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ABSTRACT

3D land data acquisitions are often undersampled along offset and azimuth directions
because of large shot and receiver line intervals. In marine data acquisition, data are well
sampled in the inline direction but coarsely sampled in the crossline direction. These issues
can often be alleviated by seismic interpolation, which is an important step in data process-
ing since many processing and migration tools require regularly sampled input data.
We compare two methods of seismic amplitude reconstruction. The first one is Singular
Spectrum Analysis (SSA) which is based on rank reduction methods. In this approach,
we generate Hankel matrices from constant frequency data and reduce their rank by using
Truncated Singular Value Decomposition (TSVD). Since missing traces and random noise
increase the rank of the Hankel matrix, TSVD changes the data by removing noise and
interpolating missing traces. By reducing the rank, the algorithm iteratively infills missing
traces. The second method is Minimum Weighted Norm Interpolation (MWNI) which in-
fills missing traces by transforming the data to the Fourier domain and removing sampling
artifacts by enforcing wavenumber-domain sparsity.
In this report, we test how these two methods perform on pre-stack and irregular sampled
synthetic 2D data. For the case we tested, SSA seems more affected by curvature than
MWNI but it seems better in preserving the amplitude for the hyperbola flanks. For SSA,
we implement a multidimensional version and test it for 3D synthetic data.

INTRODUCTION

Reconstruction methods can be subdivided into wave-equation based and signal-processing
based. Inside this second subdivision, most of the methods use transform domains such as
Fourier which applies a prediction error filter in the f − x domain.
Normally, 3D land data acquisitions have poor sampling for at least one of the spatial di-
mensions. In marine data acquisition, the data are well sampled in the inline direction and
coarsely sampled in the crossline direction.
The objective of this paper is to compare the applications of Singular Spectrum Analysis
(SSA) and Minimum Weighted Norm Interpolation (MWNI) to interpolate missing traces
in regular and irregular patterns. SSA works in the f − x domain of the data while relying
on the rank reduction of the Hankel matrices. The interpolation algorithm uses an iterative
algorithm applied by (Abma and Claerbout, 1995). On the other hand, MWNI works in
f − k domain by minimizing a wavenumber weighted norm that let us synthesize a prior
spectral signature of the unknown wavefield.
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Background

Singular Spectrum Analysis

Singular Spectrum Analysis (SSA) implemented with an iterative algorithm can inter-
polate seismic data, we can summarize the algorithm in 6 steps:
1- Transforming data from the time-space domain to the frequency-space.
2- Generating a Hankel matrix for each constant frequency.
3- Decomposition of the Hankel matrix in its singular spectrum via TSVD.
4- Rank reduction of the Hankel matrix.
5- Averaging in the Hankel matrix anti-diagonals.
6- Inverse Fourier transform to return to the time domain.
Let us consider a 2D seismic data in the time domain. which can be shown as:

S(x, t) = W (t− px), (1)

where x defines the space, t is time, p is dip and W (t) is the wavelet. To apply SSA, data
are first transformed to the f − x domain by a Fourier transform.

S(x, ω) = A(ω)e−iωpx, (2)

where ω is the temporal frequency and A is the amplitude. For regular spacing, the spatial
variable x is replaced by x = n∆x, and (Equation 2) becomes:

S(x, ω) = A(ω)e−iωpn∆x. (3)

Equation 3 can be used for the previous channel as follows:

Sn−1 = A(ω)e−iωp(n−1)∆x = A(ω)e−iωpn∆xeiωp∆x. (4)

From comparing Equation 2 and Equation 3 we see that the channel Sn is related to the
previous channel Sn−1:

Sn = PSn−1, P = eiωp∆x. (5)

Equation 5 shows a linear recursion between adjacent channels that represents the pre-
dictability of the signal in the f − x domain (Sacchi and Kuehl, 2001; Ulrych and Sacchi,
2005). This predictability is the key element in the success of SSA for random noise atten-
uation and missing traces interpolation.
Continuing to step ( 2) let us consider Sω = [s1, s2, s3, ..., sNx ]T , a spatial vector of a con-
stant frequency in the f − x domain, where Nx is the number of space samples of the data.
Embedding of each frequency into a Hankel matrix is as follows:

M =


s1 s2 ... skx
s2 s3 ... skx+1

...
... . . . ...

sLx sLx+1 ... sNx

 , (6)

where Kx and Lx control the dimension of the Hankel matrix. It is recommended to use a
square Hankel matrix for the SSA algorithm (Trickett, 2008). Substituting Equation 5 into
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Equation 6, the following linear relationship between the columns of the Hankel matrix
arise:

M =


s1 Ps1 ... PKx−1s1

s2 Ps2 ... PKx−1s2
...

... . . . ...
sLx PsLx ... PKx−1sLx

 . (7)

From Equation 7 we can find that the rank of the Hankel matrix in the f − x domain for a
signal without any noise will be 1. In the presence of random noise or missing traces, the
rank of the Hankel matrix will increase (Figure 1).

a) b)

FIG. 1. a) Singular values for noiseless data without decimated traces; b) singular values for noise-
less data with 51% decimated traces.

The singular value decomposition of the Hankel matrix M is written as:

svd(M) = UΣV H , (8)

where Σ is a diagonal matrix of singular values for the matrix M , and U and V are the
orthogonal matrices of singular vectors of the matrix M (Golub and Reinsch, 1971).

UUH = V HV = V V H = In, (9)

Σ = diag(σ1, ..., σn), (10)

where σi are the singular values and the number of non-zero singular values in the Hankel
matrix determines the rank of the Hankel matrix. The goal of SSA is to reduce the rank of
the Hankel matrix. We can obtain the reduced rank matrix as follow:

Mk = UkΣkV
H
k , (11)

where Σk is a diagonal matrix containing the k largest singular values of M , Uk and Vk are
the k first singular vectors of the matrix M . By averaging the anti diagonals of each Han-
kel matrix the matrix M can be obtained. This procedure, truncated SVD, will eliminate
random noise from the data. The interpolation problem, reconstructing missing traces, re-
quires more sophistication. Lets go back to Equation 6 and consider it with missing traces.
For example, let us consider the signal S in the frequency slice with Nx = 9 and some
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missing traces as Sω = [s1, 0, s3, 0, s5, s6, s7, 0, 0]H . The Hankel matrix of Sω will be as
follows:

M =


s1 0 s3 0 s5

0 s3 0 s5 s6

s3 0 s5 s6 s7

0 s5 s6 s7 0
s5 s6 s7 0 0

 . (12)

Let us define a sampling operator which is 1 for each observed component and 0 for zero
values. This means T (i) = 1 for nonzero components and T (i) = 0 for the missing traces.
The processes of reconstructing and denoising for each frequency can be written as follows:

Si
f = Sobs

f + (I − T )� FSSAS
i−1
f , i = 1, 2, ... (13)

where i is the iteration, f denotes the constant frequency we are applying SSA, I =
ones(size(T )), the operator � is the array multiplication for two matrices, and FSSA is
the function of the SSA application. The algorithm stops either when the maximum num-
ber of iterations is reached, or the energy of change in the recovered traces is less than a
threshold (Oropeza and Sacchi, 2011).
Equation 13 works well for noiseless data. To recover amplitudes of a noisy data Oropeza
and Sacchi (2011) proposed a modification of the iterative algorithm:

Si
f = αiSobs

f + (1− αi)T � FSSAS
i−1
f + (I − T )� FSSAS

i−1
f , i = 1, 2, ..., (14)

where α is an iteration-dependent scalar that linearly decreases from α1 ' 1 to αpmax = 0.
It causes the gradual embedding of the filtered data to the original data.

SSA can easily be expanded to more than two dimensions, which is called multidimen-
sional singular spectrum analysis (MSSA). The expansion of SSA to two spatial dimensions
and one temporal dimension is the same as the SSA algorithm but it has one step more. The
steps of MSSA is summarized as below:
1- Transforming data from t-x-y to f-x-y.
2- Generating Hankel matrices in one of the spatial dimensions in a constant frequency.
3- Embeding the generated Hankel matrices into block of Hankel matrix for each frequency.
4- Decomposition of the block Hankel matrix in its singular spectrum via TSVD.
5- Rank reduction of the block of Hankel matrix.
6- Averaging in the block Hankel matrix anti-diagonals.
7- Inverse Fourier transform to return to the time domain.
The iterative algorithm of Equation 13 together with the above steps can infill missing
traces for 3D data, provided that the events in the data are approximately linear.

Minimum Weighted Norm Interpolation

Minimum Weighted Norm Interpolation (MWNI) is designed to work in the (f − x)
and (f − k) Fourier domains. The algorithm works with one frequency slice at a time. Let
us consider the signal in Equation 2, Sω = [s1, s2, ..., sNx ]T , and the sampling operator T .
The complete data and the observed data are connected by a linear system:

d = LS. (15)
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As an example of a signal withNx = 9 and some missing traces like Sω = [s1, 0, s3, 0, s5, s6, s7, 0, 0]T

we can show:
s1

s3

s5

s6

s7

 =


1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0

 (s1, s2, s3, s4, s5, s6, s7, s8, s9)T . (16)

Solving Equation 15 leads to an undetermined system of equations. Among all the possible
solutions, MWNI chooses a solution which minimizes a model norm. The inversion can be
reduced to solving the constrained minimization problem:
minimizing ‖S‖2

p subjects to LS = d, where ‖.‖2
p indicates a weighted norm. In the

presence of noise, the above constraints can be modified as: Minimize ‖WsS‖pp subject to
‖Wd(d− LS)‖qq = φd, where p and q indicate the different norms used to estimate the size
of the quantities involved, φd is the estimation of noise plus a residual due to the failure of
the model, Ws is a matrix of model weights and Wd is a matrix of data weights. To obtain
the desired solution we should minimize the cost function:

(λW T
s Ws + LTW T

d WdL)S = LTW T
d Wdd, (17)

where λ is a trade-off parameter. Equation 15 is solved by fixing the model to some previ-
ous estimation (like the spatial spectra from the previous temporal frequency) and applying
a linear minimization by conjugate gradient algorithm (CG). To prevent a potential zero
division (for a zero model) we can apply right preconditioning:

d = LW−1
s WsS, (18)

with WsS being a new model S̃, and LW−
s 1 being a new operator L̃. The optimization

problem leads to: Minimize ‖S̃|pp subject to

‖Wd(d− LW−1
s S̃)‖qq = φd. (19)

The following system is the result of the minimization of the cost function of Equation 19:

(λI +W−T
s LTW T

d WdLW
−1
S )S̃ = W−Ts. (20)

Equation 20 is solved by setting the trade-off parameter to 0 and letting the number of
internal iterations in the conjugate gradient play the role of regularizer (Trad, 2003). The
FFT algorithm assumes data are regular so binning is needed before applying the algorithms
for interpolation (Liu and Sacchi, 2004) and (Trad, 2009).

Results and discussions

To compare SSA results with MWNI we present several tests. SSA and MWNI are
tested on a synthetic data set with different hyperbolic events spareness. To compare the
quality of data (Q) we use Equation 21.

Q = 10 log10(
‖d0‖2

2

‖df − d0‖2
2

), (21)
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where d0 is the result after applying interpolation algorithms and df is is the expected data.
This allows us to test the accuracy of the results numerically.

Example 1

The first 2D synthetic pre-stack dataset tested contains three hyperbolic events with
different curvatures and 95 traces, of which 30% are zeroes. The data quality for input
data is 3.14 dB, and the output data quality for the SSA algorithm is 19.49 dB and for
MWNI is 18.26 dB. To assume that the input data is linear in the SSA algorithm, we set
the size of input spatial windows to 25 of which 12 traces overlap. The best rank for the
Hankel matrix is set to 3 for each frequency, and the algorithm converges after 7 iterations.
Figure 2 shows the results of applying SSA and MWNI algorithms. We observe that both
algorithms almost successfully recover the missing traces, and the coherency of the events
is maintained (Figure 2-c and 2-e). The differences between the interpolated results and
the expected are shown in (Figure 2-d and 2-f).

Example 2

To analyse whether the algorithms can recover missing traces for more sparse data, we
randomly zeroed 51% traces. Figure 3 shows that both methods give comparable results.
Input data quality is −0.15 dB. And the output data quality for the SSA algorithm is
10.40 dB, whereas it is 12.45 dB for MWNI. For the SSA algorithm, we select 25 traces
for the size of input spatial windows, of which 20 overlap. We choose the rank of the
Hankel matrix to 3, for which the algorithm converged after 7 iterations. The results of
interpolation for SSA and MWNI algorithms are shown in Figure 3. We can observe that
the coherency of the events is maintained, but the amplitudes are not completely recovered
(Figure 3-c and 3-e). The residuals results from both algorithms are shown in (Figure 3-d
and 3-f).

Example 3

In the real world of seismic data acquisition, it is hard to maintain the survey in a reg-
ular pattern because of logistic constraints and economic restrictions. Many of the seismic
processing and imaging methods such as pre-stack migration and fracture analysis, often
need the data to be regularly spaced. The simplest method to handle seismic data irregu-
larity is called "binning". The binning errors are kept small by applying normal move out
(NMO) and static corrections before interpolation (Trad, 2009). Also, NMO improves the
lateral correlation of events reducing the region of support in the f − k domain, making
model weights to change slow with frequency.
In Figure 4 we see results of applying SSA and MWNI to an irregularly sampled synthetic
data set with three events. Quality of the input data is 6.92 dB. And the output data quality
for the SSA algorithm is 10.45 dB, whereas it is 11.12 dB for MWNI. Both algorithms
apply a binning to set regular grids.
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Example 4

So far we discussed the results of SSA and MWNI in 2 dimensions. In this example,
we create a seismic cube with 3 dimensions, 2 spatial and time, to analyse the behaviour
of SSA in 3D (Figure 5). 51% of the traces are randomly killed. Input data quality is 0.23
dB. We set small spatial windows of 33×11 and the rank k = 4. The algorithm converged
after 3 iterations with an output data quality of 10.30 dB. Figure 6 shows the interpolation
results for an inline of the data cube at y=5.

Example 5

To simulate the real data conditions, we tested a 3D shot with irregular receiver loca-
tions, and binned the traces in a regular grid with cell size of 100 × 10 (Figure 7 and 8).
When binning, some cells contain more than one trace while others remain empty. The
cells containing several traces are averaged to obtain only one trace. Figure 9 is a slice of
the 3D cube at y=5.

Example 6

In this example, we test the capability of the MSSA algorithm for noisy data recon-
struction. Figure 10 shows the same 3D cube from example 4 but this time contaminated
with random noise giving a data quality of 1.06 dB. When setting the rank of the block
Hankel matrix to k = 4, the algorithm converged after 8 iterations and input data quality of
5.48 dB. Figure11 shows a slice of the data cube at y=2.

Example 7

The proposed iterative algorithm for SSA does not work well for regularly decimated
traces. For this case, we tried to perform interpolation of the Hankel matrix eigenvectors.
This was succesfull only for very simple data. By fitting a polynomial to the nonzero com-
ponents of the eigenvectors, we could create the equivalent eigenvectors for the complete
data. Figure 12 depicts the result of this approach for SSA, the MWNI result, and and their
f − k spectrums. MWNI has dealiased and recovered the data completely while there are
still some artefacts remaining on SSA results.

Summary and discussion

In this paper, we have compared two methods of seismic interpolation: singular spec-
trum analysis (SSA), which depends on the rank reduction of the Hankel matrix via trun-
cated SVD, and minimum weighted norm interpolation (MWNI) that minimizes a wavenum-
ber weighted norm. Synthetic pre-stack 2D data examples indicate that both algorithms re-
cover the amplitude nearly completely. SSA with an iterative algorithm recovered well the
amplitude of irregular and coarsely sampled data, but it did not work well on our example
with regularly decimated data. On the other hand, MWNI interpolated well the regularly
decimated data when using a FK filter mask. Results for MWNI can be improved by using
finer binning and more dimensions (3D, 4D or 5D interpolation). For SSA we couldn’t
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improve the results with finer binning but it would probably get better for more than 3 di-
mensions. Some parameters are required for both algorithms. The number of iterations,
the rank of the Hankel matrix, which is related to the number of the dips in each window
and the window size. The rank of the Hankel matrix is a trade-off parameter. For the SSA
algorithm, we find the size of the spatial windows is very important. It has to be small
enough such that we only have mostly linear events leading to a small rank. However, if
too small, then there are no enough information to interpolate.
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a) b)

c) d)

e) f)

FIG. 2. Comparison between the SSA and MWNI algorithms applied to the 2-D pre-stack synthetic
noiseless data having 3 different curved events and 30% decimated traces. a) Clean data prior to
killing traces; b) input data with 30% zeroed traces; c) result of applying SSA; d) difference between
clean data and interpolated data from applying SSA; e) result of MWNI interpolation; f) difference
between clean data and interpolated data from applying MWNI.
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a) b)

c) d)

e) f)

FIG. 3. Comparison between SSA and MWNI algorithms applied on 2-D pre-stack synthetic noise-
less data with 3 different hyperbolic events and 51% decimated traces. a) Clean data prior to killing
traces; b) input data with 51% randomly killed traces; c) SSA interpolation result; d) difference be-
tween clean data and SSA result; e) MWNI interpolation result; f) difference between clean data
and MWNI result.
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a) b)

c) d)

e) f)

FIG. 4. Comparison between SSA and MWNI algorithms applied on 2-D irregular pre-stack syn-
thetic noiseless data with 3 different curved events and 20% randomly decimated traces. a) Clean
data prior to killing traces; b) input data with 20% randomly decimated traces; c) reconstruction
using SSA; d) difference between clean data and interpolated data by SSA; e) reconstruction using
MWNI; f) the difference between clean data and interpolated data by MWNI.
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a) b) c) d)

FIG. 5. Interpolation of a pre-stack synthetic cube presenting 4 events. a) Initial data; b) input data
with 51% randomly killed traces; c) result of the interpolation using MSSA; d) difference between
the result and initial data.

a) b)

c) d)

FIG. 6. Slice at y = 5 for the synthetic data cube. a) Initial data; b) input data with 51% randomly
zeroed traces; c) interpolation result using MSSA; d) difference between (a) and (c).
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a) b)

FIG. 7. a) Geometry for a synthetic shot showing shot, receiver, and midpoint locations; b) offset
vector distribution.

a) b)

FIG. 8. Interpolation of a pre-stack synthetic cube with irregular offsets. a) Input data with a bin
size of 100× 10 m; b) result of MSSA interpolation.

a) b)

FIG. 9. a) A slice of the 3D cube at y=5 regularized to a bin size of 100× 10 m; b) interpolated data
by MSSA.
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a) b) c) d)

FIG. 10. Interpolation of a pre-stack synthetic cube. a) Initial data; b) input data with 31% randomly
eliminated traces; c) result of the MSSA interpolation; d) difference between the result and the initial
data.

a) b)

c) d)

FIG. 11. A slice of the noisy 3D cube at y=2. a) Expected data; b) input data with 31% randomly
missing traces and contaminated with random noise; c) result of the simultaneous interpolation and
denoising using MSSA; d) difference between the result and expected data.
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a) b) c)

d) e) f)

FIG. 12. Comparison between SSA and MWNI algorithms applied on 2-D pre-stack synthetic data
with regularly decimated traces. a) Input data with regularly decimated traces; b) SSA interpolation
result; c) MWNI interpolation result. d) the f − k spectrum of input data; e) the f − k spectrum of
the result of SSA algorithm; f) the f − k spectrum of the result of MWNI algorithm.
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