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ABSTRACT

The questions of how “hard” seismic inversion is, and of how good a solution we can
expect, both rest on the uniqueness of a seismic datum (such as a travel time), and the degree
to which multiple independent data of the same type can mitigate it. Since large numbers
of unknowns are involved, one might think to use the methods of statistical mechanics to
characterize this non-uniqueness. Anyway, I did. Statistical analyses usually start with a
counting of possibilities (e.g., the number of states of a many-particle system with the same
energy). In our case the counting would be of the number of the possible models which
produce the same traveltime (or amplitude, or waveform component, etc.). How precisely
can we count the number of discrete slowness models which produce a given traveltime?
Here we will set out an approach in a short note. Once we have a method for counting, we
may be able to glean interesting facts about the inverse problem in a range of experiments
and seismic source/receiver configurations.

COUNTING TRAVELTIME-PRESERVING SLOWNESS MODELS

How many velocity models are there which produce the same seismic traveltime along
a fixed path? Let us broach this in steps. First, we will re-write the traveltime-slowness
relationship in a way which enables counting. Then we will relate the traveltime calcula-
tion to the problem of determining partitions. Finally, we will show that if we can count
partitions, and if we can also count the unique re-orderings of partitions, we can count all
of the velocity models that can lead to a given traveltime.

1. A combined discretization of slowness and path

The traveltime of a wave propagating at speed c a distance L along a path with differential
length elements dl is

τ =

∫ l

0

dl′

c(l′)
=

∫ l

0

s(l′)dl′, (1)

where s is the slowness. Expanding s over a pulse basis allows us to treat the problem in
terms of a sequence of N real and positive numbers si:

s(l) =
N∑
i=1

si

[
H(l − li)−H(l − li−1)

]
(2)

where H is the Heaviside function

H(x) =

{
1, x > 0
0, x < 0

. (3)
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Upon substitution of equation (2) into (1) we obtain

τ = ∆l
N∑
i=1

si, (4)

where ∆l = li− li−1 is the (assumed constant) width of the pulse. This discretizes the path,
with each element of the sequence {s1, s2, ..., sN−1, sN} being associated with a distance
along the path of the wave {l1, l2, ..., lN−1, lN}. The slownesses themselves have not been
discretized, however, since each si can take on any value. Let us discretize them also. First,
we define

S =
τ

∆l
, (5)

as the largest slowness∗ we can assign to any si if we are given a τ and an N . Then, we
ask that each si be selected from a set of N + 1 discrete, regularly spaced values between
0 and S:

{0,∆s, 2∆s, ..., S − 2∆s, S −∆s, S}, (6)

with ∆s = S/N . Lastly, let us change the system of units we will use in all of our forth-
coming calculations:

snew units = sold units ×
(
N

S

)
. (7)

In this system, by equations (4), (5), and (6), any model s∗i which preserves τ must satisfy

N∑
i=0

s∗i = N, s∗i ∈ {0, 1, 2, ..., N}. (8)

This is a general expression, since N can be chosen large enough to attain any desired
accuracy in either the slowness or path approximations. Thus it is possible to write the
traveltime-slowness relationship for any fixed path, with any desired degree of accuracy,
in the form in equation (8). See Figure 1. The number N is not fixed - eventually in a
statistical analysis however we will make progress by assuming N is large (such that, e.g.,
N ! can be replaced with Stirling’s approximation).

2. Partitions

The importance of equation (8) is that it establishes a one-to-one connection between
a discretized slowness-traveltime relation and the partitions of an integer N . For example,
take N = 5. To satisfy the relation, s∗i must contain a set of 5 non-negative integers, up to
and including 5, whose sum is 5. There are seven unique (i.e., not re-ordered) sequences of

∗If any one si value in equation (4) is S, all others must be zero to preserve τ .
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FIG. 1. Discretized slowness model. Any velocity model between the depths 0 and Z can be
approximated by N layers each of which takes on one of M slowness values. In our analysis, in
order to make use of partitions, we will need to enforce M = N . Provided N and M are large, this
does not meaningfully affect the generality of the results. In any particular case N = M can be
chosen large enough to be adequate for whichever of the space or slowness discretization has the
more stringent requirements.

this kind:
{5, 0, 0, 0, 0, 0}
{4, 1, 0, 0, 0, 0}
{3, 2, 0, 0, 0, 0}
{3, 1, 1, 0, 0, 0}
{2, 2, 1, 0, 0, 0}
{2, 1, 1, 1, 0, 0}
{1, 1, 1, 1, 1, 0}.

(9)

These are well-known in number theory as the 7 partitions of 5. In fact, equation (8) is sim-
ply an equation constraining allowable sequences of slowness values s∗i to those which can
be written as partitions of N . Counting traveltime preserving velocity models is therefore
related to counting the partitions of N , i.e., p(N) where for instance p(5) = 7.

3. Partition re-ordering

The partitions in equation (9) do not represent a full enumeration of all sequences whose
sum is 5. We can re-order the top row, for instance, exchanging the 5 with any 0 and get
the same sum. To get an exhaustive list of all the sequences summing to 5, we also need to
count up all of the ways each row of equation (9) can be re-ordered. In general there are Q!
re-orderings of Q elements. A set with Q = 1 element, say {a}, has 1 ordering. A set with
Q = 2 elements, say {a, b}, has 2 different orderings:

{a, b}, {b, a}. (10)

When we move to Q = 3 elements (and higher), the number of re-orderings grows and the
trick becomes to find a regular way of producing them so they can be counted. Here is one
way. First, put a ‘c’ in the front, middle, or back of the first Q = 2 ordering, {a, b}:

{c, a, b}, {a, c, b}, {a, b, c}. (11)
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Then, put the ‘c’ in the front, middle, or back of the second ordering, {b, a}:

{c, b, a}, {b, c, a}, {b, a, c}. (12)

That is all of the possibilities. So, each of the twoQ = 2 cases can produce 3 new orderings,
for a total of 6. For Q = 4, we repeat this process; each of the 6 sequences from the Q = 3
case can accommodate a ‘d’ in 4 spots, the front, front middle, back middle, and back
locations, for a total of 24 new orderings:

{d, c, a, b}, {c, d, a, b}, {c, a, d, b}, {c, a, b, d}
{d, a, c, b}, {a, d, c, b}, {a, c, d, b}, {a, c, b, d}
{d, a, b, c}, {a, d, b, c}, {a, b, d, c}, {a, b, c, d}
{d, c, b, a}, {c, d, b, a}, {c, b, d, a}, {c, b, a, d}
{d, b, c, a}, {b, d, c, a}, {b, c, d, a}, {b, c, a, d}
{d, b, a, c}, {b, d, a, c}, {b, a, d, c}, {b, a, c, d}

(13)

For Q = 3 we therefore have 3 × 2 = 6 orderings, and for Q = 4 we have 4 times this
many, or 4× (3× 2) = 24; the factorial rule in this way becomes evident. With this result,
the problem of counting the number of total velocity models which preserve the traveltime
is evidently easy. Each partition of N has N ! re-orderings, and there are p(N) partitions,
so the total number of models with the same τ is

nτ = N ! p(N). (14)

This can be re-written in a less compact way as

nτ =

p(N)∑
i=1

N !, (15)

in which we (obtusely) add an N ! for each partition contributing.

4. Model symmetries and data symmetries

According to the formula at the end of the previous subsection, the N = 5 sequence
(i.e., slowness model) in equation (9), which has 7 partitions, each of which can be re-
ordered in 5! different ways, produces a total of 7×5! = 840 different realizations that pre-
serve the sum (i.e., traveltime). This in some sense helps us to quantify the non-uniqueness
of a travel time measurement associated with a ray crossing 5 discrete slowness model el-
ements: if you measure a certain travel time, you have constrained the model to be one of
840 possibilities.

However, a case can be made that we have over-counted. Notice, for instance, that in
getting the number 840, we have said that there are 120 ways of re-ordering each row of
equation (9), including the bottom row. But in each re-ordering of the bottom row we are
exchanging 1s with other 1s, always producing the same sequence {1, 1, 1, 1, 1}. Do these
reproductions of the same sequence count? Or, should we be asserting that there is really
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Partition n0 n1 n2 n3 n4 n5 N !/n0!n1!n2!n3!n4!n5!

{5, 0, 0, 0, 0} 4 0 0 0 0 1 5
{4, 1, 0, 0, 0} 3 1 0 0 1 0 20
{3, 2, 0, 0, 0} 3 0 1 1 0 0 20
{3, 1, 1, 0, 0} 2 2 0 1 0 0 30
{2, 2, 1, 0, 0} 2 1 2 0 0 0 30
{2, 1, 1, 1, 0} 1 3 1 0 0 0 20
{1, 1, 1, 1, 1} 0 5 0 0 0 0 1

Table 1. Re-orderings within partitions: N = 5 case.

only one ordering of this row, since there is no change in the sequence when elements are
exchanged, and doing our counting that way?

There appear to be two slightly different types of change we can make to a model such
that the travel time is preserved. One is sort of trivial, in which the travel time is preserved
because the model itself is preserved. If we switch the order of the elements of {1, 1, 1, 1, 1}
the model is symmetric under this operation; a fortiori, so are the data. The other is when
the model undergoes a change, in either the values of slowness or the organization of the
slownesses. We will have to make a distinction between these situations, because how we
count models will be different.

5. Excluding model symmetries

Let us work out the right formula for the situation in which model-symmetries are
excluded from the counting — i.e., that there is only one way of organizing {1, 1, 1, 1, 1},
but quite a few for {3, 1, 1, 0, 0}. We can figure this out by looking back at the example
in equation (13), and imagining that, in the sequences in equation (13), the a, b, c, and
d were not all distinct. For a specific example, suppose that d = b. If we go through
equation (13), sequence by sequence, and replace each d with a b, we find that each of the
24 elements now has a counterpart that is equal to it. For instance, the top left sequence
becomes equal to the far right sequence second from the bottom. In this case, the number
of distinct sequences has evidently been cut in half: 4!/2! = 12. If we then found out
that a also was equal to b and d, and replaced each a with a b, only 4 different distinct
sequences would be left†: 4!/6 = 4!/3! = 4. If there are two different ‘clumps’ of identical
elements, say a = c and b = d, instead the number of distinct elements we come up with
is 4!/(2! × 2!) = 6. Gradually the pattern emerges: given N elements of a sequence, with
n0 of these sharing one value (0 being a convenient one), n1 of them sharing another value,
and so on up to nN , the total number of distinct sequences isN !/(n0!n1!n2!...nN !), or more
compactly N !/Πjnj!. Notice that each partition of N has a different set of ni values. For
instance, each partition of N = 5 has the ni’s given in Table 1. Consequently the number

†That is, the 4 different places a ‘c’ can be placed amongst 3 ‘b’s.
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of unique slowness models which give rise to the same traveltime is

nτ =

p(N)∑
i=1

N !

ΠN
j=0nj(i)!

. (16)

However moving from this formula (in which we assume we have in advance all the nj(i))
to a straightforward enumeration is not straightforward.

Stars and bars

The above is where I brought the counting to, and it hits a bit of a wall. Fortunately,
this problem as enumerated in equation (16) can be solved through a different combinatorial
approach which is referred to as the “stars and bars” problem, which Michael Lamoureux
showed me; and in fact the problem as we have set it out can be answered very simply:

nτ =
(2N − 1)!

N !(N − 1)!
. (17)

CONCLUSIONS

To complete the process of counting, the way it has been set out here, we need to answer
a question which is tough to answer the way the problem is come at here – what is nj(i) in
general? We have a formula for the number of partitions of N there are, so if we decide to
allow model symmetries, then we have an exact count of the number of models and the non-
uniqueness of the travel time, equation (14). However, if we disallow model symmetries,
which we almost certainly should, we hit a wall analytically using the partitions approach.
Fortunately, a different combinatorial approach gives us a straightforward answer.
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