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ABSTRACT

Full waveform inversion (FWI) has become a major seismic imaging technique. How-
ever, using the least-squares norm in the misfit functional possibly leads to cycle-skipping
issue and increases the nonlinearity of the optimization problem. Several works of applying
optimal transport distances to mitigate this problem have been proposed recently. The opti-
mal transport distance is to compare two positive measures with equal mass. To overcome
the mass equality limit, we introduce an unbalanced optimal transport (UOT) distance with
Kullback–Leibler divergence to balance the mass difference. An entropy regularization and
a scaling algorithm have been used to compute the distance and its gradient efficiently. Two
strategies of normalization methods which transform the seismic signals into non-negative
functions have been compared. Numerical examples in one and two dimension have been
provided.

INTRODUCTION

Full waveform inversion (FWI) is a high resolution seismic imaging algorithm and it
was proposed by (Lailly and Bednar, 1983) and (Tarantola, 1984) in the early 1980s. It is a
nonlinear PDE-constrained optimization problem with physical properties such as velocity
and density of underground as the control parameters, and the waveform received by the re-
ceivers as the state parameters. Depending on different physical model, the constraint PDE
can be simple wave equation, acoustic wave equation or elastic wave equation. Because of
the huge size of the scale, gradient based optimization methods such as gradient descent,
l-BFGS and Newton method is needed. And the gradient generally can be achieved by the
adjoint state method. With the improvement of the computing power, FWI has been more
and more applied in the industry.

In conventional methods, the L2 distance is used in the misfit functional during opti-
mization to measure the difference between observed and synthetic data. As a nonlinear
optimization problem, FWI algorithm suffers the existence of local minima. One of the
reason causing the local minima is cycle-skipping issue, which can occurs as the phase
difference between two seismic signals is larger then half wavelength. To mitigate this
problem, using optimal transport (OT) distances or Wasserstein distance in FWI problem
have been proposed recently. The optimal transport distance is to compare two positive
measures with equal total mass. When comparing two non-negative equal mass functions,
the OT distance will keep monotonically increasing as one function is shifting away from
another function. This property provides convexity of OT distance as a misfit functional
and it is one of the main reason to introduce OT distance to FWI problem (Engquist and
Froese, 2013; Engquist et al., 2016).

However, the seismic signal is oscillating around 0 and usually the condition of equal
mass is not satisfied. There are two main strategies that have been proposed to integrate the
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OT distance to seismic signals. In the work of (Métivier et al., 2016b,a; Yong et al., 2019),
the work is based on the connection between KR norm (Bogachev, 2007) and a special
OT distance, 1-Wasserstein distance, to generalize the OT distance to signed measure. The
second strategy is to normalize the signals into positive functions with equal mass, and then
use the 2-Wasserstein distance to compare the difference and compute gradient (Yang and
Engquist, 2017; Yang et al., 2018).

In this work we follow the second strategy to consider the FWI problem with wave
equation as the constraint. We introduce the unbalanced optimal transport (UOT) distance
to remove the equal mass restriction. Two normalization methods, linear normalization
and exponential normalization have been used and compared. To compute the distance
and gradient efficiently, an entropy regularization method and a scaling method have been
used. In section 2 we give a short review of the optimal transport problem and unbalanced
optimal transport problem, we give the algorithm in the end of the section. In section 3,
the adjoint state method with UOT distance has been provided. In section 4, numerical
examples has been provided to compare the UOT distance and L2 distance.

BACKGROUND ON OPTIMAL TRANSPORT

In this section, we provide a short review of the optimal transport problem in discrete
sense. The definition of unbalanced optimal transport problem with Kullback–Leibler di-
vergence has been provided. A scaling algorithm is used to compute the unbalanced opti-
mal transport distance and its gradient.

Unbalanced optimal transport review

The optimal transport problem has a long history and can date back to 18th century
(Monge, 1781). The modern formulation is given by Kantorovich (Kantorovich, 2006).
Please refer to (Villani, 2008; Santambrogio, 2015) for a comprehensive review.

For X, Y ⊂ Rd, the cost function c(x, y) : X × Y → R+ measures the distance
between x ∈ X and y ∈ Y . Given two probability measures µ ∈ P (X) and ν ∈ P (Y ), the
Kantorovich formulation of optimal transport problem is defined as

min
γ∈U(µ,ν)

∫
Ω

c(x, y) dγ(x, y),

where U(µ, ν) is the joint probability measure on X × Y ,

U(µ, ν) =
{
γ ∈ P (X × Y ) : πX] γ = µ, πY] γ = ν,

}
,

the πX] and πY] are the projection operators to X and Y .

We focus on the discrete setting in this work. Let X = Y = {x1, x2, · · · , xN} ⊂ Rd,
µ =

∑
i fiδxi , ν =

∑
i giδxi . Also, we only consider the cost function c(x, y) be the

squared Euclidean distance. The optimal transport problem in the discrete form is:

min
T∈RN×N

〈T,C〉 =
N∑

i,j=1

Ti,jCi,j, s.t. T1N = f, T T1N = g. (1)
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Here matrix C represents the cost distance defined by Ci,j = |xi − xj|2.

One of the disadvantages of optimal transport is nonnegative measures with the same
total mass are required. To overcome this limitation, the unbalanced optimal transport
problem is raised in (Benamou, 2003) in a dynamic approach. Later several works have
been proposed in both static and dynamic approach (Piccoli and Rossi, 2014; Chizat et al.,
2015, 2018). In this paper we introduce the unbalanced optimal transport distance mainly
based on the work in (Chizat et al., 2018). To relax the marginal constraints in (1), we
define the unbalanced optimal transport problem as:

min
T∈RN×N

〈T,C〉+ Ff (T1N) + Fg(T
T1N). (2)

Both Ff and Fg are proper convex functions.

For example consider:

Ff (T1N) = ι{=}(T1N |f) =

{
0, as T1N = f,

∞, otherwise.

Gf (T
T1N) = ι{=}(T

T1N |g) =

{
0, as T T1N = g,

∞, otherwise.

In this case the equation (2) is equivalent to the optimal transport problem (1). We set

Ff (T1N) = εmKL(T1N |f), Fg(T
T1N) = εmKL(T T1N |g),

in this paper. Here Ff and Fg are the Kullback-Leibler divergence between the projection
of the transport matrix T and f, g, εm controls the weight of the mass balancing term in (2).

Regularized primal and dual problem

The entropy regularization is introduced to the optimal transport problem in the work
(Cuturi, 2013) to increase the computation efficiency. Then the optimal transport dis-
tance with entropy regularization is used in an optimization problem named Wasserstein
Barycenter which provides great improvements comparing toL2 distance (Cuturi and Doucet,
2014; Benamou et al., 2015). In this subsection, the regularized primal and dual problem
has been introduced and in next subsection we introduce a coordinate ascent algorithm
to solve a regularized version of the problem (2). We define the entropy function for the
matrix T ∈ RN×N

+ as

E(T ) = −
N∑

i,j=1

Ti,j (log(Ti,j)− 1) ,

here we use the convention 0 log(0) = 0. As we consider the mass balance term Ff and Fg
be the Kullback-Leibler divergence, given the regularization parameter ε, the regularized
problem (2) can be represented as

min
T∈RN×N

〈T,C〉 − εE(T ) + εmKL(T1N |f) + εmKL(T T1N |g) (3)
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The equation (3) can be rewritten as

min
T∈RN×N

εKL(T |K) + εmKL(T1N |f) + εmKL(T T1N |g),

where

KL(T |K) =
∑
i,j

Ti,j

(
log

(
Ti,j
Ki,j

)
− 1

)
, Ki,j = e−

Ci,j
ε .

We can have the following definition for unbalanced optimal transport distance.

Definition 1 Define the ground cost matrix C by Ci,j = |xi − xj|2. Given f, g ∈ RN
+ ,

regularization parameter ε and mass balancing parameter εm, the regularized unbalanced
optimal transport distance with Kullback-Leibler divergence can be defined as

W 2
2,ε,εm(f, g) = min

T∈RN×N
εKL(T |K) + εmKL(T1N |f) + εmKL(T T1N |g). (4)

Here KL(·|·) is the Kullback-Leibler divergence between two matrices or vectors. And

Ki,j = e−
Ci,j
ε .

To compute the unbalanced optimal transport distance, the dual problem of equation
(4) is needed.

Theorem 1 The dual problem of (4) is

W 2
2,ε,εm(f, g) = max

φ,ψ∈RN
+

N∑
i,j=1

−εmfi
(
e−φi/εm − 1

)
− εmgi

(
e−ψi/εm − 1

)
− εKi,j

(
eφi/εeψi/ε − 1

)
.

(5)

Strong duality holds. There exists a unique T ∗ for the primal problem (4). And φ∗, ψ∗

maximize (5) if and only if
T ∗i,j = eφ

∗
i /εKi,je

ψ∗
j /ε.

This theorem is a straight forward application of Theorem 3.2 in (Chizat et al., 2018).

The scaling algorithm

To compute the unbalanced optimal transport distance, a coordinate ascent method can
be used.

Proposition 1 Suppose φ∗, ψ∗ solves the dual problem (5), let u, v ∈ RN with u∗i = eφ
∗
i /ε

and v∗j = eψ
∗
j /ε. Matirx K , coefficient ε and εm is defined in Theorem 1. For i, j =

1, · · · , N :

u∗i =

(
fi∑

jKi,jv∗j

) εm
εm+ε

, v∗j =

(
gj∑

iKi,ju∗i

) εm
εm+ε

.
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The above proposition can be easily checked by computing the first order optimality con-
dition of dual problem (5). The following remark provides the algorithm to compute the
unbalanced optimal transport distance with entropy regularization as Definition 1.

Remark 1 Given f, g ∈ RN
+ , cost matrix C ∈ RN×N , regularization parameter ε > 0 and

mass balancing parameter εm > 0. Matrix K is defined as Ki,j = e−Ci,j/ε. Starting with
an initial value v(0) = 1N , the dual problem can be computed through a coordinate ascent
algorithm: For the n-th iteration,

u
(n+1)
i =

(
fi∑

jKi,jv
(n)
j

) εm
εm+ε

, v
(n+1)
j =

(
gj∑

iKi,ju
(n+1)
i

) εm
εm+ε

.

Suppose the coordinate ascent algorithm converges with u∗, v∗, the transport matrix T ∗ in
(4) can be computed as

T ∗i,j = u∗iKi,jv
∗
j .

Also, the gradient of UOT distance with entropy regularization can be achieved with fol-
lowing remark.

Remark 2 Suppose T ∗, φ∗ and ψ∗ solves the primal problem (4) and dual problem (5), the
gradient of unbalanced optimal transport distance with respect to f is:

∇fiW
2
2,ε,εm(f, g) = −εm

(
e−φ

∗
i /εm − 1

)
.

FULL WAVEFORM INVERSION AND GRADIENT COMPUTATION

Since optimal transport problem was proposed for positive measures, normalization is
needed before introduce UOT distance for seismic signals. Normalizations with linear and
exponential transform are studied in this paper:

hlinear,k(f) = f + k, (6)

hexp,k(f) = ekf , (7)

The normalization coefficient k is chosen such that f + k ≥ 0 in equation (6). Here the
exponential is taken for each entries.

We consider the full waveform inversion in a discrete form. Suppose xi ∈ Ω is the
i-th discrete point of the spatial domain, and tj for j = 1, · · · , Nt be the discrete point of
time as t = tj . Suppose there are Ns sources and Nr receivers in the physical model. Let
s = 1, · · · , Ns, r = 1, · · · , Nr be the indexes of sources and receivers. Let the observed
data be dobs,s,r and synthetic data be ds,r.

Consider the wave equation:

1

c2(x)

∂2

∂t2
us(x, t)−∆us(x, t) = fs(x, t), s = 1, · · · , Ns
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with suitable initial and boundary conditions, it can be represented in a discrete setting:

F [c]us(xi, tj) = fs, s = 1, · · · , Ns. (8)

Here F [c] is the finite difference operator with velocity field c, fs is the s-th source and us
is the wavefield generated by F [c] and fs.

The full waveform inversion is a PDE-constrained optimization problem in both state
(wavefield) and control (velocity) space. Since the wave equation is well posed with suit-
able initial and boundary condtions, the FWI problem has a reduced form. We consider the
reduced full waveform inversion problem with the unbalanced optimal transport distance
defined in Definition 1.

min
c
J [c] =

Ns∑
s=1

Nr∑
r=1

W 2
2,ε,εm(hk(ds,r), hk(dobs,s,r)). (9)

Here J [c] is the misfit functional of the reduced optimization problem, hk(ds,r) and hk(dobs,s,r)
are seismic traces normalized by (6) or (7) with coefficient k. Also,

ds,r(tj) = Prus[c](xi, tj) = us[c](xr, tj), s = 1, · · · , Ns, r = 1, · · · , Nr, j = 1, · · · , Nt.

Here Pr is the projection operator represents the wavefield as recorded at the r-th receiver
location denoted as xr. The us[c] is the solution of the wave equation (8) with velocity c
and source fs.

The gradient of the misfit functional can be computed by the adjoint state method
(Plessix, 2006). In this case the gradient ∇J [c] will be represented as an inner product
by the derivative of forward modelling wavefield and adjoint wavefield.

∇J [c](xi) =
Ns∑
s=1

Nt∑
j=1

−2

c(xi)3

(
∂2

∂t2
us(xi, tj)

)
vs(xi, tj). (10)

The adjoint wavefields vs are the solutions of the adjoint equations with time reversed,

F [c]vs(xi, tj) = f̃s, s = 1, · · · , Ns. (11)

The adjoint sources can be computed through Remark 2. For the linear normalization (6),
the adjoint sources are

f̃s = −
Nr∑
r=1

P T
r ∇W 2

2,ε,εm(d̂s,r, d̂obs,s,r), s = 1, · · · , Ns. (12)

And for the exponential normalization:

f̃s = −
Nr∑
r=1

P T
r

(
kekds,r

)T ∇W 2
2,ε,εm(d̂s,r, d̂obs,s,r), s = 1, · · · , Ns. (13)

Here the ∇ is the gradient of the first term in UOT distance. As the gradient ∇J [c] is
achieved, gradient based methods or quasi Newton methods such as l-BFGS can be used to
minimize (9).
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NUMERICAL EXAMPLE

We provide three numerical examples to show the different behavior of optimization
with L2 distance and unbalanced optimal transport distance with linear and exponential
normalization.

Shifted Ricker example

We investigate the sensitivity to time shift of Ricker wavelets with L2 distance and UOT
distance in this example. To compare the behavior of different distance, we define a cost
function:

J1(s) = d(f(t− s), g(t− 0.5)).

The distance d can beL2 distance, UOT distance with linear and exponential normalization.
Here f and g are two Ricker wavelets with center at time 0s and peak frequency 10 Hz, the
amplitude of f is 1.2 times of g. The sample frequency is 1000 Hz. The case f(t − 0.7)
and g(t− 0.5) is shown in Figure 1.

We fix g as the reference signal, then move the center of f along time axis from 0.3s
to 0.7s. The normalized J1(s) of L2 distance, UOT distance with linear normalization
and UOT distance with exponential normalization has been shown in Figure 2 (a), (c), (e)
respectively. In Figure 2 (a), one global minima and two local minima has been observed
which is a sign for the cycle-skipping issue. In Figure 2 (c), the cycle-skipping issue slightly
reduced by using UOT distance with linear normalization comparing to L2 distance. With
smaller normalization coefficient k, the better performance can be achieved. However, k
can not be less than the absolute value of minimal value of f and g. In Figure 2 (e), as
k = 0.5, the misfit function is similar to the case of (a) and (c). One global minima has got
with k = 1, 1.5, the misfit function will increase as the difference of center time increase
and the cycle-skipping issue is avoided.

Adjoint sources of the case in Figure 1 are given in Figure 2 (b), (d), (f). The adjoint
source in L2 distance is shown in (b) which is f(t− 0.7)− g(t− 0.5). The adjoint sources
in UOT distance with linear normalization are shown in (d). Different than the L2 case,
the appearance of adjoint sources seems the difference between the envelope of f and g.
Similar results can be found in the study of (Yang et al., 2018; Yang and Engquist, 2017;
Yong et al., 2019). Also, as the normalization coefficient k decrease, the amplitude of
difference between the envelope is increasing. In figure (f), adjoint sources in UOT distance
with exponential normalization are shown. As k = 0.5, the adjoint source is similar to the
case in (d), but great distortion happens as k = 1.5. This is the reason in the normalization
(7), the interval where kf(t) > 1 plays an predominate role in the amplitude of the adjoint
source according to the exponential term in (13).

Comparing to L2 adjoint source, the UOT adjoint sources are more sensitive to the
position of wavelets while providing less information of the shape of the wavelets. This be-
havior brings less large wavenumber components in the gradient which is achieved through
adjoint state method (10) and (11). With comprehensive consideration of the behavior of
misfit functions and adjoint sources, smaller k is encouraged for UOT distance with linear
normalization. In the case of UOT distance with exponential normalization, dedicated k
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need to be chosen to make the amplitude of kf(t) close to 1. This effort can largely reduce
the cycle-skipping issue and cause less distortion in the adjoint source at the same time.

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25 f
g

FIG. 1. Ricker wavelet f(t− 0.7) and g(t− 0.5).

Single layer model

Due to the large size and nonlinear behavior of FWI problem, a single layer model
example with 2 coefficients is provided in this section for a detailed insight. We investigate
a simple 2D FWI problem in a region with 1km wide and 1km deep, discretize into 101×
101 grid points. We use 51 receivers at the top of the region, and a source with 10 Hz
Ricker wavelet located at x = 0.5km, z = 0.05km. Consider the velocity model:

c(δc, z) = c0(x, z) + δcH(z),

hereH(z) is the Heaviside step function along z direction. Background velocity c0(x, z) =
1km/s. Define the objective:

J2(δc, z) = J [c(δc, z)],

where J is defined in (9). The true model of FWI problem is δc = 0.05, z = 0.51. We
set δc ∈ [−0.06, 0.12] with grid size 0.01 and z ∈ [0.45, 0.65] with discrete grid size 0.01.
Then we evaluate J2 for each δc and z by using L2 distance, UOT distance with linear
normalization and exponential normalization, results are shown in Figure 3. In Figure 3
(a), (b) and (c), the z axis is the normalized misfit function J2(δc, z).

The L2 distance case is shown in (a), for this toy example with coefficients δc and z
as bad initial values are provided, the convergence can trapped in local minima due to the
wrinkles in the surface of misfit function. Comparing to (a), the surface of misfit functions
in (b) and (c) have less wrinkles in the surface of objectives. Notice that, the flat areas
as δc goes smaller and z goes larger in all three figures may represent the existence of
local minima and may affect the convergence speed. However, in this example, the UOT
distance with linear or exponential normalization still provides larger region which leads to
convergence to global minima.

2D crosshole model

In this part we perform the full waveform inversion in a 2D crosshole model to inves-
tigate the behavior of the gradient during minimization of objective. The model width and
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FIG. 2. (a), (b): misfit function and adjoint source using L2 distance. (c), (d): misfit functions and
adjoint sources using UOT distance with linear normalization. (e), (f): misfit functions and adjoint
sources using UOT distance with exponential normalization.

depth are 2km with grid size 0.02km. In the true model, background velocity is 3km/s, a
single circle anomaly is located at the center of the model, with radius 0.6km and veloc-
ity 3.6km/s as shown in Figure 5 (a). There are 11 sources are equally spaced on the left
side and 101 receivers on the right side. Synthetic data is generated with the 10 Hz Ricker
wavelet and an initial model with homogeneous 3km/s is used in FWI problem.

Figure 4 show the adjoint sources of L2 distance, UOT distance with linear and ex-
ponential normalization respectively. The adjoint sources generated by the UOT distance
provide smooth transitions on the positions of reflective seismic waves which will leads the
gradients with less high wavenumber components due to (10) and (11). Figure 5 (b), (c), (d)
displays the inverse results of L2 distance, UOT distance with linear and exponential nor-
malization respectively. Gradient descent method is used here and we proceed 5 iterations
to show the directions of velocity model updates. All three results describe the presence
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FIG. 3. (a), (b), (c): misfit function by using L2 distance, UOT distance with linear and exponential
normalization respectively.

of the circle anomaly. However, the L2 result contains abnormal high wavenumber distur-
bances on the top and bottom of the center. This experiment shows the UOT distance can
reduce the risk of wrong velocity updates which may cause the updates be trapped in the
local minima.

CONCLUSION AND FUTURE WORKS

The optimal transport based distance and normalization strategies in full waveform in-
version problem has already been studied in several works. Numerical experiments have
shown the optimal transport based distance is more sensitive with respect to time shift
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FIG. 4. (a), (b), (c): the adjoint sources generated by the first source in the model with L2 distance,
UOT distance with linear and exponential normalization respectively.
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FIG. 5. (a): the true velocity model. (b), (c), (d): inverse results of gradient descent after 5 iterations
with L2 distance, UOT distance with linear and exponential normalization respectively.

comparing to L2 distance, and that can mitigate the cycle-skipping issue in certain cases.
Also, the gradient generated by optimal transport distance provides less large wavenumber
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components which can reduce the risk leading to local minima.

There are still problems that need study. First, the optimal transport based distance
brings a sub-problem which is controlled by several parameters into the full waveform in-
version. Different parameters will have a different impact on the inversion result, therefore
it is necessary to study how to set the parameters efficiently. Second, mathematical results
are needed to show how the optimal transport distance can mitigate the cycle-skipping is-
sue. Third, more realistic numerical experiments are needed such as Marmousi 2 model or
SEG 2014 benchmark data.
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