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ABSTRACT

In this paper, we provide insight into the amplitude response of a distributed acoustic
sensor. Using techniques from algebraic topology, we know that there is a mathematical
foundation for deforming a helically wound fibre into a straight fibre for a DAS system.
We model what occurs as a helically wound fibre deforms into a straight fibre optic cable.
The deformation allows us to consider how the strain tensor is affected by studying its
determinant, trace, and eigenvalues.

INTRODUCTION

The flexiblity of fibre-optic cables provides more benefits than simply sensitivity to
strain. In fact, this flexiblity allows it to be bent into many different formations in order
to increase its sensitivity to strain. A fibre structure of particular interest is the helically
wound fibre. Figure 1 provides an example of a helically wound fibre-optic cable. One
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FIG. 1: An example of a helically wound fibre-optic cable in a DAS sensor.

issue of the straight fibre is that it cannot detect the wave when it hits the straight fibre
perpendicularly. Orienting the fibre helically provides a way for the fibre to detect waves
oriented perpendicular to the straight fibre.

In theory, the helically wound fibre should provide more information about the area
around the fibre. However, in practice, it appears the helical fibre produces a much lower
signal than the straight fibre. There are many questions as to why the helically wound
fibre does not appear to perform as well as the straight fibre in real world applications. A
considerable amount of investigation has gone into this question, even within CREWES. In
this paper, we attempt to offer mathematical insight into the differences between the signals
in the straight and helically wound fibre.

In this paper, we produce bounds for the amplitude response of the fibre for various
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configuration whether a gauge length is applied or not. Afterwards, we explain how the
amplitude response of the helical fibre is connected via a homotopy to the amplitude re-
sponse of the straight fibre. Employing this fact, we model DAS data to compare the
helically wound fibre and the straight fibre. The example compares the results of a 2.54cm
radius helical fibre laid horizontally along the earth’s surface deforming into the straight
fibre.

We find the bounds for the amplitude A(s, t) of the data to be

Λmin ≤ A(s, t) ≤ Λmax, (1)

where Λmin is the minimum eigenvalue for all eigenvalues λmin for the strain matrix ε(p(s), t)
and Λmax is the maximum eigenvalue for all eigenvalues λmax for the strain matrix ε(p(s), t).
The bounds for the amplitude (A ∗ g)(s, t) of the data with the gauge length applied is

γΛmin ≤ (A ∗ g)(s, t) ≤ γΛmax (2)

where γ is the distance of the gauge length and g is the gauge length function

g(τ) =

{
1 −γ

2
≤ τ ≤ γ

2
;

0 otherwise.
(3)

We also show that a homotopy exists between the amplitude response of the helically
wound fibre and the amplitude response of the straight fibre. This means that the helically
wound fibre can be deformed into the straight fibre. The homotopy allows us to compare
the responses of the straight and helical fibre.

We use the homotopy to model helical fibre in two examples. The first example shows
the results of a 2.54cm radius helix fibre, laid horizontally along the ground, deforming
into the straight fibre. We consider the result at four locations and see that the L2-norm of
the data when the gauge length is applied increases across the homotopy from the helical
fibre to the straight fibre; however, the norms of the data, without the gauge length applied,
as well as the traces, determinants, and eigenvalues of the strain matrices decreases from
the helical fibre to the straight fibre across the homotopy.

BOUNDS ON THE AMPLITUDE OF DAS DATA

In Hardeman-Vooys and Lamoureux (2018), we saw several examples where the heli-
cally wound fibre produced an amplitude response which was significantly smaller than the
amplitude response of the straight fibre. The question arises as to whether this holds for
all helical fibre or just the examples we saw in Hardeman-Vooys and Lamoureux (2018).
Instead of using brute force to answer this question, we provide bounds on the amplitude,
A(s, t), and the amplitude of the data when a gauge length is applied, (A ∗ g)(s, t) using
the model described in Hardeman-Vooys and Lamoureux (2018). These bounds provide us
with the minimum and maximum amplitude for any choice of helical radius and number of
rotations per meter.

Recall in the model that the amplitude response of a distributed acoustic sensor is de-
scribed using the following equation:

A(s, t) = Tp
>(s)ε

(
p(s), t

)
Tp(s), (4)
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where the matrix ε(p(s), t) is the strain at the point s on the path p of the fibre at time t.
The vector Tp(s) is the unit tangent path of the fibre at s.

In order to find these amplitude bounds, we need to use some results from linear algebra.
We start by considering some definitions.

Definition 1. Let A be a d × d symmetric matrix. The matrix A is called positive semi-
definite if all its eigenvalues are non-negative. This is denoted as A � 0, where 0 denotes
the d× d zero matrix. A positive definite matrix A satisfies the condition

A � 0 ⇐⇒ x>Ax ≥ 0 ∀x ∈ Rd. (5)

We also need the following ordering for matrices.

Definition 2. For any two symmetric matrices A and B, the Löwner ordering, or postive
semi-definite ordering, is defined as A � B if A−B � 0.

Now we are prepared to prove the following lemmas in order to find bounds for the
amplitude response of the fibre.

Lemma 3. LetA be a symmetric matrix. Let λmin and λmax respectively denote the smallest
and largest eigenvalues of A. Then

λmin · I � A � λmaxI. (6)

The strain tensor ε is symmetric; hence via application of Lemma 3, ε is bounded by,

λmin · I � ε � λmax · I, (7)

in the Lö order. We also get the following lemma from linear algebra.

Lemma 4. For symmetric A and B, A � B if and only if v>Av ≥ v>Bv for all vectors v.

Since we know that Equation 7 holds, by Lemma 4,

Tp
>λmin · ITp ≤ Tp

>εTp ≤ Tp
>λmax · ITp (8)

=⇒ Tp
>λmin · ITp ≤ A(s, t) ≤ Tp

>λmax · ITp (9)

=⇒ λmin ‖Tp‖22 ≤ A(s, t) ≤ λmax ‖Tp‖22 . (10)

Recall that since Tp is the unit tangent path of the fibre, ‖Tp‖22 = 1. Hence, the bounds
for the amplitude A(s, t) will be

λmin(s, t) ≤ A(s, t) ≤ λmax(s, t). (11)

The eigenvalues λmin(s, t) and λmax(s, t) are the minimum and maximum eigenvalues
of the strain matrix ε(p(s), t) at the point (s, t) on the fibre path p, respectively. Let

Λmin = min
s∈R;

t∈[0,∞)

λmin(s, t) (12)
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and
Λmax = max

s∈R;
t∈[0,∞)

λmax(s, t). (13)

We then have
Λmin ≤ λmin ≤ A(s, t) ≤ λmax ≤ Λmax, (14)

from whence we derive
Λmin ≤ A(s, t) ≤ Λmax. (15)

When applying the gauge length to the waveform response, we convolve the amplitude
of the waveform A(s, t) with the gauge length function

g(τ) =

{
1 −γ

2
≤ τ ≤ γ

2
;

0 otherwise,
(16)

where γ is the distance of gauge length. We calculate the data with the gauge length applied
via the convolution

(A ∗ g)(s, t) =

∫ ∞
−∞

A(τ, t)g(s− τ)dτ (17)

=

∫ s+ γ
2

s− γ
2

A(τ, t)dτ. (18)

Recall from calculus that the following inequality holds for integrals:

Lemma 5. If m ≤ f(x) ≤M for a ≤ x ≤ b then

m(b− a) ≤
∫ b

a

f(x)dx ≤M(b− a). (19)

Using Lemma 5, we then find that the data with the gauge length applied AG(s, t) is
bounded between ∫ s+ γ

2

s− γ
2

Λmindτ ≤
∫ s+ γ

2

s− γ
2

A(τ, t)dτ ≤
∫ s+ γ

2

s− γ
2

Λmaxdτ (20)

=⇒ Λmin

∫ s+ γ
2

s− γ
2

dτ ≤ (A ∗ g)(s, t) ≤ Λmax

∫ s+ γ
2

s− γ
2

dτ (21)

=⇒ Λmin

(
s+

γ

2
−
(
s− γ

2

))
≤ (A ∗ g)(s, t) ≤ Λmax

(
s+

γ

2
−
(
s− γ

2

))
(22)

=⇒ γΛmin ≤ (A ∗ g)(s, t) ≤ γΛmax. (23)

With these arguments, we have produced bounds for the amplitude response of the data
both when a gauge length is applied to the data, and when it is not applied to the data.
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COMPARISON OF STRAIGHT AND HELICALLY WOUND FIBRE

One way to compare the straight and helically wound fibre directly is by using a homo-
topy.

Definition 6. Let X , Y be topological spaces, and f, g : X −→ Y continuous maps. A
homotopy from f to g is a continuous function F : X × [0, 1] −→ Y satisfying

F (x, 0) = f(x) and F (x, 1) = g(x), (24)

for all x ∈ X . If a homotopy exists, we say that f is homotopic to g and write f ' g.

Figure 2 gives a visual idea of what the homotopy does with regards to the fibre-optic
cable. As we move over the homotopy, the shape of the helix deforms along the black
arrows in the figure to the straight fibre. In Figure 3, a 2π cross-section of a helical fibre
with radius hr is considered. For certain values of w ∈ [0, 1], the radius of the helix shrinks.
Figure 3 shows what occurs given four values of w: 0, w1, w2, and 1.
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FIG. 2: A helix deforming to a straight line.

A homotopy describes how one shape can be deformed into another shape. Its existence
suggests that we can deform the helically wound fibre-optic cable into a straight fibre-optic
cable. It also allows us to compare two different matrices or in this case, data sets. We can
compare what happens as the helically wound fibre slowly deforms into the straight fibre
in a DAS system. We assume that the helical fibre holds its shape without any support. In
reality, the helix would have the support of foam, aluminum, or some other material. We
leave that to future work. In the next section, we use the homotopy to compare the two for-
mations of fibre. We will specifically compare the norms of the data over the deformation
in the following section.

Deformation model

With a homotopy between the amplitude response of the straight fibre and the amplitude
response of the helical fibre, we create a model to study what occurs as the fibre deforms
from helically wound to straight. In the following equations, we use MATLAB notation to
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hr

(1− w1)hr

(1− w2)hr

0

FIG. 3: A 2π cross-section of a fibre-optic cable with helical radius hr deforming into a
straight fibre over four choices of w in the homotopy: 0 (blue), w1 (purple), w2 (red), and
1 (black).

explain the model. Consider the following fibre configuration:

p(s) = [s; 100 + hr cos(2πhns);−0.5 + hr sin(2πhns)] (25)

where hr is the helical radius and hn is the number of rotations per meter. We find the
equation for the straight fibre pstr(s) by setting the helical radius hr = 0 and the number
of rotations hn = 0, which gives

pstr(s) = [s; 100;−0.5] (26)

and
phel(s) = [s; 100 + hr cos(2πhns);−0.5 + hr sin(2πhns)] (27)

where we choose hr = 2.54cm and hn = 10 rotations. Therefore, the homotopy F becomes

F (s, w) = (1− w)phel(s) + wpstr(s) (28)
= (1− w)[s; 100 + hr cos(2πhns);−0.5 + hr sin(2πhns)] (29)

+ w[s; 100;−0.5]

= [(1− w)s+ ws; (1− w)(100 + hr cos(2πhns)) + w100; (30)
(1− w)(−0.5 + hr sin(2πhns)) + w(−0.5)]

= [s; 100 + (1− w)hr cos(2πhns);−0.5 + (1− w)hr sin(2πhns)]. (31)

The w from the homotopy only affects the sine and cosine from the helical fibre. This
follows geometrically given that the homotopy deforms a helix into a straight line.
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We use F (s, w) to represent the fibre path in our model. The values of w vary in order
to show how A(s, t) deforms over w from the helical Ahel(s, t) to the straight Astr(s, t).
Specifically, we choose

w ∈
{

0,
1

7
,
1

4
,
1

2
,
3

5
,
3

4
, 1

}
. (32)

To give examples outside multiples of 1/4, we pick values of w = 1/7 and w = 3/5. We
position the source at four different locations on the fibre to study how the position of the
source affects the response of the fibre. We choose the following four locations with respect
to the fibre in our model:

1. Location 1 - [101,105,0];

2. Location 2 - [106,105,0];

3. Location 3 - [111,105,0];

4. Location 4 - [100,111,0].

Let us begin by considering the results for all w when the source is at Location 1.
Figures 4 – 7 show the fibre deforming from helical fibre of radius 2.54cm for 10 rotations
per meter of fibre to straight fibre. We plug the different values of w into the homotopy F
from Equation 31 and use it for the path of the fibre. The left column of each set of figures
shows the data without the gauge length applied and the right column depicts the data with
the 10 meter gauge length applied.

Figure 4 shows the 2.54cm helical fibre at the top and the 2.54cm radius diminished by
1/7th of the radius on the bottom row. The data without the gauge length applied as seen
on the left shows some evidence of the helical fibre given the presence of oscillations in the
signal, whereas the version of the data with the gauge length applied on the right does not
have these oscillations. At least for this size of helix and gauge length, the gauge length
causes the parts of the data which highlight the helix to disappear. Moreover, the signal of
the data with the gauge length applied looks brighter and larger because the gauged data
applies a sampling rate of ∆x = 2/3m which is typical for real data. The data without a
gauge length applied has a sampling rate of ∆x = 1/3m because we need at least three
points per rotation in order to realize the helix.

In Figure 5, the helical shape of the fibre becomes much more prominent in the data
without a gauge length applied on the left as the radius decreases; however, applying the
gauge length causes the helix to disappear from the data. The prominence of the helix may
be due to the number of sample points employed to create the helical data set. The smaller
helix benefits from the fewer sample points, while the larger helix did not. It may also be
due to how close the source is to the fibre.

Focusing now on the data with the 10 meter gauge length applied, notice that the heli-
cal fibre of radius 2.54cm decreased by 1/4 of the radius (top right) does not have distin-
guishable S-wave response, but decreasing the radius by half of the radius (bottom right)
produces a visible S-wave.
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FIG. 4: (Left column) The data without the gauge length applied (top) helical fibre and
(bottom) helical fibre diminished by 1/7-th of the radius when the source is at Location 1.
(Right column) The 10 m gauge length applied to data seen in the left column.
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FIG. 5: (Left column) The data without the gauge length applied (top) helical fibre dimin-
ished by 1/4-th of the radius and (bottom) helical fibre diminished by 1/2-th of the radius
when the source is at Location 1. (Right column) The 10m gauge length applied to data
seen in the left column.
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FIG. 6: (Left column) The data without the gauge length applied (top) helical fibre dimin-
ished by 3/5-th of the radius and (bottom) helical fibre diminished by 3/4-th of the radius
when the source is at Location 1. (Right column) The 10m gauge length applied to data
seen in the left column.
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Interestingly, Figure 6 provides even more evidence of the S-wave response as the ra-
dius of the helix decreases. The helix can still be distinguished in the data without the
gauge length applied on the left; however, it does not appear in the data with a gauge length
applied on the right, which is to be expected given the results found in Figure 4 and 5.

FIG. 7: (Left column) The data without the gauge length applied (top) straight fibre and
(bottom) helical fibre at Location 1. (Right column) The 10m gauge length applied to data
seen in the left column at Location 1.

Figure 7 shows this pattern continuing. We compare the final results of the homotopy
by including the results from the helical fibre in the bottom row of Figure 7. The S-wave is
present for the straight fibre whereas it is not evident for the helical fibre of radius 2.54cm.
the signal from the straight fibre possesses a flatter peak than the helical fibre. The tail of
the signal for the straight fibre is wider. While the signal of the helical fibre is smaller than
the signal of the straight fibre, it appears to be more precise with regards to the shape of
the hyperbola; however, it is much more difficult to distinguish the S-wave response in the
helical fibre response than it is in the straight fibre response. Recall from Hardeman-Vooys
and Lamoureux (2018) that the helical fibre’s S-wave response had a smaller amplitude than
the straight fibre’s S-wave response. the amplitude of the helical fibre’s S-wave response is
present.

Figure 8 depicts the results of the straight fibre (top) and the helical fibre (bottom) when
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Hardeman-Vooys et al.

FIG. 8: (Left column) The data without the gauge length applied (top) straight fibre and
(bottom) helical fibre at Location 2. (Right column) The 10m gauge length applied to data
seen in the left column at Location 2.
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the source is at Location 2. The hyperbola is to right of where it was in the data for Location
1. Applying the gauge length to the data (right) has similar results to the data at Location 1.
The peak of the straight fibre’s response is flattened. The helical fibre’s response no longer
has evidence of a helix once the gauge length is applied.

FIG. 9: (Left column) The data without the gauge length applied (top) straight fibre and
(bottom) helical fibre at Location 3. (Right column) The 10m gauge length applied to data
seen in the left column at Location 3.

In Figure 9, the results for the data at Location 3 produce a similar outcome to the
previous two locations. The hyperbola response has once again moved toward the right.
This is because Location 3 occurs at 111 meters down the length of the fibre.

Figure 10 presents the results for Location 4. Recall that Location 4 is near the center
of the fibre but 11 meters away from the fibre formation, unlike the previous three locations
which were 5 meters away from the fibre. The amplitude response of both the helical and
straight fibre is much smaller for the new location, both when the gauge length is applied to
the data and when it is not, than for the previous four locations. Once again when we apply
the gauge length to the straight and helical fibre, it is difficult to distinguish the S-wave
response in the helical fibre, while we can locate it in the straight fibre’s response.

CREWES Research Report — Volume 31 (2019) 13



Hardeman-Vooys et al.

FIG. 10: (Left column) The data without the gauge length applied (top) straight fibre and
(bottom) helical fibre at Location 4. (Right column) The 10m gauge length applied to data
seen in the left column at Location 4.
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Analysis of the data along the deformation

Investigating whether the results increase or decrease over w would provide insight into
how the helical fibre compares to the straight fibre. Given that the output of the homotopy
model is a matrix for each value of w, we use the L2-norm to offer a comparison of each
w along the deformation. We first study the L2-norm of the data without a gauge length
applied and the L2-norm of the data with a gauge length of 10m applied. Afterwards, we
examine the effects on the trace, determinant, and eigenvalues of the strain matrix at each
point (p(s), t) on the fibre path p at time t. We use the model from Hardeman-Vooys and
Lamoureux (2018) for this deformation model. The S-wave response is a vector potential
which is represented using the S-wave orientation vector A. To investigate the effect of
different S-wave orientations, we also include eight different S-wave orientation vectors to
study the effect that the orientation of the S-wave has on the amplitude response of the fibre
over the homotopy.

The results above consider a uniform response for the S-wave orientation vector A =
[50, 50, 50]. While not included here, we also conducted an experiment where we looked at
less uniform values of A which we group into two sets. The first set of S-wave orientation
vectors is A = [50, 20, 20], A = [20, 50, 20] and A = [20, 20, 50]. While the data sets
are not presented here, we do include information about the data sets in the our following
comparisons.

Our first comparison looks at the norm of the data without the gauge length applied. We
also include the results of applying the norm to the data when the gauge length is applied.
In both cases, we applied the norm at each point w. In Figure 11, we see the results for the
vectors A = [50, 50, 50], A = [50, 20, 20], A = [20, 50, 20], and A = [20, 20, 50] for each
of the four locations. Figure 12 shows the norms when the gauge length is applied for these
vectors A.

In Figures 11 and 12, for all S-wave orientation vectors A when taking the L2-norm of
the data without the gauge length applied, the response of the helically wound fibre is larger
than the response of the straight fibre. Once the gauge length is applied to the data, the norm
of the response for the helical fibre is lower than the norm of the response for the straight
fibre. Given that Location 4 is 11 meters away from the fibre compared to Locations 1 to
3, the norm of the helical fibre’s response appears to decrease more in comparison to the
norm of the straight fibre’s response for all S-wave orientation vectors A. Only one case
of S-wave orientation vectors A appear to have a helical response which is larger than the
straight fibre’s response when the gauge length is applied: the case when A = [20, 20, 50].
This only holds true for the first three locations, and not for Location 4. It suggests there are
some formations of fibre where the helical fibre provides a better response than the straight
fibre once a gauge length is applied to the data; however, it depends on the orientation of
the S-wave response and the location of the source.

With regards to the choice of orientation, the S-wave orientation vectors A = [20, 50, 20]
and A = [50, 20, 20] vary when no gauge length is applied to the data; however, they ap-
pear to give very similar results once the gauge length is applied. This may be attributed
to the formation of the fibre with regards to the S-wave orientation vector. The uniform
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FIG. 11: The L2-norm of the data without the gauge length applied at (top left) Location
1, (top right) Location 2, (bottom left) Location 3, and (bottom right) Location 4 for S-
wave orientation vectors A = [50, 50, 50] (blue), A = [20, 50, 20] (red), A = [20, 20, 50]
(yellow), and A = [50, 20, 20] (purple).
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FIG. 12: The L2-norm of the data with the gauge length applied at (top left) Location
1, (top right) Location 2, (bottom left) Location 3, and (bottom right) Location 4 for S-
wave orientation vectors A = [50, 50, 50] (blue), A = [20, 50, 20] (red), A = [20, 20, 50]
(yellow), and A = [50, 20, 20] (purple).
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S-wave orientation vectors A = [50, 50, 50] give responses which lie between the results
of the other S-wave orientation vectors A when the gauge length is applied to the data and
when it is not. Given the different results for each vector A, it suggests that the success of
the fibre depends on the orientation of the source which follows as the amplitude response
is linear with respect to the vector A.

We also observe that for some S-wave orientation vectors A, the 2.54cm helical radius
response (w = 0) does not give the largest norm of the data without the gauge length
applied across the deformation. It occurs for the S-wave orientation vector A = [50, 20, 20]
in Figure 11. When the gauge length is applied to the data, the norm of the data at w = 0
is not the minimum over the homotopy for S-wave orientation vectors A = [50, 50, 50]
and A = [20, 20, 50] in Locations 1, 2, and 3, whereas for S-wave orientation vectors
A = [20, 50, 20] and A = [50, 20, 20], it only occurs at Location 1. Given these varying
results, it supports the fact that the amplitude of the source affects the succes of the fibre
formation.

Analysis of the strain matrices: Trace

Now, let us explore the effects on the strain matrix ε along the deformation. We begin
by calculating the trace of the strain matrix at each point (s, t) and assign it to the corre-
sponding entry of a matrix Mtr. Then we take the L2-norm of the matrix Mtr for each w.
From linear algebra, the trace simply sums the diagonal of the strain matrix. The general
form of the trace is

tr(ε) = −
(
Gα +

1

r2
Hα

)
, (33)

where α is the velocity of the P-wave. Interestingly, the trace is only dependent on the P-
wave which means that the trace does not depend on the orientation of the S-wave response.

Figures 13 show the results of computing the norm on the traces. The trace varies over
each location. It does decrease from the helically wound fibre’s response to the straight
fibre’s response; however, it appears to stay unchanged between the different S-wave ori-
entation vectors A. Given that the trace only depends on the P-wave, it follows that the
S-wave orientation vector A would not affect the trace, since the vector A shows up only
in the S-wave response. The norm of the traces remains unaffected by the amplitude of the
source, but it does depend on the location of the source since the value of the norm of the
traces changes between each location.

Analysis of the strain matrices: Determinants

Another method of comparison using the deformation involves looking at the determi-
nant of the strain tensor. We calculate the general determinant of the strain tensor to be the
following equation:

det(ε) =
1

8r6

(
8G3

αA+4G2
αGβB+GαG

2
βC+8GαHαr

2 +G3
βD+G2

βHαE+8Hα

)
(34)
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FIG. 13: The L2-norm of the traces of the strain matrices of the data at (top left) Location
1, (top right) Location 2, (bottom left) Location 3, and (bottom right) Location 4 for S-
wave orientation vectors A = [50, 50, 50] (blue), A = [20, 50, 20] (red), A = [20, 20, 50]
(yellow), and A = [50, 20, 20] (purple).
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where

A = x2y2z(y − z); (35)

B = −xy
(

2Xyz(z − y) + Yxz(2z − 3y) + Zxy(2z − y)
)

; (36)

C = 2
(
X2y3z + Y2x2z(3y − z)− Z2x2y2XYz(−XYz + 4xy2 − 3xyz) (37)

+ XZxy2(2y − 3z) + YZx2y(2y − 3z)
)

;

D = XY
(
Yy(Xyz − 2xy)− z2(Xy + Yx)

)
+ XZy2

(
Xy − (Xz + Zx)

)
(38)

+ YZx2
(
Yy − (Yz + Zy)

)
+ XYZy(y − xz) + Y3x2z;

E = −2
(

(Xy −Yx)2 + (Xz − Zx)2 + (Yz − Zy)2
)

(39)

where

X = Azy − Ayz; (40)
Y = Axz − Azx; (41)
Z = Ayx− Axy. (42)

The functions G and H depend on the minimum-phase source function used. The sub-
scripts on the functions G and H denote whether the P-wave (α) or S-wave (β) velocity
is used in the function. The terms X, Y, and Z are the same as the equations found in
Hardeman-Vooys and Lamoureux (2018).

Given the complicated nature of the equation for the determinant, a numerical compar-
ison of the strain determinants at each point along the fibre would provide more insight at
this time. A numerical comparison seems much more feasible since it would be unrealistic
to simplify the equation by setting some values of Ai = 0 as the vector A represents the
orientation of the S-wave response. Let us consider the determinant of the strain matrix at
each the point (s, t) and take the norm over all (s, t). Again, we look at the results for all
S-wave orientation vectors A that we studied for the previous comparisons.

As with the trace example, we find the determinant of the strain matrix for each point
(s, t) and then assign it to a matrix Mdet. There will be a matrix Mdet for each w. We
take the L2-norm of each Mdet to generate the Figure 14. Figure 14 shows the L2-norm
of the determinants for all (s, t) for the first set of S-wave orientation vectors A at each
location. Interestingly, the value of the norm of the determinants does not appear to change
over the homotopy for any S-wave orientation vector A or location; however, they each
decrease by a small increment from the helically wound fibre’s response to the straight
fibre’s response. Consistently across all four locations, the S-wave orientation vector A =
[20, 20, 50] provides the highest norms of the determinants out of the four vectors in their
group over each location. Both sets of S-wave orientation vectors A keep the same order
from greatest norm to least norm across all four locations.

Analysis of the strain matrices: Eigenvalues

Finally, we compare the eigenvalues of the strain matrices at points (s, t). Given that ε
is a 3×3 symmetric matrix, there will be three eigenvalues. From the amplitudes bounds in
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FIG. 14: The L2-norm of the determinants of the strain matrices of the data at (top left)
Location 1, (top right) Location 2, (bottom left) Location 3, and (bottom right) Location
4 for S-wave orientation vectors A = [50, 50, 50] (blue), A = [20, 50, 20] (red), A =
[20, 20, 50] (yellow), and A = [50, 20, 20] (purple).
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Equations 15 and 23, we know that the eigenvalues play an important role with respect to
the amplitude of the response. In this section, we calculate the eigenvalues for each strain
matrix, group the eigenvalues into three groups, and then compute the L2-norm over all
(s, t) for three different sets of eigenvalues.

FIG. 15: The L2-norm of the first eigenvalues of the strain matrices of the data at (top left)
Location 1, (top right) Location 2, (bottom left) Location 3, and (bottom right) Location
4 for S-wave orientation vectors A = [50, 50, 50] (blue), A = [20, 50, 20] (red), A =
[20, 20, 50] (yellow), and A = [50, 20, 20] (purple).

In Figure 15, we see the results of the L2-norm applied to the first group of eigenvalues
for the S-wave orientation vectors A = [50, 50, 50], A = [20, 50, 20], A = [20, 20, 50],
and A = [50, 20, 20] at each location. As with the norm of the determinants, the first
eigenvalues do not appear to change over the deformation. There is a slight change in some
of the norms; however, this change is smaller than a factor of 10−4 in some cases. As with
the case for the norm of the determinants, the S-wave orientation vectors have the same
ordering for the norms of the first eigenvalues from greatest to least.

While the L2-norms of the second eigenvalues change over each location, Figure 16
shows that the norm stays the same for each S-wave orientation vector A. Any difference
between the norms appears to occur at a factor of 10−17 or less which is negligible.
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FIG. 16: The L2-norm of the second eigenvalues of the strain matrices of the data at (top
left) Location 1, (top right) Location 2, (bottom left) Location 3, and (bottom right) Lo-
cation 4 for S-wave orientation vectors A = [50, 50, 50] (blue), A = [20, 50, 20] (red),
A = [20, 20, 50] (yellow), and A = [50, 20, 20] (purple).
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FIG. 17: The L2-norm of the third eigenvalues of the strain matrices of the data at (top left)
Location 1, (top right) Location 2, (bottom left) Location 3, and (bottom right) Location
4 for S-wave orientation vectors A = [50, 50, 50] (blue), A = [20, 50, 20] (red), A =
[20, 20, 50] (yellow), and A = [50, 20, 20] (purple).
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FIG. 18: The L2-norm of the third eigenvalues of the strain matrices of the data at (top left)
Location 1, (top right) Location 2, (bottom left) Location 3, and (bottom right) Location 4
for S-wave orientation vectors A = [1, 1, 1] (blue), A = [0.6, 1, 0.6] (red), A = [0.6, 0.6, 1]
(yellow), and A = [1, 0.6, 0.6] (purple).
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In Figures 17, the L2-norm of the third eigenvalues follows a similar pattern to norm
of the first eigenvalues; however, the norms of the third eigenvalues are higher at all four
locations than the norm of the first eigenvalues. While difficult to detect in the figures, the
norm of the third eigenvalues decrease over the deformation from the helically wound fibre
to the straight fibre.

FUTURE WORK

With no gauge length applied, helical fibre gives a stronger response than straight fibre.
With the gauge length applied, straight fibre gives a stronger response than helically wound
fibre. This suggests that the gauge length has a significant effect on the performance of
the fibre. In fact, the gauge length appears to destroy a lot of information that the helically
wound fibre holds. For this study, we used a gauge length of 10 meters. For future work,
an investigation of how smaller and larger gauge lengths affect the helical fibre should be
conducted. We should also examine how the gauge length affects the trace, determinants,
and eigenvalues of the strain matrices at each point (s, t).

CONCLUSIONS

Through numerous examples, we demonstrated that with no gauge applied, helical fibre
gives a stronger response than straight. With gauge applied, straight fibre gives a stronger
response than helical. We also saw that the location of the source with respect to the fibre
affects the amplitude response. We found bounds for the amplitude response of the fibre,
both when the gauge length is applied and when it is not. We also showed that the ampli-
tude response of the helical fibre is homotopic to the straight fibre by building homotopies
between the path of the helical and straight fibres, the strain tensor, and the tangent path of
the helical and straight fibres. Then, we used the homotopy for two examples to compare
the straight and helical fibre. In the first example, we looked at the results of a helical fibre
of radius 2.54cm as it deforms into straight fibre. The norms of the data when the gauge
length was applied showed the norm increasing from the helical fibre to the straight fibre
along the homotopy; however, for the L2-norm of the data when the gauge length was not
applied as well as the L2-norms of the traces, determinants, and eigenvalues, the L2-norm
decreased over the homotopy from the helical fibre to the straight fibre.

For deformation comparison of the helical and straight fibre, it is interesting to see that
the L2-norm of the traces, determinants, and the eigenvalues showed the norms decreasing
from helical fibre to the straight fibre. It was only when we applied the gauge length to
the data that we saw a difference in the norms. For the horizontal fibre, the norm of the
data with the gauge length applied increased from the helical fibre of radius 2.54cm to
the straight fibre. These results suggest that the success of the fibre formations is highly
dependent on where the source is located with respect to the fibre. Further investigation
of the different fibre formations with different locations for the source is merited. Finding
other means besides the norm to compare the helical and straight fibre over the deformation
is also worth investigating.
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