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ABSTRACT

Full-waveform inversion is an effective tool for recovering subsurface information, but
quantification of confidence in this information can be very difficult. Uncertainty in a
global sense is ever-present when using local optimization, preventing the calculation of
an absolute uncertainty. Even when considering local uncertainty, the large dimensionality
of the problem means that feasible, intelligible confidence metrics are generally limited to
providing a scalar description of confidence for each variable, while a vector is required
for completeness. Fortunately, complete characterization of uncertainty is seldom neces-
sary from an applications perspective. More often, the uncertainty in a specific aspect of
the inversion is important (for instance, confidence in a recovered anomaly). Here, we
investigate the use of null-space shuttles to characterize the maximal change in a chosen
metric that can be achieved without altering the inversion objective function. This provides
a quantification of the uncertainty in this metric for the inversion result.

INTRODUCTION

Full-waveform inversion (FWI) is a seismic inversion technique which attempts to re-
cover subsurface properties through a data-fitting procedure using the bulk of the measured
data (Tarantola, 1984). Substantial successes in P-wave velocity-model building have been
achieved using FWI, and multi-parameter implementations, which include more subsurface
information, are constantly improving (Virieux and Operto, 2009; Pan et al., 2018). While
the results of FWI have consistently improved, the development of tools to assess our con-
fidence in these results has largely been lacking. Recent attempts to improve resolution and
uncertainty analyses have improved the state of affairs (e.g Fichtner and Leeuwen, 2015;
Thurin et al., 2019), but the problem of uncertainty quantification remains largely unsolved.

Uncertainty quantification in full-waveform inversion (FWI) is challenging. In princi-
ple, we seek to determine the confidence with which the properties defined in the inversion
result have been determined. In a given inversion problem, the uncertainty identifies the
range of possible solutions which could have satisfied the data and prior-fitting require-
ments of the inversion. Ideally, such an uncertainty estimate would also identify the prob-
abilities of these solutions.

Unfortunately, uncertainty estimation of this kind lies far beyond the reach of modern
FWI. The definition above does not preclude points of model space associated with dif-
ferent minima than the that of the inversion result, but these require global assessment of
the objective function and this is typically far beyond computational feasibility. Less am-
bitious approaches attempt to quantify uncertainty only locally, that is, they consider only
the uncertainty in in the model-space location of a local minimum. Ideally, this type of un-
certainty is measured about the minimum in question, and employs the second derivatives
of the problem (the Hessian matrix) to identify the relative uncertainty of different model-
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space directions (Tarantola, 2005). Directions with large curvature are less uncertain, as
the objective function changes (and, as a minimum is considered, necessarily increases)
faster in these directions, while those with smaller curvature are associated with smaller
changes in the objective function, and so, greater uncertainty. Two major concerns exist for
this approach. Firstly, quantifying the curvature in all possible directions generally greatly
surpasses available computational resources, and secondly, the inversion result is generally
not a minimum of the objective function. This second point means that directions of large
curvature may in reality be those in which the objective decreases fastest: curvature alone
cannot be completely informative about uncertainty.

In reality, uncertainty in an arbitrary direction of model space is not usually a use-
ful quantity. The features of an inversion result which impact economic decision-making
are generally small in number and highly specific. By focusing the quantification of uncer-
tainty on the subset of model-space directions which have an important impact on decision-
making, we can dramatically reduce the computational demands of uncertainty characteri-
zation. This allows for more accurate methods to be employed.

In this report, we consider a method for uncertainty quantification with respect to a
user-defined scalar function of model-space location. The scalar function defines the ex-
tent to which a decision-affecting feature of the inversion result is present. We consider the
maximal uncertainty in this feature to be the model-space step which minimizes the func-
tion while remaining in the acceptable-solution region of model space. This region should
include, at minimum, all points which achieve an equivalent or lower objective function
value than the inversion output. Quantifying uncertainty then requires that we explore a
subset of the points of model space with the same objective function value as the inversion
result. Using the terminology of Deal and Nolet (1996), we refer to the model-space steps
which preserve the objective function as ‘null-space shuttles’.

THEORY

Consider a model output from a greedy FWI inversion, m. This model corresponds to
the lowest value of the objective function which was achieved in the FWI procedure, φ, but
is not, in general, an exact minimum (these being unfeasible to compute). Suppose that
another model, m∗, corresponding to objective value φ∗, is proposed as an alternative to m
as a possible output from the inversion. If φ∗ is greater than φ, then m will be the preferred
inversion output. If φ∗ is less than φ, however, m∗ would generally be preferred tom by the
inversion. The set of models m, which contains all possible models m∗ for which φ∗ ≤ φ,
represents the set of models which would be indistinguishable from, or preferred to m by
the inversion procedure. In this sense, there is uncertainty in the inversion between m and
m. Quantifying this uncertainty requires that m be characterized.

Complete characterization of m is computationally infeasible. This is highlighted by
the fact that at least one of the models in m is an exact minimum of the objective function.
As exact minima are generally considered infeasible to compute, the set containing them
must also be assumed out of reach. Calculation of elements of m, however, is highly
feasible. Any sufficiently short step in a model-space direction with a negative projection
onto the gradient should result in a model within m; the objective function must go down at
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least slightly for some step-length. Very short steps are uninteresting from the standpoint of
uncertainty characterization however, as these represent very small changes in the model.
What we are most interested in is the maximum uncertainty in a given direction, that is,
how large a model change in a given direction could be while still resulting in an objective
function value of φ or less.

Assuming the FWI result m lies near a minimum, the objective function near m can be
characterized as a function of model change ∆m as

Φ(∆m) ≈ φ+ g0∆m+
1

2
∆mTHGN∆m, (1)

where g0 is the gradient at m, and HGN is the Gauss-Newton approximation of the Hessian
at m. Because HGN is positive-definite, the contribution of the third term in equation 1 is
always positive. This means that the second term, g0∆m, must be negative in order for the
objective to decrease or remain stationary. Consequently, the largest step that can be taken
in any given direction without increasing the objective function under this approximation
will always be a step resulting in the same objective function: any step decreasing the
objective could be made longer while still remaining in m. We refer to the set of models
with an objective function φ as m′.

Insofar as equation 1 is an accurate representation of the objective function, the model
updates, ∆m′ corresponding to element models of m′ satisfy

g0∆m
′ = −1

2
∆m

′THGN∆m′. (2)

For a model-space vector δm, this allows for the calculation of the maximum step parallel
to δm expected to lie in m:

∆m′ = αδm̂, (3)

where
δm̂ =

δm

||δm||2
, (4)

and
α =

−2g0δm̂

δm̂THGNδm̂
. (5)

In this way, given the vector δm, we can approximate the inversion uncertainty in that di-
rection at the computational cost of one Hessian-vector product evaluation: HGNδm̂. A
Hessian-vector product can be evaluated at the cost of three wavefield propagations (Mé-
tivier et al., 2013), one of which is already performed during the gradient calculation, and
can be stored to prevent recalculation. This computation requirement is small relative to
the inversion procedure, but if many directions are considered, more Hessian-vector prod-
ucts are required, and the cost can become substantial. Fortunately, the uncertainty of the
model in a random direction is not typically of great importance. Instead, the key uncertain-
ties in an inversion result will typically relate to important, specific features of the model,
involving relatively few model-space directions.

Suppose there exists a scalar function ψ which describes a key feature of the model.
For instance, the key feature may be an anomalously low vP/vS ratio in a certain region of
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the model. The metric ψ should be defined such that it is large when the feature is present
in the model, but small otherwise. We could consider the square of the difference between
the vP/vS ratio in the region of interest and the average ratio in the model. The problem
of uncertainty quantification with respect to ψ is that of finding the model in m′ which
minimizes ψ:

min
m′

ψ(m′) (6)

Using the relation defined in equation 3 to connect a given direction δm with the corre-
sponding model in m′, we can re-state the optimization problem as

min
δm

ψ(m+ ∆m′(δm)) = ψ(m+ αδm̂). (7)

Solving this problem through gradient-based optimization techniques requires the calcula-
tion of

∂ψ

∂δm
=

∂ψ

∂∆m′

(
∂∆m′

∂α

∂α

∂δm
+
∂∆m′

∂δm̂

∂δm̂

∂δm

)
. (8)

This expression can be expanded to

∂ψ

∂δm
=

∂α

∂δm
∗
(

∂ψ

∂∆m′

T

δm̂

)
+ α

(
1

||δm||2
∂ψ

∂∆m′
− δm

||δm||32
∂ψ

∂∆m′

T

δm

)
, (9)

where
∂α

∂δm
=

1

||δm||2
∂α

∂δm̂
− δm

||δm||32
∂α

∂δm̂

T

δm (10)

and
∂α

∂δm̂
= − 2g0

δm̂THGNδm̂
+ 4HGNδm̂

g0δm̂

δm̂THGNδm̂
. (11)

The somewhat cumbersome choice of δm as the optimization variable rather than the unit
vector δm̂ is made here in order to allow for the use of unconstrained optimization tech-
niques in the solution of equation 7.

An approximate solution to equation 7 can be found through nonlinear optimization.
In this report, we used the L-BFGS approach (e.g. Nocedal and Wright, 2006) for the
minimization. It is worth noting that the main computational cost of such an approach is
the evaluation of the product HGNδm̂, which must be done once per iteration to evaluate ψ
and ∂ψ

∂δm
, and of the product HGNdBFGS (where dBFGS is the calculated L-BFGS descent

direction) once per iteration for the line search. While the line-search step of the L-BFGS
procedure may require many additional evaluations of ψ and ∂ψ

∂δm
, these will all be evaluated

at locations in model space that are linear combinations of δm̂ and dBFGS , so the required
Hessian-vector products can be determined from those already calculated. As such, the
main computational cost of each L-BFGS iteration is the evaluation of two Hessian-vector
products.

Suppose an approximate minimizer of ψ, δm′∗, has been determined and the associ-
ated ∆m′∗ has been calculated through equation 3. This represents our best estimate of
the model update which maximally alters our interpretation metric without changing the
FWI objective function, provided that equation 1 holds exactly (i.e. the objective is ex-
actly linear). In reality, the objective function will not be exactly linear, even close to the
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minimum. This has two major implications for our uncertainty estimate. Firstly, it means
changing the model by ∆m′ will not leave the objective function exactly unchanged. To fix
this problem, we suggest using a line-search approach to determine the step length in the
direction of ∆m′∗ corresponding to no change in the objective. The second implication of
non-linearity is that HGN becomes a function of m. This means that even an exact solution
of the optimization problem in equation 7 may not be the solution to the true problem of
interest, equation 6.

In most applications, it is likely that an approximate solution of equation 6 will be a
negligible improvement over an approximate solution of equation 7; the FWI objective
function should be close to linear when starting from the FWI output. If a solution of
equation 6 is preferred, however, it can be treated as an iterative optimization procedure,
in which the model updates are calculated through approximate minimization of equation
7. The procedure we consider is outlined in algorithm 1. In this algorithm, the inner loop
corresponds to the iterative approximation of the step, ∆m, which solves equation 7, while
the outer loop attempts to solve equation 6 by updating the model in the direction of ∆m,
while keeping the FWI objective function constant. If the problem is close to linear, we can
limit the procedure to only one outer loop iteration.

Input : FWI output: m
Output: Minimizer of ψ: m′imax+1

Initialize model estimate
m′1 = m
for i = 1, . . . , imax do ; // Loop over outer iterations

Initialize the descent direction δm1

Initialize the L-BFGS inverse Hessian approximation Q
for j = 1, . . . , jmax do ; // Loop over inner iterations

Set Hv1 = HGN(m′i)δmj ; // Calculate Hessian - update product

Set gψ = ∂ψ
∂δm1

; // Calculate gradient using Hv1

Set d = Qgψ ; // Calculate L-BFGS descent direction

Set Hv2 = HGN(m′i)d ; // Calculate Hessian - d product

Calculate the step length µ to minimize ψ using a line-search
Use Hv1 and Hv2 for ψ evaluations in line-search
Set δmj+1 = δmj + µd ; // Update the step direction

Update Q
end
Set ∆m = αδm̂jmax+1

Calculate the step length λ for φ∗(m′i + ∆m = φ)
Set m′i+1 = m′i + λ∆m

end
Algorithm 1: Algorithm for ψ minimization through null-space shuttling.

In the following section, we perform numerical tests to demonstrate this approach.
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NUMERICAL EXAMPLES

For numerical tests of this approach, we consider FWI uncertainty for a synthetic toy
model. We use the visco-elastic inversion approach outlined by Keating et al. (2018). The
elastic properties of this model are shown in figure 1. This model is based on the Marmousi
model, and contains a layer structure which defines similar geometry for each physical
property considered. The ratios of these properties are variable throughout the model,
however, and differ substantially from the background trends in an anomalous region at
about 200 m depth, and 600 m in x-position. Our goal is to characterize the uncertainty of
an inversion based on this model in key model-space directions. The model is defined with
a resolution of 10 m in both x and z directions. Data up to 20 Hz is assumed to be available
in the inversion.

We will characterize uncertainty for multiple acquisition geometries for this problem.
For the sake of comparison, we will consider an inversion result which is very similar
for each acquisition geometry. To provide this baseline inversion result, we consider an
inversion with a relatively complete acquisition geometry - explosive sources and receivers
placed at all four edges of the model. On the both the top and bottom edges of the model,
74 evenly spaced explosive sources and 148 evenly spaced multi-component receivers are
considered. Similarly, the left and right edges have 29 sources and 58 receivers each. The
initial model for vP , vS , and ρ in the inversion was obtained by averaging the true model
in the x direction. The low vP and ρ anomaly was not included in this averaging, and so
is not represented in the background model. The initial models for QP and QS were set
as constants, given the difficulty in estimating these properties. The background model is
shown in figure 2.

In this report we consider frequency-domain inversion. For the baseline inversion,
ten frequency bands of five evenly-spaced frequencies were considered, starting with 1-
2 Hz, and ending with 1-20 Hz. At each of the first nine frequency bands, one iteration of
truncated-Gauss-Newton (TGN) optimization was performed (Métivier et al., 2013), with a
maximum of 20 inner loop iterations per FWI iteration. At the last frequency band, which
we consider as the available data for uncertainty characterization, 11 iterations of TGN
optimization were considered.

The baseline inversion result obtained using this approach is shown in figure 3. This
is a relatively strong inversion result, as expected given the comprehensive acquisition ge-
ometry and relatively intensive optimization strategy. Used as an inversion output to be
considered in our uncertainty characterization, it should represent at least a fair approxima-
tion of what an FWI stopping point may be for the other acquisition geometry we consider;
at worst it may be an unachievable result for other acquisitions, but not to such an extent
that we cannot glean insights from our uncertainty analysis. To ensure an appropriate FWI
output is considered, we perform an additional 10 iterations of L-BFGS optimization at
the 1-20 Hz frequency band for each specific acquisition geometry considered to give the
inversion output for that acquisition. The resulting model changes are small in all cases
considered here.

For the examples considered here, we use the null-space shuttling approach outlined
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FIG. 1. True model for synthetic tests, defined in terms of ρ, Q values, and vP , vS at reference
frequency ω0.
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FIG. 2. Initial model for baseline inversion, defined in terms of ρ, Q values, and vP , vS at reference
frequency ω0.
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in algorithm 1, with 20 inner loop iterations per outer iteration. This is a relatively large
number of iterations to use, and the computational cost is 40 Hessian-vector product eval-
uations per outer iteration. As a fraction of the total inversion cost, which included about
400 Hessian-vector product evaluations, however, this is a modest computational expense.

Perhaps the most notable feature in both the true model and the inversion result is the
region of anomalously low ρ, vP and QP . Suppose that the presence or absence of this
anomaly is crucial to the interpretation of the inversion result. In this case, we may be
relatively uninterested in the uncertainty of the inversion in an arbitrary direction of model
space, but very intensely interested in the confidence with which this anomaly has been
recovered. With this motivation, we define the interpretation metric ψ to be large when
such a feature is present in the inversion, but negligible otherwise:

ψ =

xi∈x∗∑
i=1

a (ρ(xi)− ρ̄(xi))
2 + b

(
v−2P (xi)− v̄−2P (xi)

)2
+ c
(
Q−1P (xi)− Q̄−1P (xi)

)2
, (12)

where a, b, and c are scaling terms, x∗ are the locations where the anomaly is recovered
in the inversion, and ρ̄, v̄−2P , and Q̄−1P are average values of these properties outside of, but
near, the anomaly location.

If a, b, and c are chosen to weight the anomalies in each of ρ, vP and QP approximately
equally, we can learn about the degree of certainty that there is some type of anomaly at
that location. We calculate the optimal shuttle for this objective, using three outer-loop
iterations, and considering a surface acquisition geometry: 74 evenly spaced explosive
sources and 148 evenly spaced multi-component receivers are considered. The calculated
shuttle for this choice of penalty term is shown in figure 4. This shuttle represents the step
which should maximally reduce our choice of ψ without changing the objective function
value. We can see that this shuttle represents a large change in QP and ρ at the location
of the anomaly, representing large uncertainty in these parameters at this location. By
contrast, the change in vP is relatively small; the objective function insists on preserving
a vP low at this location. The model obtained after applying the null-space shuttle in
figure 4 is shown in figure 5. With the L2 objective function we chose to use in this case,
the objective function values of these two models differ by less than 1%. As such, the
differences between these models represents an uncertainty in the inversion result: our
objective function is unable to discriminate between these models.

The available data substantially determine the confidence of the inversion in different
model features. To investigate this effect, we attempt to quantify the uncertainty of the
same inversion output, in the same metric, ψ, but now consider data from evenly spaced
sources and receivers on each boundary of the inversion, a near-ideal acquisition geome-
try. The equivalent-objective model obtained by applying the optimal calculated null-space
shuttle is shown in figure 6. In this case, the ρ and vP lows at the anomaly location are
better preserved; these features are better constrained by the acquisition in this case. The
continued absence of the QP low at the anomaly means that there is little confidence in the
location of this anomaly, even with the more comprehensive acquisition. The ring of high
attenuation around the anomaly region, however, might suggest that the inversion insists on
increased attenuation at least nearby the anomaly in this case.
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FIG. 3. Baseline inversion result for uncertainty characterization, defined in terms of ρ, Q values,
and vP , vS at reference frequency ω0.
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FIG. 4. Optimal null-space shuttle for eliminating anomaly in ρ, vP and QP , surface-only acquisition.
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FIG. 5. Equivalent-objective model for eliminating anomaly in ρ, vP and QP , surface-only acquisi-
tion.
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FIG. 6. Equivalent-objective model for eliminating anomaly in ρ, vP and QP , surround acquisition.
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In a third example, we consider a case in which the vP/vS ratio at the anomaly has a
substantial impact on the interpretation of the inversion result. To quantify the uncertainty
in the vP/vS ratio at the anomaly, we define the inversion metric ψ as

ψ =

xi∈x∗∑
i=1

−
(
vP (xi)

vS(xi)
− γ̃
)2

, (13)

where γ̃ is the average vP to vS ratio in the background model. With this metric, we can
investigate the confidence of the inversion in the presence of a substantially different vP/vS
ratio at the anomaly. We calculate the null-space shuttle which optimally reduces ψ using
one outer-loop iteration of the approach described above, and apply it to the starting model
to achieve the result in figure 7. The objective function of this model is 1.7% less than the
initial objective, and so is in the plausible solution region. The vP/vS ratio is increased
to an average of about 1.8 in this result, from its value of 1.6 in the inversion output, still
substantially lower than its value of about 2.0 outside the anomaly. To this degree, there
is uncertainty in the inversion result, but this means that there is high confidence in the
presence of vP/vS ratio at least as low as 1.8 here.

DISCUSSION

One objection to the approach adopted here for uncertainty quantification may be that
the FWI objective function is not always a good measure of inversion quality. While two
models may share the same objective function value, a typical inversion may not actually
treat these model equally. This is because the value of the objective function is not often
the main criterion used in determining convergence. Convergence of the inversion prob-
lem is typically instead gauged by the rate of objective function descent at each iteration,
closely linked to the gradient of the problem. If two models share the same objective func-
tion value, but one has a small associated gradient and the other has a large gradient, we
typically further iterate the large-gradient model, making the ambiguity between the two
a strictly in-inversion phenomenon not corresponding to real inversion output ambiguity.
In this case, it may not be the value of the objective, but the amplitude of the gradient
which determines the stopping point of the FWI procedure. The approach outlined here
could be adapted to such a definition relatively easily; if models with gradients of the same
amplitude are those that could be confused in principle, it is easy to alter equations 3 - 5
accordingly. The Hessian still provides the wherewithal to approximate an appropriate step
in this case.

CONCLUSIONS

General uncertainty in FWI is very difficult to quantify, and generally requires large
amounts of computation and storage for accurate treatment. The targeted approach to un-
certainty quantification investigated here explores the uncertainty in a single scalar function
of the model. If appropriately defined, this scalar can allow for uncertainty estimates for
the key decision-altering features of an inversion result. The computational cost of these
estimates is generally only a fraction of that of the full inversion.
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FIG. 7. Equivalent-objective model for eliminating anomaly in vP /vS ratio, surface-only acquisition.
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