33
, (27)

the VTI parameter δ in the [x2, x3] plane

δ(1) =
(C23 + C44)2 − (C33 − C44)2

2C33(C33 − C44)
, (28)
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the VTI parameter γ in the [x2, x3] plane

γ(1) =
C66 − C55

2C55
, (29)

the VTI parameter ε in the symmetry plane [x2, x3] normal to the x2-axis (close to the fractional difference between
the P-wave velocities in the x1- and x3-directions)

ε(2) =
C11 − C33

2C33
, (30)

the VTI parameter δ in the [x1, x3] plane (responsible for near-vertical P-wave velocity variations, also influences
SV-wave velocity anisotropy)

δ(2) =
(C13 + C55)2 − (C33 − C55)2

2C33(C33 − C55)
, (31)

the VTI parameter γ in the [x1, x3] plane (close to the fractional difference between the SH-wave velocities

γ(2) =
C66 − C44

2C44
, (32)

the VTI parameter δ in the [x1, x2] plane (x2 is used as the symmetry axis)

δ(3) =
(C12 + C66)2 − (C11 − C66)2

2C11(C11 − C66)
, (33)

The same definitions should valid when attenuation is added to the medium. First consider to the complex form of ε(1)

ε̂(1) =
Ĉ22 − Ĉ33

2Ĉ33

=
C22(1 + iQ−122 )− C33(1 + iQ−133 )

2C33(1 + iQ−133 )

=
C22(1 + iQ−122 )

2C33(1 + iQ−133 )
− 1

2
≈ C22

2C33
(1 + iQ−122 − iQ

−1
33 )− 1

2
.

After separation of the real and imaginary parts we arrive at

ε̂(1) = ε(1) +
i

2
Q−133 ε

(1)
Q ,

where we defined

ε
(1)
Q =

Q33 −Q22

Q22
.

Similarly we have

ε
(2)
Q =

Q33 −Q11

Q11
(34)

δ
(1)
Q = 2

C23(C23 + C44)

C33(C33 − C44)

Q33 −Q23

Q23
+
C44(C23 + C33)2

C33(C33 − C44)2
Q33 −Q44

Q44
, (35)

δ
(2)
Q = 2

C13(C13 + C55)

C33(C33 − C55)

Q33 −Q13

Q13
+
C55(C13 + C33)2

C33(C33 − C55)2
Q33 −Q55

Q55
, (36)

δ
(3)
Q = 2

C12(C12 + C66)

C11(C11 − C66)

Q11 −Q12

Q12
+
C66(C12 + C11)2

C11(C11 − C66)2
Q11 −Q66

Q66
(37)

γ
(1)
Q =

Q55 −Q66

Q66
, (38)

γ
(2)
Q =

Q44 −Q66

Q66
, (39)

(40)
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APPENDIX B:3D SCATTERING POTENTIAL IN ORTHORHOMBIC MEDIA

Elastic Green’s function is a 3× 3 tensor that represents the displacement generated by a point source in a certain
direction. For example Gpq(x,x′), is the displacement at location x in the p direction due to this point force the
q direction at location x′. Scattering theory requires the actual medium separated into the background medium and
perturbations. Born theory is utilized to model the waves scattered by heterogeneities in medium in terms of the
solution of wave equation in background medium. The integral equation for scattered wave in terms of solution in
background medium and perturbations is given by the Born approximation (Beylkin and Burridge, 1990)

∆Gpq(xr,xs) =

∫
Kpq(xr,xs,x)dx, (41)

with the Born kernel Kpq defined by

Kpq(xr,xs,x) = ω2∆ρ(x)G0
ip(xr,x)G0

iq(x,xs)−∆Cijkl(x)
∂G0

ip(xr,x)

∂xj

∂G0
kq(x,xs)

∂xl
. (42)

Where ∆Gpq = Gpq − G0
pq is the difference between the Green’s function in actual medium Gpq and in the

background medium G0
pq . Additionally, x is the location of scatter point, xr and xs are the location of receiver and

source respectively. On the right hand side summation over repeated indices is assumed. ∆Cijkl = Cijkl − C0
ijkl

is the difference between the non-zero components of the stiffness tensor in the actual and the background media;
G0

iq(x,xs) is the Green’s function in the background medium responsible for the propagation of the wave from source
point xs to the point x where perturbations in density, ∆ρ, and stiffness tensor ∆Cijkl interact with the wavefield, and
the Green’s function G

(0
ip(xr,x) delivers the wavefield to the receiver point xr. To simplify the sensitivity expressions,

we write the Green’s function in terms of the polarization vectors in source and receiver locations

G
(0)
ip (xr,x) ∼ A(x,xr)Si(x)Sp(xr)eiωkSc·(xr−x),

G
(0)
iq (x,xs) ∼ A(x,xs)Ii(x)Iq(xs)e

iωkIn·(x−xs), (43)

whereA is a complex amplitude, S and I respectively are the polarization vectors of the scattered and incident waves,
as defined at the scatter point x, source point xs and receiver point xr. In addition kSc is the slowness vector of the
scattered wave field and kIn is the slowness vector of the incident wavefield. Consequently, the differentiations in the
equation (45) can be approximated to

∂G
(0)
ip (xr,x)

∂xj
≈ −iωkSc

j G
(0)
ip (xr,x),

∂G
(0)
kq (x,xs)

∂xl
≈ iωkIn

l G
(0)
kq (x,xs).

(44)

then the born kernel reduces to

Kpq(xr,xs,x) = ρ0ω
2A(xr,x)A(x,xs)Sp(xr)[S(x)]Iq(xs)e

iωkSc·(xr−x)eiωkIn·(x−xs), (45)

where the scattering potential is given by

S(x) = (S · I)
∆ρ(x)

ρ0(x)
− (SikSc

j IkkIn
l )

∆Cijkl(x)

ρ0(x)
. (46)

Here S is called scattering potential. Furthermore, we can write scattering potentials as

ρ0S = [ρ] ∆ρ− [C11]∆C11 − [C22]∆C22 − [C33]∆C33

− [C12]∆C12 − [C13]∆C13 − [C23]∆C23

− [C44]∆C44 − [C55]∆C55 − [C66]∆C66.

24 CREWES Research Report — Volume 30 (2018)



Azimuthally-dependent scattering potentials

Where the sensitivities are

[ρ] = S · I,
[C11] = S1kSc

1 I1kIn
1 ,

[C22] = S2kSc
2 I2kIn

2 ,

[C33] = S3kSc
3 I3kIn

3 ,

[C12] = S1kSc
1 I2kIn

2 + S2kSc
2 I1kIn

1 ,

[C13] = S1kSc
1 I3kIn

3 + S3kSc
3 I1kIn

1 ,

[C23] = S2kSc
2 I3kIn

3 + S3kSc
3 I2kIn

2 ,

[C44] = S2kSc
3 I2kIn

3 + S3kSc
2 I2kIn

3 + S2kSc
3 I3kIn

2 + S3kSc
2 I3kIn

2 ,

[C55] = S1kSc
3 I1kIn

3 + S3kSc
1 I3kIn

1 + S3kSc
1 I1kIn

3 + S1kSc
3 I3kIn

1 ,

[C66] = S1kSc
2 I1kIn

2 + S2kSc
1 I2kIn

1 + S2kSc
1 I1kIn

2 + S1kSc
2 I2kIn

1 .

APPENDIX C: AVO COEFFICIENTS

For converted PSV-wave, coefficients for the anisotropic-elastic part in RAE
PSV (eq. 23) are given by

AAE
PSV1 =

V 2
P

2(V 2
P − V 2

S )
∆12,

AAE
PSV2 =− 2

VS
VP

ΓS −
VSVP

2(V 2
P − V 2

S )
∆12,

AAE
PSV3 =2

V 2
S

V 2
P

ΓS −
V 2
S

2(V 2
P − V 2

S )
∆12 −

V 2
P

(V 2
P − V 2

S )
(∆123 − Σ),

AAE
PSV4 =

VSVP
(V 2

P − V 2
S )

(∆123 − Σ),

AAE
PSV5 =

V 2
S

(V 2
P − V 2

S )
(∆123 − Σ),

where

∆12 = sin2 ϕδ(1) + cos2 ϕδ(2),

ΓS = γ(S) sin2 ϕ,

∆123 = sin2 ϕδ(1) + cos2 ϕδ(2) − sin2 ϕ cos2 ϕδ(3),

Σ = sin4 ϕε(1) +
(
cos4 ϕ+ 2 cos2 ϕ sin2 ϕ

)
ε(2).
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For homogeneous term RH
PSV (eq. 24) coefficients are given by

AH
PSV1 =Q−1P

1

4

V2
P

(V2
P −V2

S)
∆Q12 + (Q−1S −Q−1P )

V2
PV2

S

2(V2
P −V2

S)2
∆12,

AH
PSV2 =−Q−1S

VS

VP
ΓQS − (Q−1S −Q−1P )

VS

VP
ΓS −Q−1P

VSVP

4(V2
P −V2

S)
∆Q12

− VSVP

4(V2
P −V2

S)

[
(Q−1S + Q−1P ) + 2

V2
SQ−1S −V2

PQ−1P

V2
P −V2

S

]
∆12,

AH
PSV3 =Q−1S
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S

V2
P

ΓQS + 2(Q−1S −Q−1P )
V2

S

V2
P

ΓS −Q−1P
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S
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P −V2

S)
∆Q12
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V2

PV2
S

2(V2
P −V2

S)2
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P

2(V2
P −V2

S)
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PV2
S
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P −V2
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P

2(V2
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ΣQ
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S
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AH
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1

2
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P −V2

S

]
∆123

− 1

2
Q−1P

VSVP

(V2
P −V2

S)
ΣQ +

VSVP

2(V2
P −V2

S)

[
(Q−1S + Q−1P ) + 2

V2
SQ−1S −V2

PQ−1P

V2
P −V2

S

]
Σ,

AH
PSV5 =

1

2
Q−1P

V2
S

(V2
P −V2

S)
∆Q12 + (Q−1S −Q−1P )

V2
PV2

S

(V2
P −V2

S)2
∆12

− 1

2
Q−1P

V2
S

(V2
P −V2

S)
ΣQ − (Q−1S −Q−1P )

V2
PV2

S

(V2
P −V2

S)2
Σ,

where

∆Q12 = sin2 ϕδ
(1)
Q + cos2 ϕδ

(2)
Q ,

ΓQS = γ
(S)
Q sin2 ϕ,

∆Q123 = sin2 ϕδ
(1)
Q + cos2 ϕδ

(2)
Q − sin2 ϕ cos2 ϕδ

(3)
Q ,

ΣQ = sin4 ϕε
(1)
Q +

(
cos4 ϕ+ 2 cos2 ϕ sin2 ϕ

)
ε
(2)
Q .

For homogeneous term RIH
PSV (eq. 25) coefficients are given by

AIH
PSV1 =

1

2
Q−1P tan δP

[
APSV1

cos θP
cos θS

+APSV2

]
,

AIH
PSV2 =

[
Q−1S

2
VSPAPSV1 tan δS

]
1

cos2 θS
− tan δPQ

−1
P

[
APSV2 +

1

2
APSV3

]
cos θP
cos θS

+Q−1P tan δP

[
3

2
APSV4,+APSV3

cos θP
cos θS

]
sin2 θP ,

AIH
PSV3 =

Q−1S

2
VSPAPSV3 tan δS

1

cos2 θS
−Q−1P tan δP

[
2APSV4 +

5

4
APSV5

cos θP
cos θS

]
,

AIH
PSV4 =

[
Q−1S

2
VSPAPSV5 tan δS

1

cos2 θS

]
.
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Azimuthally-dependent scattering potentials

For converted PSH-wave, coefficients for the anisotropic-elastic part in RAE
PSH (eq. 26) are given by

AAE
PSH1 =− V 2

P

4(V 2
P − V 2

S )
sin 2ϕδ(S),

AAE
PSH2 =

VS
VP

sin 2ϕγ(S) +
VPVS

4(V 2
P − V 2

S )
sin 2ϕδ(S),

AAE
PSH3 =

V 2
P

4(V 2
P − V 2

S )
sin 2ϕ

[
δ(S) +

(
sin2 ϕ− cos2 ϕ

)
δ(3) − 2 sin2 ϕε(S)

]
,

AAE
PSH4 =− VSVP

4(V 2
P − V 2

S )
sin 2ϕ

[
δ(S) +

(
sin2 ϕ− cos2 ϕ

)
δ(3) − 2 sin2 ϕε(S)

]
.

For homogeneous term RH
PSH coefficients are given by

AH
PSH1 =−Q−1P

V2
P

8(V2
P −V2

S)
sin 2ϕδ

(S)
Q − (Q−1S −Q−1P )

V2
PV2

S

4(V2
P −V2

S)2
sin 2ϕδ(S),

AH
PSH2 =

1

2
Q−1S

VS
VP

sin 2ϕγ
(S)
Q +

1

2
(Q−1S −Q−1P )

VS
VP

sin 2ϕγ(S) + Q−1P

VPVS
8(V 2

P − V 2
S )

sin 2ϕδ
(S)
Q ,

+
VSVP

8(V 2
P − V 2

S )

[
(Q−1S + Q−1P ) + 2

V 2
S Q−1S − V 2

P Q−1P

V 2
P − V 2

S

]
sin 2ϕδ(S),

AH
PSH3 =Q−1P

V 2
P

8(V 2
P − V 2

S )
sin 2ϕ

[
δ
(S)
Q − 2 sin2 ϕε

(S)
Q +

(
sin2 ϕ− cos2 ϕ

)
δ
(3)
Q

]
,

+ (Q−1S −Q−1P )
V 2
PV

2
S

8(V 2
P − V 2

S )2
sin 2ϕ

[
δ(S) − 2 sin2 ϕε(S) +

(
sin2 ϕ− cos2 ϕ

)
δ(3)
]
,

AH
PSH4 =−Q−1P

VSVP
8(V 2

P − V 2
S )

sin 2ϕ
[
δ
(S)
Q − 2 sin2 ϕε

(S)
Q +

(
sin2 ϕ− cos2 ϕ

)
δ
(3)
Q

]
,

− VSVP
8(V 2

P − V 2
S )

[
(Q−1S + Q−1P ) + 2

V 2
S Q−1S − V 2

P Q−1P

V 2
P − V 2

S

]
×

sin 2ϕ
[
δ(S) − 2 sin2 ϕε(S) +

(
sin2 ϕ− cos2 ϕ

)
δ(3)
]
.

For inhomogeneous term RIH
PSH coefficients are given by

AIH
PSH1 =

1

2
Q−1P tan δP

[
APSH1 cos θP +APSH2

1

cos θS

]
,

AIH
PSH2 =− 1

2
APSH2

{
Q−1P tan δP

[
cos θP
cos θS

+
1

cos θS

]
+
[
Q−1S VSP tan δS

] 1

cos2 θS

}
+

3

2
Q−1P tan δP

[
APSH3 cos θP +APSH4

1

cos θS

]
,

AIH
PSH3 =APSH4

[
Q−1S

2
VSP tan δS

cos θP
cos2 θS

− 2Q−1P tan δP
1

cos θS

]
.
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