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ABSTRACT

Crosstalk is the phenomenon in which data signatures of different physical properties
are confused in full-waveform inversion (FWI). The challenges associated with crosstalk
are a major obstacle to the effective implementation of multiparameter FWI. In this study,
we focus on acoustic media with variable density, and discuss the reduction of parame-
ter crosstalk from three aspects: optimization method, acquisition geometry, and model
parameterization. Optimization methods such as steepest-descent, conjugate gradient and
quasi-Newton methods are compared in terms of the inversion quality and computational
cost. For geometry, we show how sub-surface sources and receivers provided by vertical
seismic profile (VSP) and crosswell help mitigate the crosstalk from surface seismic. Scat-
tering patterns of four parameterizations: velocity-density, impedance-density, impedance-
velocity, and bulk modulus-velocity, are illustrated and employed to study their capabilities
relative to crosstalk.

INTRODUCTION

With the full wavefield being accounted for in full-waveform inversion (FWI), it is
naturally to include more realistic physics in the forward modeling to better match the ob-
served data, such as viscosity, elasticity and anisotropic effects (Operto et al., 2013; Alkhal-
ifah and Plessix, 2014). Multiparameter inversion has become feasible to invert parameter
classes other than P-wave velocity, such as density, attenuation, shear velocity. Neverthe-
less, adding more parameter classes in FWI can increase the ill-posedness of the inverse
problem (Virieux and Operto, 2009), and inverting multiparameter is much more compli-
cated than monoparameter inversion due to the potential presence of trade-off/crosstalk
between different parameter classes (Geng et al., 2018).

When two parameters have similar scattering patterns, their gradient updates resemble
each other, making it difficult to decipher between the two (Innanen, 2014). Newton-based
optimization methods, which incorporate the multiparameter inverse Hessian, can alter the
update in any one parameter to accommodate the variational properties of all others (Mé-
tivier et al., 2013). However, explicit calculation, storage and inversion of Hessian are
computationally unaffordable for large-scale inverse problem (Pan et al., 2018). As a low-
rank approximation of Hessian, Quasi-Newton methods (e.g., L-BFGS method) approach
the inverse Hessian iteratively by storing the changes of the gradient and model from a
number of previous iterations (Nocedal, 1980). For multiparameter FWI, the L-BFGS al-
gorithm provides a suitable scaling of the gradients for each parameter class. A comparison
between the conjugate-gradient method and the L-BFGS method for a realistic onshore ap-
plication of multiparameter elastic FWI is shown in Brossier et al. (2009).

Another approach of mitigating parameter crosstalk is to use a suitable model parame-
terization, where the classes of unknown properties should be as uncorrelated as possible
(Keating and Innanen, 2017). Scattering patterns, which represent the analytic solutions
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of the Fréchet derivative wavefields due to different physical parameters, have been widely
studied for selecting the optimal parameterization (Wu and Aki, 1985; Tarantola, 1986;
Forgues and Lambaré, 1997). Tarantola (1986) examines the resolving abilities of var-
ious parameterizations for isotropic-elastic FWI. His analysis suggests that the velocity-
density parameterization is more appropriate for inversion with large-offset data, whereas
the impedance–density parameterization is more suitable for near-offset data. Virieux and
Operto (2009) show the radiation pattern of various parameterizations in acoustic FWI.
They point out that velocity and density are difficult to recover from short-offset data, and
if wide-aperture data are available, velocity and impedance might provide the most judi-
cious parameterization because they scatter energy for different aperture bands.

In this paper, we first review the forward and inverse problems associated with FWI in
acoustic media with variable density. Optimization methods such as gradient- and Newton-
based methods are explained. The expressions of sensitivity kernels for various param-
eterizations are derived. We then carry out synthetic experiments to compare different
optimizations methods, acquisition geometries, and model parameterizations in terms of
their capability relative to crosstalk in multiparameter inversion.

THEORIES AND METHODS

Frequency-domain forward modeling

We use the frequency domain acoustic wave equation to describe wave motions (Mar-
furt, 1984):

ω

K(x)
u(x,xs, ω) +∇ ·

(
1

ρ(x)
∇u(x,xs, ω)

)
= fs(ω)δ(x− xs), (1)

where ω is the angular frequency, x = (x, y, z) denotes the subsurface location in Cartesian
coordinates, ∇ is the first order spatial derivative operator, K = ρv2 is bulk modulus,
ρ is density, v is velocity, u(x,xs, ω) denotes the pressure wavefield at position x, and
fs(ω)δ(x − xs) means the source signature at position xs. Rewrite the model parameters
with different classes into a vector m, the discretized wave equation can be written in a
matrix form:

A(m, ω)u(x,xs, ω) = f(xs, ω), (2)

where A(m, ω) is the impedance matrix. As the number of non-zero diagonals is related
to the finite-difference scheme, e.g., in a five-point finite difference scheme, the impedance
matrix has five non-zero diagonals. The wavefield can be obtained by the inverse of the
impedance matrix, which is usually replaced by the direct matrix factorization methods,
such as the LU decomposition.

Theories of full-waveform inversion: Gradient and Hessian

As a non-linear least-squares optimization problem, FWI seeks to estimate subsurface
parameters through an iterative process by minimizing the difference between the synthetic
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data dsyn and observed data dobs. The misfit function is formulated in a least-squares form:

Φ(m) =
1

2

∑
ns

∑
nω

‖dobs(xs, ω)− dsyn(m,xs, ω)‖2 =
1

2
δdT δd∗, (3)

where dsyn(m,xs, ω) = Ru(m,xs, ω) is the synthetic data generated using the current
model m, R is the sampling operator that extracts the wavefields at receivers’ locations, T

is the transpose operator and ∗ is the conjugate operator.

The Newton optimization approach is based on the second order Taylor-Lagrange ex-
pansion of the misfit function:

Φ(m +4m) ≈ Φ(m) + gT4m +
1

2
4mTH4m, (4)

where4m is the search direction, g and H indicate the gradient and Hessian. To minimize
the quadratic approximation of the misfit function, the updated model at (k+ 1)th iteration
can be written as

mk+1 = mk + µk4mk, (5)

where µk is the step length, a scalar constant calculated by a line-search method. The
search direction4mk is the solution of the Newton linear system:

Hk4mk = −gk. (6)

Here we show how to derive the gradient and Hessian.

The gradient of the misfit function is the first-order partial derivative of the misfit func-
tion with respect to model parameter:

g =
∂Φ(m)

∂m
= −<

{∑
ns

∑
nω

[(
∂(Ru(m,xs, ω))

∂m

)T
δd∗

]}
, (7)

where J = ∂(Ru(m,xs,ω))
∂m

is the Fréchet derivative matrix (or sensitivity matrix), and the
operator < is taken to ensure the gradient remaining real. To calculate J, we take the
partial derivative of equation 2 with respect to model parameters:

A(m, ω)
∂u(m,xs, ω)

∂m
= −∂A(m, ω)

∂m
u(m,xs, ω). (8)

This shows that the first-order partial derivative of the wavefield ∂u(m,xs,ω)
∂m

can be obtained
by solving the wave equation with a virtual source :

f g = −∂A(m, ω)

∂m
u(m,xs, ω). (9)

The radiation pattern of each parameter class is included in the virtual source, and the
calculation for it depends on the details of the finite approximation method. Equation 8
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also indicates that the first-order partial derivative of the wavefield with respect to each
model position can be interpreted as the wavefield scattered by a small perturbation of the
parameter at this position (Geng et al., 2017).

Substituting the virtual source back to the gradient, since only the real part of the
complexed-valued vector is taken to obtain the gradient, the gradient can be calculated
using the adjoint (conjugate transpose) of the impedance matrix:

g = <

{∑
ns

∑
nω

u†(m,xs, ω)
∂A†(m, ω)

∂m
λ(m, ω)

}
, (10)

where λ(m, ω) is the adjoint variable/adjoint state that is the solution of the adjoint equation
(Plessix, 2006):

A†(m, ω)λ(m, ω) = R†δd, (11)
where † stands for the adjoint operator, and R† = RT since R is real defined.

For multiparameter FWI, the Hessian is a large block matrix, with each block repre-
senting the second order derivative of the misfit function with respect to parameter classes:

Hm1m2(x,x
′) = <

{∑
ns

∑
nω

[(
∂u(m,xs, ω)

∂m1(x)

)†
R†R

∂u(m,xs, ω)

∂m2(x′)

−
(

∂2u(m,xs, ω)

∂m1(x)∂m2(x′)

)†
R†δd

]}
.

(12)

When m1 = m2, it indicates the element in diagonal blocks, and when m1 6= m2, it
indicates the element in off-diagonal blocks. The first-order term HL measures the cor-
relations of two Fréchet derivative wavefields and is essential in overcoming crosstalk in
multiparameter FWI.

Optimization methods

The full Newton method uses the quadratic search direction from equation 6: 4mk =
−H−1

k gk. The Gauss-Newton method approximates the full Hessian by only accounting for
the first term in equation 12. Although the Newton methods benefit from fast convergence
rate, the computation, storage, and inversion of Hessian at each iteration are prohibitively
expensive, this limits their applications for large-scale inverse problems (Pan et al., 2018).

Gradient-based methods (e.g., steepest-descent (SD) and conjugate-gradient (CG)) are
computationally more attractive when inverting a large number of unknown model param-
eters (Pan et al., 2017). SD simply determines the search direction to be the negative of
gradient. In CG, the search direction is a linear combination of current gradient and the
previous search direction. However, Pratt et al. (1998) claim that the gradient method can
fail to converge toward an acceptable model, however many iterations. They interpret this
as the result of the difficulty of estimating a reliable step length.

As a low-rank approximation of the Hessian, the L-BFGS method is an attractive alter-
native to the Newton-type and gradient-based methods by approximating the inverse Hes-
sian iteratively instead of constructing the Hessian explicitly (Brossier et al., 2009). Using

4 CREWES Research Report — Volume 31 (2019)



Multiparameter acoustic FWI

a pair of vectors sk+1 = mk+1 −mk and yk+1 = gk+1 − gk that indicate the model and
gradient changes that satisfy the condition s†kyk > 0, the inverse Hessian approximation
H−1
k+1 is given by

H−1
k+1 = v†kH

−1
k v†k + wksks

†
k, (13)

where wk = 1/y†ksk,vk = I−wkyks
†
k, and I is the identity matrix. The model and gradient

are stored for a limited number (typically < 10) of previous iterations. For multiparameter
FWI, the L-BFGS algorithm provides a suitable scaling of the gradient computed for each
parameter class and can help reduce crosstalk.

Sensitivity kernels of different parameterizations

To consider the model perturbation with the form of relative variation, for the bulk
modulus-density parameterization, we define the model as

sk(x) = lnK(x), sρ(x) = ln ρ(x). (14)

So the perturbations of modulus and density can be expressed as

δsk =
δK

K
, δsρ =

δρ

ρ
. (15)

Consider a model perturbation at position x, with the Born approximation, the per-
turbed pressure wavefield for a source-receiver couple at frequency ω is given by

δu(xg,xs, ω) =

∫
Ω(x)

(KKρ−K(x)δsk(x) +KKρ−ρ(x)δsρ(x))dx, (16)

whereKKρ−K andKKρ−ρ represent the sensitivity kernels with respect to the bulk modulus
K and density ρ, and can be expressed as

KKρ−K(x) = −ω
2

K
G(xg,x, ω)G(x,xs, ω),

KKρ−ρ(x) =
1

ρ
∇G(xg,x, ω) · ∇G(x,xs, ω),

(17)

where G(x,xs, ω) and G(xg,x, ω) denote the source-side and receiver-side Green’s func-
tions.

For the velocity-density parameterization, we define

sv(x) = ln v(x), sρ(x) = ln ρ(x). (18)

Using the chain rule:
δK

K
≈ 2

δv

v
+
δρ

ρ
, (19)
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the corresponding sensitivity kernels are:

Kvρ−v(x) = −2ω2

ρv2
G(xg,x, ω)G(x,xs, ω),

Kvρ−ρ(x) = − ω2

ρv2
G(xg,x, ω)G(x,xs, ω) +

1

ρ
∇G(xg,x, ω) · ∇G(x,xs, ω).

(20)

Likewise, sensitivity kernels of the other four parameterizations for acoustic media can
be derived.

Impedance-density:

KIpρ−Ip(x) = −2ω2ρ

I2
p

G(xg,x, ω)G(x,xs, ω),

Kvρ−ρ(x) =
ω2ρ

I2
p

G(xg,x, ω)G(x,xs, ω) +
1

ρ
∇G(xg,x, ω) · ∇G(x,xs, ω).

(21)

Impedance-velocity:

KIpv−Ip(x) = − ω2

Ip · v
G(xg,x, ω)G(x,xs, ω)− v

Ip

∇G(xg,x, ω) · ∇G(x,xs, ω),

KIpv−v(x) = − ω2

Ip · v
G(xg,x, ω)G(x,xs, ω)− v

Ip

∇G(xg,x, ω) · ∇G(x,xs, ω).

(22)

Modulus-velocity:

KKv−K(x) = −ω
2

K
G(xg,x, ω)G(x,xs, ω) +

v2

K
∇G(xg,x, ω) · ∇G(x,xs, ω),

KKv−v(x) = −2v2

K
∇G(xg,x, ω) · ∇G(x,xs, ω).

(23)

Modulus-impedance:

KKIp−K(x) = −ω
2

K
G(xg,x, ω)G(x,xs, ω)− K

I2
p

∇G(xg,x, ω) · ∇G(x,xs, ω),

KKIp−Ip(x) = −2K

I2
p

∇G(xg,x, ω) · ∇G(x,xs, ω).

(24)

The spatial derivative term∇G(xg,x, ω) · ∇G(x,xs, ω) satisfies

∇G(xg,x, ω) · ∇G(x,xs, ω) = − cos θ · ω
2

v2
G(xg,x, ω)G(x,xs, ω), (25)

where θ is the source-receiver opening angle.
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Substitute equation 25 into the above sensitivity kernels, we obtain the radiation pat-
terns for the six parameterizations (He et al., 2018):

Qv−ρ = [−2,−2 cos2(θ/2)],

QK−ρ = [−1, cos θ],

QIp−ρ = [−2,−2 sin2(θ/2)],

QIp−v = [−2 cos2(θ/2),−2 sin2(θ/2)],

QK−v = [−2 cos2(θ/2),−2 cos θ],

QK−Ip = [−2 sin2(θ/2),−2 cos θ].

(26)

NUMERICAL EXAMPLES

Most numerical tests in this section are performed on the Gaussian-anomaly model
(Figure 1), where we have a velocity anomaly on the left and a density anomaly on the
right. The initial velocity and density models are homogeneous, with a constant velocity
of 3000 m/s and a constant density of 2000 kg/m3. The model is constructed of 50 ×
100 grid cells with a grid interval of 10 m in horizontal and vertical directions. A total
of 10 sources are deployed from 20 to 980 m with an interval of 100 m and a depth of
20 m. A total of 100 receivers are distributed on the surface from 10 to 1000 m with an
interval of 10 m and a depth of 20 m. 13 frequencies from 3 HZ to 15 HZ with 20 iterations
per frequency are used. The defaulted optimization method, acquisition geometry and
parameterization are the L-BFGS method, surface-only sources and receivers, and velocity-
density parameterization, respectively.

FIG. 1. True and initial velocity and density models

Optimization Methods

Figure 2 shows the inversion results with the steepest descent (SD), conjugate gradient
(CG) and L-BFGS methods. The stopping criteria is set to be a maximum iteration of 200.
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We observe that the mappings between velocity and density appear in all figures. Compared
with velocity, density is more difficult to recover using any of the three methods. Due to
a stronger mapping from density to velocity and a dimmer reconstructed density, SD is
considered to be less efficient than CG and L-BFGS.

Figure 3 shows the convergence history of the three methods. The uphill steps in data
residuals imply a transition from one frequency band to the next. The normalized model
errors are calculated by dividing the errors of the estimated model by the errors of the initial
model. We observe that L-BFGS converges slightly faster than CG and much faster than
SD. Besides, the computation time in this case is 397 s for SD, 508 s for CG, and 308 s
for L-BFGS, this illustrates that L-BFGS outperforms SD and CG on both accuracy and
computational cost.

FIG. 2. Comparison of inversion results by different optimization methods: a) SD, b) CG, and c)
L-BFGS.
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FIG. 3. Comparison of the convergence history for different optimization methods.

The three optimization methods are tested on another model, as shown in Figure 4. We
have a layered velocity model and a Gauss-anomaly density model. The initial velocity
is obtained by smoothing the true velocity model and the initial density model is set to
be homogeneous. Figures 5 and 6 show the inversion results and convergence histories.
Consistent with the results in previous example, the three methods have a similar reduction
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trend of data misfit and velocity errors, but L-BFGS takes a greater advantage of recovering
density. Given the computation time of this example is 284 s for SD, 447 s for CG and 228
s for L-BFGS, we conclude that L-BFGS is not only faster but also more effective for
reducing crosstalk.

FIG. 4. True and initial models of velocity and density

FIG. 5. Comparison of inversion results by different optimization methods: a) SD, b) CG, and c)
L-BFGS.
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FIG. 6. Comparison of the convergence history for different optimization methods.

CREWES Research Report — Volume 31 (2019) 9



Hu and Innanen

Acquisition Geometries

The importance of acquisition geometry to the reduction of parameter crosstalk in FWI
can be illustrated by radiation patterns. Figure 7 shows the radiation patterns of velocity and
density. We observe that the perturbation of velocity scatters the same energy for different
angles, and density has the same radiation pattern as velocity at short apertures but does
not scatter energy at wide apertures. This implies that the two parameters are difficult to
reconstruct using only short-offset data.

0°

45°

90°

135°

180°

225°

270°

315°

FIG. 7. Radiation pattern of the velocity-density parameterization.

Here we design different acquisition geometries. First, two theoretical configurations
are used to compare with the surface seismic. As illustrated in Figure 8, the gray frame
denotes the model space, the red and blue lines denote the distribution of sources and
receivers, and the two spheres denote the velocity and density anomalies. In Figure 8a,
we have sources and receivers distributed only on the surface. In Figure 8b, receivers are
spread to cover all four boundaries of the model space. In Figure 8c, sources and receivers
are both extended to cover all boundaries. Figure 9 shows the inverted velocity and density
under the corresponding acquisition geometry in Figure 8.

FIG. 8. Acquisition geometries.
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FIG. 9. Comparison of the inverted velocity and density using different acquisition geometries.

3000 3200 3400

0

0.5

1

true

inverted

2000 2100 2200

0

0.5

1

true

inverted

3000 3200 3400

0

0.5

1
2000 2100 2200

0

0.5

1

FIG. 10. Comparison of the inverted velocity and density using d) VSP + surface seismic and e)
crosswell + surface seismic.

In case a), we see that both the inverted velocity and density suffer from crosstalk. In
case b), the inverted models have been largely enhanced because the mapping from density
to velocity becomes negligible and the mapping from velocity to density is suppressed.
In case c), the inverted models are slightly more accurate than the results in case b). We
extract the results along the depth of 250 m, as shown in the right side of Figure 9. An
almost perfect match between the inverted velocity and the true model is found in case b)
and c). The improvement is significant comparing b) with a), but is minor comparing c)
with b). This is because we add transmission data to case b), but a transition from b) to c)
won’t provide data of extra scattering angles.
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Although the geometries illustrated in Figures 8b and 8c help mitigate the crosstalk
from surface seismic, they are not feasible in reality. A good substitution would be to add
sub-surface sources and receivers through wells. Techniques such as the vertical seismic
profile (VSP) and crosswell are combined with surface seismic in Figures 8d and 8e. In
VSP we have two receiving wells near the left and right edges of the model. In crosswell we
use one source well on the left and one receiving well on the right. The inversion results
(Figure 10) are largely improved compared to the results in surface seismic. Figure 11
shows the comparison of the inverted velocity and density using surface seismic and VSP
+ surface seismic for the model in Figure 4. Obvious crosstalk can be found in Figure 11a,
but they are highly suppressed in Figure 11b.

FIG. 11. Comparison of the inverted velocity and density using a) surface seismic and b) VSP +
surface seismic.

Parameterizations

Here we consider 4 parameterizations: velocity-density (VP − ρ), impedance-density
(IP−ρ), impedance-velocity (IP−VP), and bulk modulus-velocity (K−VP). Their radiation
patterns (Figure 12) are calculated based on equation 26. Contrary to VP − ρ, in IP − ρ
density has the same pattern as impedance at large offsets, but scatters minor energies at
short apertures. IP − VP might be the most effective parameterization because the two
parameters have opposite scattering patterns. K − VP seems to be least favorable because
in general the aperture is restricted from being wide enough, and the two parameters have
similar patterns at short apertures.

We test these parameterizations on the model in Figure 13. In each parameterization,
two parameters would be inverted directly, the other two are calculated afterwards. The
acquisition geometry of surface-only sources and receivers is adopted. We first compare
three parameterizations: VP − ρ, IP − VP, and K − VP. As shown in Figure 14, K − VP

does result in the worst images because the reconstructed anomalies are more distorted
and the background are more noisy. The observation is confirmed by extracting the results
along the depth of 250 m (Figure 15). We see that all parameters are better estimated using
IP − VP than using K − VP.
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FIG. 12. Radiation patterns of different parameterizations.

To compare the parameterizations quantitatively, we calculate the normalized model
errors in each parameterization and rank them, as shown in Figure 16. We note that K−VP

generates the largest errors, and IP − VP gives the smallest errors for three parameters:
density, impedance, and bulk modulus. Although VP − ρ is slightly less accurate than
IP − VP when considering the overall performance, it leads to a better velocity result. We
conclude that IP−VP and VP−ρ are the most effective parameterizations in acoustic FWI,
the preference of one over another depends on the specific parameter we tend to estimate.

FIG. 13. True and initial models of velocity, density, impedance, and bulk modulus.
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FIG. 14. Inversion results with different parameterizations: a) VP − ρ, b) IP − VP, c) K − VP.
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FIG. 15. Inversion results with the K − VP (blue) and IP − VP (red) parameterizations.
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FIG. 16. Model errors in different parameterizations.

CONCLUSIONS

In this paper, we studied three factors that are crucial for reducing crosstalk in multipa-
rameter acoustic FWI: optimization method, acquisition geometry, and parameterization.
We demonstrate that the L-BFGS method outperforms SD and CG on both accuracy and
computation cost. Based on the analysis of radiation patterns, we show that incorporat-
ing surface seismic with sub-surface sources and receivers through VSP and cross-wells
help suppress crosstalk. Different parameterizations are compared. For our experiments,
IP − VP and VP − ρ are the two most effective parameterizations.
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