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ABSTRACT

The propagation of elastic waves in formations has been widely investigated in the
development of seismic exploration. In a typical transversely isotropic medium (e.g., ver-
tical transversely isotropic-VTI medium), qP- and qSV-waves are intrinsically coupled as
described in elastic wave equations. Therefore, coupled qP-wave energy will inevitably
contaminate the imaging results from performing elastic reverse time migration (ERTM)
and imaging algorithms to qSV-mode waves. Other than directly separate qS-mode waves
from full elastic waves in anisotropic media, some researchers have tried to find an alter-
native way to solve it by the forward simulation of pure-qSV-mode waves. In this study,
we propose a first-order wave propagator of pseudo-pure-qSV-mode wave in 2D hetero-
geneous VTI media, which can be easily employed for the simulation of qSV-mode wave
propagation with staggered-grid finite difference scheme. This propagator will directly
suppress qP-mode wave energy through projecting the wavefields onto isotropic references
of local polarization direction. By further correction of projection deviation of simulated
wavefield components, residual qP-waves will be completely eliminated and separated
scalar pseudo-pure-qSV-mode waves can be achieved. We have performed the algorithm
to isotropic medium, VTI media with weak/strong anisotropy, a two-layer VTI model and
part of heterogeneous SEG/Hess VTI model, the synthetic results demonstrate the validity
and feasibility of this algorithm. In addition, the more efficient and more stable first-order
Hybrid-PML can be directly implemented in this staggered-grid finite difference algorithm,
which shows better performance in the wavefield propagation simulation in VTI media with
strong anisotropy.

INTRODUCTION

Elastic reverse time migration (ERTM) for seismic multicomponent data has been used
to image underground geological structures. However, applying ERTM and imaging al-
gorithms to qP- and qS-mode wavefields will inevitably introduce crosstalk and hence
contaminate the imaging results. Yan and Sava (2008b) suggest using imaging condi-
tions based on elastic potentials, which requires cross correlation of separated mode waves.
Many authors have been working on the research about how to separate P- and S-wavefields.
The basic idea of wavefield separation method is to project the displacement vector wave-
field U onto the polarization vectors of P- and S-mode waves. Helmholtz decomposition
(Morse and Feshbach, 1954) calculates potentials to determine decomposed vector modes,
but this is applicable only for isotropic media and is not able to completely separate mode
waves in anisotropic media. In general 2D anisotropic media, P- and SV-mode waves
are intrinsically coupled and their polarization direction are no longer parallel or perpen-
dicular to the propagation direction, so they are called ‘quasi-P’ and ‘quasi-SV’ waves,
respectively. Rommel (1994) propose to calculate the polarization vectors of qP- and qSV-
mode waves by solving the Christoffel equation with local elastic parameters or Thom-
sen parameters. Polarization vectors of qP-wave can also be calculated by the rotation of
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wave vector with a deviation angle, where Thomson parameters can also apply (Tsvankin,
2012). Yoon and Marfurt (2006) propose an efficient way to estimate local wave vectors
directions with Poynting vectors method. Based on Helmholtz theory (Aki and Richards,
2002), Dellinger and Etgen (1990) and Dellinger (1991) propose to separate scalar P- and
S-mode waves from displacement vector wavefield U by applying a divergence and a curl
operation in wavenumber domain, respectively. However, this algorithm only works in
homogeneous media, since in heterogeneous media, the polarization components are no
longer constant in the x− and z− directions (Yan and Sava, 2008a, 2009). Yan and Sava
(2008a, 2009) propose a nonstationary separation method for 2D VTI media, which trans-
forms the wavenumber domain operators into space domain and obtain the space domain
pseudo-derivative operators, this algorithm will overcome the shortcoming of wavenumber
domain method and can separate qP- and qS-mode waves completely even in media with
velocity varing spatially. Zhou and Wang (2016a,b) propose an efficient wave mode separa-
tion operators in anisotropic media, which are constructed by local rotation of wave vector
polarization. The deviation angle between normal and qP-wave’s polarization direction is
spatially estimated using Poynting vectors (Dickens and Winbow, 2011).

Beside of the wavefield separation methods, there is an alternative approach to simu-
late separated P- and S-wave propagation. Since in isotropic media, P- and S-mode waves
polarize parallelly and perpendicularly to the propagation direction respectively, Jianlei
et al. (2007) propose to simulate P- and S-mode waves with fully decoupled first-order P-
and S-wave equations with staggered-grid finite-difference scheme. However, in general
anisotropic media, P- and S-mode waves are intrinsically coupled, this algorithm is only
practical in isotropic media. In anisotropic media, Cheng and Kang (2016) propose an al-
ternative approach for the simulation of separated qSV-mode waves for forward modeling,
migration and waveform inversion, which splits wavefield separation procedure into a two-
steps scheme. First, perform a similarity transform to Christoffel matrix of VTI medium
to project the wavefield onto isotropic references to derive the second-order pseudo-pure-
mode qSV-mode wave equations, which accurately describes the kinematics of qSV-mode
wave and seriously suppress qP-waves when the pseudo-pure-mode wavefield components
are summed. Second, perform a normalized filtering algorithm to further project synthetic
wavefields onto the polarization direction of qSV-waves. Through this two-steps procedure,
the residual energy of the qP-mode waves will be completely removed and pseudo-pure-
mode qSV-mode waves will be acquired. In this study, to adopt staggered-grid finite differ-
ence scheme, we propose to further reduce the order of second-order equations and achieve
the first-order equations of qSV-mode wave. Fortunately, as Zhang and McMechan (2010)
pointed out, velocity fields can be separated as well as displacement fields. Following the
principles of Virieux (1984, 1986), we introduce and distribute the velocity fields and stress
fields on a 2D staggered grid, in this way staggered-grid scheme can be employed in the
first-order equations and corresponding finite difference iterative format can be achieved.
In addition, first-order Hybrid-PML proposed by Zhang et al. (2014) can also be employed
straight forward in this algorithm, which will help to better suppress artificial reflections in
the wavefield simulation in strongly anisotropic media.

This paper is organized as follows: first, we perform a similarity transform to the
Christoffel matrix of a 2D VTI medium to project the wavefield onto isotropic references
and derive the second-order pseudo-pure-mode qSV-mode wave equations; second, we in-
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troduce velocity and stress fields as intermediate variables and further reduce the order of
the equations, thus we obtain the first-order pseudo-pure-mode qSV-mode wave equations;
third, we perform a space filtering algorithm to synthetic qSV-mode wavefields, which will
completely remove residual qP-mode energy. Finally, we perform this new algorithm to
isotropic medium, VTI media with weak/strong anisotropy and a two-layer VTI model, het-
erogeneous Hess VTI model and present the synthetic wavefields. Through the synthetic
examples, we demonstrate that this algorithm is valid for simulating pseudo-pure-mode
qSV-wave propagation with further polarization-based projection. Through the snapshots
of wavefield propagating at different time, we demonstrat that first-order Hybrid-PML is
applicable in our algorithm with excellent performance.

First-Order Propagator of Pseudo-Pure-qSV-Mode Waves in 2D VTI Media

Based on Helmholtz theory (Aki and Richards, 2002), a vector wavefield U = {Ux, Uz}
in isotropic media can be decomposed into P-wavefield (curl-free) and S-wavefield (divergence-
free)

U = UP + US, (1)

where US satisfies ∇ · US = 0. Hence in isotropic media, scalar S-mode wave can be
separated from displacement vector wavefield U by applying a curl operation (Dellinger
and Etgen, 1990; Dellinger, 1991): US = ∇ × U . In the wavenumber domain, it can be
equivalently expressed as a cross product that essentially projects the wavefield Ũ onto the
wave vector K:

ŨS = i K × Ũ . (2)

In 2D isotropic media, the wavenumber K = (kx, kz)T is not only the wave propaga-
tion direction, but also the P-mode wave polarization direction. However, in anisotropic
media, the polarization directions of qP- and qSV-mode waves are no longer parallel or
perpendicular to the propagation direction. So in anisotropic media, equation 2 can be
rewritten as

ŨSV = i aqP × Ũ , (3)

where aqP = (aqPx , aqPz )T is the polarization vector of qP-mode waves. To provide more
flexibility for wave propagation characterization in anisotropic media, Cheng and Kang
(2013, 2016) propose to split this projection separation procedure into a two-steps scheme.
First, project the original qSV-wavefield onto isotropic references through the introduction
of a similarity transformation to Christoffel matrix G

G̃qSV = MSV GM−1
SV , (4)

where

MSV =

[
kx kz 0

0 −k2x

]
. (5)

According to the elastic matrix of 2D VTI medium,

C =

 C11 C13

C13 C33

C44

 . (6)
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Christoffel matrix G̃ has the form as below:

G̃ =

[
C11 k

2
x + C44 k

2
z (C13 + C44) kx kz

(C13 + C44) kx kz C44 k
2
x + C33 k

2
z

]
. (7)

After the similarity transform of Christoffel matrix,

G̃qSV =

[
C11 k

2
x + C44 k

2
z −(C13 + C44) k

2
z

−(C13 + C44) k
2
x C44 k

2
x + C33 k

2
z

]
. (8)

In this way, equivalent Christoffel equation of qSV-mode waves is derived as below:

G̃qSV Ũ qSV = ρω2Ũ qSV . (9)

Hence, through inverse Fourier transform of equation 9, second-order pseudo-pure-
qSV-mode wave equations of the transformed wavefields U

qSV
can be obtained:

ρ
∂2U

qSV

∂t2
= GU

qSV
. (10)

According to the elastic matrix of 2D VTI media, the second-order qSV-mode wave
equation 10 can be expressed as below:

ρ
∂2 ux
∂t2

= C11
∂2 ux
∂x2

+ C44
∂2 ux
∂z2

− (C13 + C44)
∂2 uz
∂z2

ρ
∂2 uz
∂t2

= C33
∂2 uz
∂z2

+ C44
∂2 uz
∂x2

− (C13 + C44)
∂2 ux
∂x2

.

(11)

It can be seen that there are no mixed deriatives terms in the equations above, and thus
different from those in first-order elastic wave equations. Compared to second-order equa-
tions with finite difference method, first-order equations with staggered-grid scheme can
better suppress the numerical dispersion with a finer grid, while achieving higher accuracy
and efficiency. In this study, we propose to further reduce the order of the equations and
turn them into first-order equations by following procedures. First, we introduce velocity
fields vx and vz as intermediate variables and let

∂ ux
∂t

= vx

∂ uz
∂t

= vz

(12)

and hence keeps the same relationship between displacement fields and velocity fields as
they are in original elastic wave equations. For qSV-mode wave equation 11, we further
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introduce variables (Liu et al., 2018): σxx, σzz, σxz, σzx and let

ρ
∂σxx
∂t

= C11
∂ vx
∂x

ρ
∂σzz
∂t

= C33
∂ vz
∂z

ρ
∂σxz
∂t

= C44
∂ vx
∂z
− (C13 + C44)

∂ vz
∂z

ρ
∂σzx
∂t

= C44
∂ vz
∂x
− (C13 + C44)

∂ vx
∂x

(13)

What’s worthy to notice is that, σxz and σzx have to be introduced separately, but they
can be distributed at the same grid points. Then we substitute equation 13 into equation 11,
we get:

ρ
∂ vx
∂t

=
∂ σxx
∂x

+
∂ σxz
∂z

ρ
∂ vz
∂t

=
∂ σzx
∂x

+
∂ σzz
∂z

(14)

In this way, we derive the first-order pseudo-pure-mode qSV-mode wave equations. In
addition, appling the Thomsen notation (Thomsen, 1986):

C11 = (1 + 2ε)ρ v2p0

C33 = ρ v2p0

C44 = ρ v2s0

ρ v2pn = ρ v2p0
√

(1 + 2δ)

(C33 + C44)
2 = ρ2( v2p0 − v2s0)( v

2
pn − v2s0)

(15)

the first-order Pseudo-pure-mode qSV-wave equations can be rewritten as below:

ρ
∂σxx
∂t

= (1 + 2ε)ρ v2p0
∂ vx
∂x

ρ
∂σzz
∂t

= ρ v2p0
∂ vz
∂z

ρ
∂σxz
∂t

= ρ v2s0
∂ vx
∂z
−
√
ρ2( v2p0 − v2s0))( v

2
pn − v2s0)

∂ vz
∂z

ρ
∂σzx
∂t

= ρ v2s0
∂ vz
∂x
−
√
ρ2( v2p0 − v2s0))( v

2
pn − v2s0)

∂ vx
∂x

ρ
∂ vx
∂t

=
∂ σxx
∂x

+
∂ σxz
∂z

ρ
∂ vz
∂t

=
∂ σzx
∂x

+
∂ σzz
∂z

(16)

Following the principle of staggered-grid scheme in 2D qSV and SH wave propagators
proposed by Virieux (1984, 1986), σxx and σzz, σxz and σzx are respectively distributed at
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the same grid points, which are indicated in Figure 1. Having applied above procedures,
we are now ready to use variables vx, vz, σxx , σzz, σxz and σzx as conjugate physical
quantities distributed on staggered grid. After the adoption of staggered-grid scheme to
equation 13 and equation 14, the explicit differential iteration algorithm is obtained, which
is very similar to those of elastic wave equations.

FIG. 1. 2D Staggered Grid

What’s also worthy to note is that vx and vz are not distributed at the same grid point,
therefore vz field of every grid needs to be taken further care of to correspond to vx field.
To be specific, when the force source is loaded at vx, corresponding vz field should be
averaged by 4 vz fields surrounding the vx field (Liu et al., 2017). Besides, the first-
order Hybrid-PML proposed by Zhang et al. (2014) can be directly implemented in this
first-order finite difference algorithm. The stretching factor is expressed as:

sx =
dx +mx/zdz
αx + iω

(17)

Correction of Projection Deviation of qSV-Mode Waves

In VTI media, the polarizations of P- and SV-mode waves are no longer parallel or
perpendicular to the propagation direction (Dellinger and Etgen, 1990, Dellinger,1991), so
they are called ‘quasi-P’ and ‘quasi-SV’ waves. Since qP- and qSV-mode waves in VTI
media are intrinsically coupled, there will still be some residual qP-wave energy in the
wavefields simulated by the first-order pseudo-pure-mode qSV-wave equations. Therefore,
the correction of polarization directions of simulated wavefields needs to be performed,
the strategy is to further project simulated wavefields onto the anisotropic references of
polarization direction by applying spatial domain deviated operators designed by Cheng
and Kang (2016) , which will completely remove residual qP-mode wave energy.

Simulation Examples of Separated Scalar qSV-Waves

Homogeneous isotropic medium

In this paper, series of simulation examples will be presented. For comparison, we
performed the numerical simulation of qSV-mode wave propagation with both original
elastic wave equations and first-order pseudo-pure-qSV-mode wave equations proposed in
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this study. The accuracy of the finite-difference schemes is set toO(∆ t2+∆ x4) (Levander,
1988). In the first case, we apply the algorithms to a homogeneous isotropic medium with
size of 2km×2km, whose density is 2500 kg/m3, P-wave velocity is 4000 m/s and S-wave
velocity is 2300 m/s, force source is loaded at vx grid point right in the middle of the model.
The normalized x- and z-components of wavenumber K for a homogeneous isotropic
medium is shown in Figure 2, which are also the polarization direction components of
P-mode wave.

a)

-1 -0.5 0 0.5 1

kx (2*pi/m)

-1

-0.5

0

0.5

1

k
z
 (

2
*p

i/
m

)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 b)

-1 -0.5 0 0.5 1

kx (2*pi/m)

-1

-0.5

0

0.5

1

k
z
 (

2
*p

i/
m

)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

FIG. 2. Normalized wavenumber-domain operators in 2D isotropic medium: a) kx and b) kz.
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FIG. 3. Synthetic wavefields in an isotropic medium: a) x- and b) z-component simulated by original
elastic wave equations; c) x- and d) z-components simulated by first-order pseudo-pure-mode qSV
-wave equations; e) pseudo-pure-mode scalar qSV-wave field; f) separated scalar qSV-wave field.

The snapshots of synthetic qSV-wavefields are shown in Figure 3. a) and b) are x-
and z-components simulated by original elastic wave equations, respectively. c) and d)
are x- and z-components simulated by first-order pseudo-pure-mode qSV-wave equations,
respectively. We can see the x- and z-components of qP-wave are in totally opposite phase,
which enhances qSV-waves by summing up the components; e) is the summation of x-
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and z-components which eliminates residual qP-wave energy and leads to a scalar pseudo-
pure-mode qSV-wave field; f) is scalar qSV -wavefield filtered with deviation operators ,
which is the identical with e). because qSV-mode wave propagate perpendicularly to the
polarization direction and aP = K in an isotropic medium case.

Homogeneous VTI medium with weak anisotropy

In this case, we apply the algorithms to a homogeneous VTI medium with weak anisotropy,
whose vp0 = 3000m/s, vs0 = 1500m/s, ε = 0.1 and δ = 0.05 (Cheng and Kang, 2013,
2016). The normalized x- and z-component of polarization vector of qP-waves in the
homogeneous VTI medium is shown in Figure 4. The normalized x- and z-components
of wavenumber domain and spatial domain deviation operators are shown in Figure 5 and
Figure 6, respectively.
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FIG. 4. Normalized wavenumber-domain operator in 2D VTI medium with weak anisotropy: a) x-
and b) z-component of polarization vector of qP-mode wave.
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FIG. 5. Normalized wavenumber-domain operator in 2D VTI medium with weak anisotropy: a) x-
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FIG. 6. Spatial domain deviation operator in 2D VTI medium with weak anisotropy: a) x-component;
b) z-component.

The snapshots of synthetic qSV-wavefields in VTI medium are shown in Figure 7: a)
and b), c) and d) are respectively the x- and z-components of the velocity wavefields sim-
ulated by original elastic wave equations and first-order pseudo-qSV-mode equations. The
x- and z-components of qP-wavefields in c) and d) are in different phases, the summation
e) enhances qSV-mode waves in VTI media, while leaving some resigual qP-mode energy
in the physical domain. Then we perform the filtering algorithm to the synthetic wavefields,
as shown in f) is the separated scalar qSV-wavefield, where qP-mode energy is completely
removed with the projection deviation correction.

a)

0 500 1000 1500 2000

x (m)

0

500

1000

1500

2000

z
 (

m
)

-4

-2

0

2

4

6

×106 c)

0 500 1000 1500 2000

x (m)

0

500

1000

1500

2000

z
 (

m
)

-4

-2

0

2

4

6

×106 e)

0 500 1000 1500 2000

x (m)

0

500

1000

1500

2000

z
 (

m
)

-4

-2

0

2

4

6

×106

b)

0 500 1000 1500 2000

x (m)

0

500

1000

1500

2000

z
 (

m
)

-4

-2

0

2

4

6

×106 d)

0 500 1000 1500 2000

x (m)

0

500

1000

1500

2000

z
 (

m
)

-4

-2

0

2

4

6

×106 f)

0 500 1000 1500 2000

x (m)

0

500

1000

1500

2000

z
 (

m
)

-4

-2

0

2

4

6

×106

FIG. 7. Synthetic wavefields in a VTI medium with weak anisotropy: a) x- and b) z-component
simulated by original elastic wave equations; c) x- and d) z-component simulated by first-order
pseudo-pure-mode qSV-wave equations; e) pseudo-pure-mode scalar qSV-wave field; f) separated
scalar qSV-wave field.
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Homogeneous VTI medium with strong anisotropy

In the third case, we apply the new algorithm to a VTI medium with strong anisotropy,
whose elastic parameters: C11 is 23.87 GPa, C33 is 15.33 GPa, C13 is 9.79 GPa, C44 is 2.77
GPa and density is 2500kg/m3. The snapshots of synthetic qSV-wavefields are shown in
Figure 8. From the comparison between Figure 8 e) and f), we can see the qP-mode energy
can also be completely eliminated and scalar pseudo-qSV-mode wave can be obtained from
this algorithm.
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FIG. 8. Synthetic wavefields in a VTI medium with strong anisotropy: a) x- and b) z-component
simulated by original elastic wave equations; c) x- and d) z-component simulated by first-order
pseudo-pure-mode qSV-wave equations; e) pseudo-pure-mode scalar qSV-wave field; f) separated
scalar qSV-wave field.
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FIG. 9. Snapshots of x-component simulated by first-order pseudo-pure-mode qSV-wave equations
in a VTI medium with strong anisotropy: a) 320 ms, b) 400 ms and c) 480 ms, respectively.

To test the applicability of first-order Hybrid-PML (Zhang et al., 2014; Liu et al., 2017)
in the new algorithm, the snapshots of synthetic qSV-wavefields simulated by first-order
Pseudo-pure-mode qSV-wave equations propagating at different time are presented. As
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shown in Figure 9 a), b) and c) are the snapshots of x-component of qSV-wavefields prop-
agating at 320 ms, 400 ms and 480 ms, respectively. As observed from the snapshots,
the energy at the boundary can be efficiently absorbed and no artificial reflections emerge,
which demonstrates that Hybrid-PML can be implemented in our algorithm with excellent
performance.

Heterogeneous layered VTI media

In this section, the new algorithm is applied to a heterogeneous two-layered VTI model,
in which the first and the second layer are the same VTI medium with strong and weak
anisotropy, respectively. A force source is set right in the middle of the model with the
interface at the depth of 1.2 km. Snapshots of synthetic qSV-wavefields are shown in Fig-
ure 10. We can see both of qP-wave and qSV-wave lead to converted S-wavefields when
they reach at the interface. By the summation of x- and z-components of synthetic qSV-
wavefields shown in Figure 10 e), some of converted wavefields are already seriously sup-
pressed. While after the correction of polarization direction, all residual qP-mode energy is
eliminated and pure scalar qSV-mode wave is obtained as shown in Figure 10 f). From the
comparison between Figure 10 e) and f), it’s demonstrated that with further polarization-
based correction not only is qP-mode energy eliminated, but also the converted P-wave
energy.
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FIG. 10. Synthetic wavefields in a layered VTI model with strong anisotropy in the first layer and
weak anisotropy in the second layer: a) x- and b) z-component simulated by original elastic wave
equations; c) x- and d) z-component simulated by first-order pseudo-pure-mode qSV-wave equa-
tions; e) pseudo-pure-mode scalar qSV-wave field; f) separated scalar qSV-wave field.
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Heterogeneous Hess VTI model

In the final example, we apply the new algorithm to part of the heterogeneous SEG/Hess
VTI model, whose elastic parameters are shown in Figure 11. For a heterogeneous model,
all spatial domain deviation operators for each medium need to be calculated with their
elastic parameters or Thomsen parameters.
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FIG. 11. Part of SEG/Hess VTI model: a) C11, b) C13, c) C33 and d) C44.

As shown in Figure 12 are the synthetic qSV-wavefields, from which we can observe
that after the summation of x- and z- components, qP-mode wave energy has already
been extremely suppressed and the summed wavefields (i.e., pseudo-pure-mode scalar
qSV-wavefields) contain quite weak residual qP-wave energy. As Cheng and Kang (2013)
pointed out, compared to separated scalar qSV-mode waves shown in Figure 12 d), the
summed wavefields without performing further spatial filtering to eliminate residual qP-
wave energy may also result in potentially reasonable ERTM results.
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FIG. 12. Synthetic wavefields in SEG/Hess VTI model: a) x- and b) z-component simulated by
first-order pseudo-pure-mode qSV-wave equations; c) pseudo-pure-mode scalar qSV-wave field;
d)separated scalar qSV-wave field.

DISCUSSION

Yan and Sava (2008b) proposed to perform the RTM algorithms to separated scalar
wavefields using cross-correlation imaging conditions. Our algorithm is an alternative ap-
proach for the simulation of pseudo-pure-qSV-mode waves in general 2D VTI media. The
similarity transform introduced to Christoffel matrix can preserve the kinematics of qSV-
wave propagation (Cheng and Kang, 2016). Unlike second-order equations simulated by
extrapolation methods, first-order equations are employed with staggered grid scheme in
our algorithm, velocity fields rather than displacement fields are obtained from the simula-
tion procedure. Fortunately, qSV-mode waves not only can be separated from displacement
fields, but also from velocity and stress fields, which is very similar to wave vector decom-
position method (Zhang and McMechan, 2010). Since the first-order pseudo-pure-mode
qSV-wave equations are very similar to those of first-order elastic wave equations, we can
achieve the new algorithm with simple modification to existing first-order elastic wave sim-
ulation algorithms. In 2D staggered grid, vx and vz grid points are half a grid away from
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each other in both x- and z-axis directions. Therefore, vz field should be phase shifted
before the filtering algorithm is performed. Alternatively, when the force source is loaded
at vx, we can simply average 4 corresponding vz fields surrounding the vx field (Liu et al.,
2017), which can also provide sufficient accuracy. Consistent with wavefield separation
procedures (Dellinger and Etgen, 1990; Dellinger, 1991; Yan and Sava, 2008a, 2009), our
algorithm will also change the phase and amplitude of qSV-waves inevitably. As for absorb-
ing boundary condition, the first-order Hybrid-PML proposed by Zhang et al. (2014) and
Liu et al. (2017) can be directly implemented in this first-order finite difference algorithm,
which achieves better efficiency with thinner PML layers and reduces the computational
cost. Conventional finite difference method approximated with Taylor series expansion
still suffers from dispersion problem with big large size and time step, therefore, this algo-
rithm may show better performance with other more efficient approximation methods. For
instance, since first-order pseudo-pure-qSV-mode wave equations have been derived, we
may perform simulation procedure with pseudospectral method (Li et al., 2018).

CONCLUSIONS

In this study, we have proposed a first-order pseudo-pure-qSV-mode wave propagator in
2D VTI media. This qSV-wave propagator can be employed in numerical simulation with
finite difference method using variables v and σ as conjugate physical quantities distributed
on staggered grid. We have performed the proposed algorithm to homogeneous isotropic
medium, which can provide scalar qSV-mode waves by simply summarizing x- and z-
components. Also, we have presented synthetic examples of homogeneous anisotropic
VTI medium with weak/strong anisotropy, heterogeneous layered VTI model and part of
SEG/Hess VTI model, the synthetic wavefields of which need to be further projected onto
local anisotropic references to remove residual qP-wave energy. Through the simulation
examples, it’s demonstrated that the algorithm is capable of simulating pseudo-pure-qSV-
mode wave propagation with further polarization-based projection. In addition, the snap-
shots of x-component at different time demonstrated that Hybrid-PML can be efficiently
implemented in this algorithm.
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