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ABSTRACT

Machine learning has been a booming subject in computer science and its applications
have been made in various subjects including geophysics. Convolutional Neural Networks
(CNNs) have great potential for solving image processing problems like denoising and
interpolation. Deblending, considered as an underdetermined denoising problem, falls
into this category. In this report, we use CNN to replace the deblending operator and its
performance is analyzed. We use a 4-layer U-Net to perform deblending on synthetically
blended shots from a wedge velocity model with point scatterers. We test out different
hyper-parameters and the trained model could successfully remove the noise and preserve
diffractions from the scatterers with some tolerance. The generality of the model is evaluated
by testing the model on an easier 2-layer velocity model. The model can successfully identify
and recover most part of the primaries but fails to deal with some interferences and leaves
them muted.

INTRODUCTION

Deblending is a technique to reduce the cost of acquisition. It enables us to fire several
shots simultaneously which not only reduces the time of recording but also reduces the cost
of storing seismic data (Beasley et al., 1998). The reduction of recording time will also
reduce the cost from labour and mitigate the exposure to some noise.

The deblending process essentially separates overlapped shots, which is an under-
determined problem to solve since it tries to produce several shots from each super-
shots. Therefore, additional constraints must be applied to get a unique solution. Pseudo-
deblending is a technique that is commonly used. The method generally involves introducing
known random delays to each shot. These time delays shift each shot differently so that the
events become incoherent in other domains. We use this characteristic to separate each shot
from the other ones simultaneously acquired. This converts deblending into a denoising
process. The most challenging part is to solve the interference where different shots overlap.
There are many choices for the denoising tool. For example, masks or mutes can be applied
to F-K or hyperbolic Radon domains. Furthermore, inversion-based methods been developed
as well, which involve creating a cost function with a regularization term. Results are highly
depending on the definition of the regularization and the assumptions within can cause loss
of signal (Stanton and Wilkinson, 2018).

On the other hand, machine learning methods can be applied instead of signal-processing
/ inversion types of deblending operators. The problem can be defined in two ways, a
classification problem or a regression problem. The classification generates a mask that
indicates the position of the desired shots but leaves the interferences unsolved, while the
regression problem tries to produce individual shots but requires more parameters to be
determined. For example, Baardman et al. (2019) used convolutional neural network (CNN,
LeCun et al. 2015) for both problems. However, we think that CNNs may not be the best
choice to capture the relationship between inputs and outputs due to the lack of skipping
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connections. Richardson and Feller (2019) chose a U-Net model with ResNet34 encoder
pre-trained on ImageNet and trained with random velocity models that are harder than the
reality.

In this paper, we will look at an easier case and discuss the suitability of U-Net on
solving deblending problems.

THEORY

Model definition

The neural network architecture to solve the problem is the U-Net (Ronneberger et al.,
2015). The U-Net was designed based on the CNNs and bridge connections were added so
that it performs fast and well especially for solving segmentation problems. Figure 1 shows
a typical structure of U-Nets.

FIG. 1. Diagram of U-Net model modified from Ronneberger et al. (2015). The gray arrows refer to
the bridge connections that directly pass the features from down-going layers to up-going layers.

The U-Net contains 3 parts. The down-going/encoding part, the up-going/decoding part
and the bridge connections. The down-going part refers to the left half of the figure. The
U-Net has 4 tiers in total. At the first tier, the inputs went through two 3 by 3 convolutional
layers with a predefined initial number of filters (64 filters in this case). The initial number
of filters defines how many features are extracted from the inputs. The cascading of
convolutional layers essentially enlarges the extent of kernel coverage. After the convolution,
the output was max-pooled by a 2 by 2 grid and used for the inputs fed to the next tier. At
each time going down a tier, the number of filters used for convolution doubled while the
number of image dimension is halved due to the max-pooling. On the other side for the
up-going part, the inputs will go through the opposite process. In this part, the number of
filters gets halved and the image dimensions get doubled as the tier goes up. At the top tier,
the image dimensions are restored to the original size and the number of channels is reduced
to 1 by an additional outputting convolution layer. Each green arrow in the figure stands for a
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2 by 2 up-convolution, which up-samples the image by two and then convolves with a 2 by 2
kernel. For now, this structure is also called an encoder-decoder convolutional network. This
type of structure extracts high order features from the inputs and reconstructs the output by
decoding. The third part is the bridge connection, which are indicated by the gray horizontal
arrows. Each grey arrow refers to the process where part or the whole outputs was forwarded
as additional features to the same tier in the up-going part. These additional channels were
concatenated with the outputs from deeper tier after up-convolution. The directivity of the
connections reduces the number of backpropagation terms and hence mitigates the risk of
vanishing gradients.

A segmentation prediction produces a mask of a given picture indicating an area of
interests. For example, this has applications on a brain MRI for finding the damaged area, or
in our case in seismic, for targeting events in a noisy shot record. Essentially, it predicts the
probability of a given pixel to be true. The probability on each pixel then can be converted
to a true or false by applying a judging threshold. The reason why U-Net is more suitable to
solve segmentation problems over traditional variations of CNNs is that U-Net has bridge
connections that directly link the features with the same tier as shown in the gray arrows
in Figure 1. Since the inputs and outputs of the segmentation usually correlate and share
spatial similarities, the connections will greatly reduce the efforts to learn this relation by
skipping unnecessary transforms, which helps to reduce the chance of vanishing gradients.

Loss function

In machine learning, the optimization concept of a cost function is called loss, and it
represents some measure of the proposed model undesired features (for example fitting error
or complexity). Since the deblending problem can be thought of as a regression problem, a
common loss to use is the mean square error (MSE), which is the square L2 norm averaged
across each pixel. This type of loss function offers easy derivatives and provides a convex
shape. The MSE loss is defined as

L = mean
(
‖Y − Ypred‖22

)
=

1

Ns

∑
sample

1

Np

∑
pixel

(Y − Ypred)
2, (1)

where the loss is normalized by the number of samples (Ns) and the number of pixels in
a shot record (Np) so that the error reflects the mean error in each pixel. Ns represents
the number of samples in one evaluation, which is not necessarily the total number of
inputs since often the error is evaluated in each minibatch independently due to the memory
limitations of the device.

Back-propagation

The gradients with respect to each model parameters can be calculated by a back-
propagation algorithm, which is a recursive estimation of error propagation by applying
the chain rule (Goodfellow et al., 2016). Equation 2 shows a form of gradient calculated
by back-propagations. Suppose that L = L(a) and a = f(h), then the gradient of L with
respect to the hidden parameters h is
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∂L

∂hi
=
∑
j

∂L

∂aj
· ∂aj
∂hi

(2)

In short, back-propagation is an algorithm that calculates the gradient of a scalar function
(typically the cost function J) with respect to the hidden parameters (h) in the model. The
back-propagation starts from ∂J

∂J
= 1 and then gets the gradient for the last hidden parameter

by multiplying the Jacobian for the operations that produce the output. By a recursive
process, each gradient for hidden parameters at each layer can be obtained and used to
update the parameters in the calculation order.

One can use the gradients directly to update the model or use gradient-based optimization
methods to make updates in a more controlled manner. The first is the most intuitive way but
may result in a zigzag path to the minimum. The second method trying to reduce the zigzag
pattern and is faster in an ideal case. One popular method to perform minimization is ADAM
(Kingma and Ba, 2014), which reduces the transverse oscillations by cumulatively summing
all the previous gradients during the optimization. The pseudocode of ADAM update is
shown in Algorithm 1. A more detailed explanation of ADAM and its characteristics can be

Algorithm 1 The ADAM optimization. i stands for the current iterations. g is the gradient
calculated and h contains the parameters to be updated. v and s are the two vectors storing
the cumulative sum of historical g and g2. α and β are two hyper parameters that control
the portion of updates that is related to v and s.

v0 ← 0
s0 ← 0
i← 0
while i < iterations do

i← i+ 1
Calculate gi
vi ← β1vi−1 + (1− β1)gi
si ← β2si−1 + (1− β2)gi2
v̂i ← vi

1−β1i

ŝi ← si
1−β2i

hi = hi−1 − α · v̂i√
ŝi+ε

found in Niu et al. (2018).

Training workflow

The training template can be summarized in the pseudocode described as Algorithm 2.
During the training process, we want to find a model that has better generalization, i.e. a
model that performs better on unseen data. This goal can best be achieved by finding the
model with the least error on the validation set. A common way of creating a validation
set is to take it from a portion of the training set. Validation is important since it is the
only method we have to evaluate whether a model is over-fitted or under-fitted. Machine
learning problems can sometimes be an underdetermined problem with more number of
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Algorithm 2 Training workflow.
Require: L(·), model(·), optim(·)

for each epoch do
for each minibatch do

zero the gradients
load X and Y
Ypred ← model(X) . compute prediction
L← L(Ypred, Y ) . compute loss
g ← BP (L) . back-propagate
model(·)← model(·) + optim(g) . update model parameters

Yval ← model(Xval)
Lval ← L(Yval, Y ) . compute validation loss
if Lval is the smallest then

save the model(·)

parameters to determine compared to the number of data points, especially when the sample
size is small. As the training proceeds, the model will fit the data better but may become less
general and invalid for other data sets. In other words, the model will learn to perform well
only on the data provided, but do a poor job on unseen data. Therefore, we need a labelled
dataset that is in the same distribution as the training set but also stays independent of the
model gradient updates for checking the degrees of over-fit. If the loss from validation set is
similar to the loss from the training set, then we can say the model performs equally well on
seen and unseen data. Hence we can have confidence that the model will do well on the test
set. On a typical machine learning problem, the validation loss curve will decrease with the
training loss at the early stage but the training loss will decrease faster since the gradient
is optimized for the train set only. Then the validation loss will start to increase where the
model starts to over-fit the training set. Although the training loss will be smaller after this
point, we should prefer the model where the validation loss is minimal as the validation set
best represents the samples in the test set.

Based on the characteristics of PyTorch, we should make zero the gradients at each
iteration, otherwise, the gradients will cumulate and cause long-wavelength oscillations in
the loss curve. At each minibatch, it first loads a batch of inputs to the device. After each
full cycle of epochs, the mini-batches will be shuffled again for stochastic gradient updates.
In theory, the validation set should be evaluated after each model update, which should be
in the inner loop. In practice, validation loss is usually calculated once at the end of each
epoch.

SYNTHETIC DATA EXAMPLES

Data preparation

All data used in this paper were generated synthetically with a finite difference method.
The blended data was created by injecting shots simultaneously with random delays and
measuring the total wavefield in the receiver locations using the velocity model shown in
Figure 2. This model contains 3 layers and a wedge on the left, with several point scatterers
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FIG. 2. The inputs fed to the U-Net model. The plots show the corresponding input (above) and label
(bellow) pair at the 120th receiver, with 512 receiver slices in total.

under the dipping layer. These scatterers are intended to test whether the deblending
algorithm can honour data diffractions. The dipping layer of the wedge moves the apexes
of reflections in the shot domain. In this model, 64 supershots were recorded with 4 shots
blended in each and with 512 receivers. The data were resampled by increasing the time-
step size and the number of time samples was reduced from 3600 to 512 to reduce the
computation cost. Both sources and receivers are evenly distributed at the near-surface.
Also, we created for the training a regular data set without blending or time delays, which
we call here “true data”.

The blended data are first pseudo-deblended as follows: the supershots are repeated as
many times as the number of blended shots per supershots, and the copies are concatenated in
the shot axis with the time delays removed one shot at a time. After this pseudo-deblending,
only those shots whose time delay were completely removed become coherent in the receiver
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FIG. 3. The inputs fed to the U-Net model. The plots show the corresponding input (above) and label
(bellow) pair at the 120th receiver, with 512 receiver slices in total.

domain (Figure 3). Since duplications of supershots were concatenated together, the blended
data now has dimensions of Ng × Nt × Nshot, which refers to the number of receivers,
timesteps, and shots, respectively. The number of shots here is the product of supershots
and the number of blended shots. We treat each receiver gather as a picture which we feed
to the network for training. The time and source axis becomes the height and width of the
picture. We also have to define an extra dimension in the 2nd place to represent the number
of channels. Since the input is in grayscale, the number is 1. Therefore, the input tensors
has the format of Nsample × 1×H ×W which is 512× 1× 512× 256 where Nsample is the
number of receiver gathers. The “true data”, that is receiver gathers without blending, have
the same dimensions as well (Figure 3). Both inputs and labels are normalized to be ranging
from 0 to 1 for better generalization, as indicated by the scale bar.

The dataset was then separated into training and validation sets. In this project, the
randomly chosen 20% of the entire dataset becomes the validation set and the rest becomes
the training set which will be used for calculating the gradient.

Training

We used PyTorch (Paszke et al., 2017) for the machine learning framework and adapted
the U-Net implementation described in Buda et al. (2019), which was designed for brain
MRI. The U-Net has 4 tiers in depth with two 3 by 3 convolutional layers in each block with
zeros padding of 3 at each boundary, which guarantees the inputs and outputs having the
same dimension. The original model was designed to take inputs with 3 channels as RGB
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images and has 32 filters in the initial layer. In this paper, however, since the receiver gathers
only have one channel, the default 32 filters may be more than needed. We discuss later in
the report our choice for the number of initial filters. The U-Net uses ReLU as inter-layer
activation functions and uses batch normalization layers. The output activation is sigmoid,
which regularizes the outputs to a (0, 1) range.
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FIG. 4. The loss curve when initial filters is 16. The blue line refers to the training loss while the
orange line is the validation loss (Lval). The red cross indicates the least Lval, which is 1.318× 10−6

at epoch 280. The gray dashed lines separate regions with different learning rates.

After some testing and experimentation, we decided to train the model by following
Algorithm 2, with an ADAM optimizer, a learning rate of 0.002, α = 0.9 and β = 0.999.
To mitigate large oscillations at later epochs, we decrease the step learning rate every 100
iterations. After each completion of 100 epochs, we reduce the learning rate to its 10%. This
learning rate decay slows down the descent in later epochs but makes it tolerant to a bigger
learning rate at the early stage (the default learning rate for the brain MRI problem was
0.0001). Figure 4 shows the loss curves. The validation loss reaches a plateau with small
oscillations at 200th to 300th epochs. Models at those iterations can be considered to have
the same confidence level. One could choose the model at the last epoch since it undergoes
more training but we picked the model with the least Lval to avoid over-fitting (see the red
cross in Figure 4).

As mentioned in the previous section, the initial number of filters defines how many
features are extracted from the inputs. There is a trade-off between the complexity of
the model and performance. The more features are extracted, the more information from
the inputs are used for training but with more computational cost. Figure 5 shows three
validation losses with different initial numbers of filters. The saved model is summarized
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FIG. 5. The cross comparison of Lval with varying initial filters. The blue, orange and green lines
refers to the cases with 8, 16 and 32 filters, respectively. Red crosses stand for the least Lval on
each line. The results are summarized in Table 1.

in Table 1. Losses with 16 and 32 filters performed almost the same. The model with 16
filters descends faster than the model with 32 filters because of being simpler, but the later
achieves lower validation loss and requires fewer iterations. The model with 8 initial filters
shows poor results. Having too few parameters did not help with the model updates, which
may be evidence that 8 filters are not enough to capture the important information in this
problem. The model with 32 filters has better accuracy but also takes almost double time to
calculate and memory to train. After balancing these trade-offs, we chose the model with 16
initial filters.

Table 1. Best epochs and best Lval for different initial filter setups.

# filters min(Lval) Best epoch
8 3.321× 10−6 295

16 1.318× 10−6 280

32 1.207× 10−6 241

Figure 6 shows an example for a prediction from the validation set. Most of the
incoherent noise is removed. Furthermore, the diffractions from the point scatterers are
mostly preserved although with some attenuation in their tail endings. The larger errors
are concentrated in two regions. The first region is inside the major primary, where the
reflections get complicated. Probably the identification of the reflections becomes difficult
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FIG. 6. The prediction and label for a sample in the validation set. All three grayscale images have
the same scale. The picture in the bottom right shots the difference of the prediction and the label,
with a smaller color scale.

for the algorithm and the interference complicates this. It is important to keep in mind that
the network does not know what reflections or diffractions are, but just see them as patterns.
Furthermore, we can also see some meshed patterns at the bottom of the plot. These patterns
could be multiples of the point scatterers’ reflections or boundary artifacts. Likely the model
behaves poorly for them because of their week amplitude and complexity. The second
region is around the tails of the reflection. Something to mention is that the input data have
some missing samples due to the removal of time delays, but the “true” data do not. To
get the right prediction, the model tries not only to remove the incoherent noise but also to
interpolate the missing samples, which itself is a complex problem to solve. Therefore, the
prediction contains relatively larger errors after training on these points.

Figure 7 shows 9 predictions on all samples from the train and validation set. Some
shadows of the blended shots are still present. Probably this is because in shots from the
acquisition edges the blended reflections are not like a typical hyperbola and are different
from the majority of the receiver gathers. Therefore, the model fails to resolve the signal
and noise in this case. One solution could be to use gradient boosting, which trains several
models iteratively to adapt to different situations. However, additional models will introduce
more model parameters and extra attention must be paid to avoid over-fitting. Another point
to notice is that the error seems larger in the shot domain than in the receiver domain, in
which the model was trained on. This may be solved by feeding the data in multiple receiver
gathers or even the entire volume instead of single gathers. However, this cannot be done
with one velocity model and indeed need exponentially larger computation resources for the
training.

10 CREWES Research Report — Volume 31 (2019)



Deblending with U-Net

0

200

400

0

200

400

Ti
m

es
te

ps

0 200 400

0

200

400

0 200 400
Receivers

0 200 400

0.16

0.08

0.00

0.08

0.16

FIG. 7. The prediction on the whole dataset containing both the training and validation set (transposed
to the shot domain). Note the preservations of the diffractions.

So far, we trained the network with data from the same model on which we want to
perform deblending. It remains to see how the trained network will generalize to other
models. Figure 8 shows the result from applying the model trained on the wedge to data
from a two-layer model. This is a relatively easy test since the model on which we are
applying the network is simpler than the wedge model (Figure 2) on which we trained. The
results are not as good as in the first case, as expected. The primaries are resolved well but
the model gets confused inside the primaries (see shot 2, 3, 7 and 8). Even if the two-layer
model is an easier problem to solve, its data have different distributions than the training
dataset. We expect that results will improve by training on several different models instead
of just one, but we have not tried it yet.
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FIG. 8. Predictions for blended data from a two-layer model.

CONCLUSION

In this report, we trained a U-Net model to perform deblending, that is the separation of
coherent and incoherent signal coming from blended shots. We tried several optimization
and network parameters and found the best combination. In the case where the training
and test data come from the same velocity model, the network performs well by preserving
small diffractions and correctly identifying primaries. It performs a bit worse for the shots
at the edge of the model because of the lack of training pictures representative of this case.
For the case where the test data comes from a different model than the training data, the
network performs okay but not as well as the first case. In this case, the test model was
simpler than the training model, so the test is not conclusive and more work is required to
fully understand how to generalize the network to new problems. To address these issues
we plan to investigate in generalizing the model by gradient boosting, and provide several
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models for training.
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