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ABSTRACT

Characterization of fracture connectivity is an important task in detection of fractures
in hydrocarbon reservoirs. The current reflection coefficients are mainly derived under the
assumption of horizontal or tilted transversely isotropic (HTI or TTI) media for a rock
containing a single set of aligned fractures. Driven by an effective model for the case of
two sets of orthogonal fractures in an isotropic background, we frist express and simplify
stiffness parameters in terms of two sets of normal and tangential fracture weaknesses. In
the case of a reflection interface separating an isotropic medium and a medium that con-
tains two sets of orthogonal fractures, we present the approximate perturbations in stiffness
parameters, which are utilized for the derivation of PP- and PS-wave linearized reflection
coefficients. Using the derived PP- and PS-wave reflection coefficients, we establish an in-
version approach of joint azimuthal PP- and PS-wave amplitudes variation with incidence
angle (AVA) to estimate the normal and tangential fracture weaknesses. In the inversion
approach, the least-squares algorithm and Bayesian Markov chain Monte Carlo (MCMC)
method are combined, and initial models of fracture weaknesses are built using results of
anisotropic AVA gradient. We apply the proposed inversion approach to synthetic seismic
data of different signal-to-noise ratios (SNR), and the established inversion approach can
provide more accurate normal and tangential fracture weaknesses than the conventional
least-squares algorithm even in the case of SNR of 2. Applying the inversion approach to
real datasets of PP and PS waves, we obtain reliable results of fracture weaknesses that
can match well log curve of velocity and anisotropic AVA gradient, which may provide the
possibility to characterize how fractures distribute and to estimate fracture connectivity in
hydrocarbon reservoirs.

INTRODUCTION

Underground fractures usually exist in the form of networks. Estimation of fracture
connectivity is an important task in the detection and characterization of fractured reser-
voirs. In the case of two orthogonal fracture sets in an isotropic background rock, Bakulin
et al. (2000b) present how to compute stiffness parameters using two sets of normal and
tangential fracture weaknesses (δN1 and δT1, and δN2 and δT2). Rock physics modeling
show that fracture connectivity can reduce seismic wave velocity anisotropy, and in the
case of fluid-filled fractures, rock stiffness parameters and anisotropy are complex and fre-
quency dependent (Rubino et al., 2017; Guo et al., 2018). However, the effect of fracture
connectivity on seismic wave reflection amplitude variation with offset/incidence angle and
azimuth (AVOA/AVAZ) remains unexplored, and how to employ features of AVAZ data to
estimate fracture connectivity should also be explored.
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Currently, analysis and inversion of AVAZ features for estimating underground frac-
tures are implemented under the assumption of horizontal transversly isotropic media (HTI)
or tilted transversly isotropic media (TTI), i.e. focusing on the media containing one single
set of aligned vertical or subvertical fractures. Rüger (1998) derives a PP-wave linearized
reflection coefficient for HTI media, which drives the analysis and inversion of PP-wave
AVAZ data for the estimation of fractured areas and fracture-related parameters (e.g. frac-
ture weaknesses, anisotropic parameters). Combining azimuthal AVO and curvature, Hunt
et al. (2010) implement quantitative estimate of fracture density based on the near-offset
version of Rüger (1998) reflection coefficeint. Downton and Roure (2015) present how to
utilize Fourier series of linearized PP-wave reflection coefficient to implement the estima-
tion of fracture symmetry and AVA anisotropic gradient. In a series of papers, Pšenčík and
Gajewski (1998), Pšenčík and Vavryčuk (1998) and Vavryčuk and Pšenčík (1998), propose
expressions of PP-wave reflection coefficients in terms of weak anisotropy parameters in ar-
bitrary weakly anisotropic media, which may suggest the possibility to calculate reflection
coefficients in the case of the rock containing two sets of fractures; however, the complex-
ity of these proposed reflection coefficients limit the application in seismic inversion for
estimating fractured reservoirs.

Shear wave splitting exists in fractured media and is utilized to characterize fracture
properties (Li and Crampin, 1991; Liu and Martinez, 2014). AVAZ datasets of reflected
shear wave has also been employed to implement the inversion for estimating fracture com-
pliances and weaknesses. Again under the assumption of HTI media, Chen et al. (2018)
derive a linearized reflection coefficient of PS wave and establish an inversion approach of
joint inversion of PP- and PS-wave AVAZ data to estimate fracture weaknesses and com-
pliances. However, in the case of the rock containing two sets of orthogonal fractures,
the effect of fracture connectivity on S wave reflection amplitude also remains unexplored.
To derive reflection coefficients in anisotropic media, Shaw and Sen (2006) present rela-
tionships between PP- and PS-wave reflection coefficients and scattering potentials, which
provide the possiblity to derive PS-wave reflection coefficient in the media containing two
sets of orthogonal fractures.

Based on the effective model proposed by Bakulin et al. (2000b), we express the sim-
plified stiffness parameters of the medium containing two sets of orthogonal fractures and
perturbations in stiffness parameters across a reflection interface. Using the expression
of PP-wave given by Pšenčík and Vavryčuk (1998) for arbitrary anisotropic media and
the relationship between PS-wave and the scattering potential, we derive linearized PP-
and PS-wave reflection coefficients in terms of two sets of normal and tangential fracture
weaknesses. Based on the derived reflection coefficients, we present an inversion approach
and workflow of joint inversion of PP- and PS-wave AVAZ datasets to estimate two sets of
fracture weaknesses, in which we combine the least-squares (LS) inversion algorithm and
Bayesian Markov chain Monte Carlo (MCMC) method to obtain acceptable candidates
of unknown parameter vector involving fracture weaknesses. We first apply the inversion
approach to synthetic data to verify the stability and robustness, and then we employ pro-
cessed real datasets of PP and PS waves to estimate two sets of fracture weaknesses, which
reveals that the proposed inversion approach may generate reliable results of fracture weak-
nesses that can be used for the characterization of fractured reservoirs and provides the
possibility to estimate fracture connectivity.
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THEORY AND METHOD

We focus on the case of fractured rock that is composed of two orthogonal sets of
vertical fractures embedded in an isotropic background, as shown in Figure 1.

FIG. 1. A model of fractured rock consisting of two orthogonal sets of vertical fractures. Blue lines
represent the set of primary fractures, and red lines represent the set of second fractures.

In this section, we explain how to obtain simplified and approximate stiffness matrix
of the fractured rock. Using the simplified stiffness matrix we derive P-to-P reflection
coefficient as a function of fracture weaknesses. Based on the derived reflection coefficient,
we establish an approach and workflow of employing observed seismic data of different
azimuthal angles to estimate fracture weaknesses.

Perturbations in stiffness parameters of rocks with two orthogonal sets of fractures

Under assumptions that fractures are rotationally invariant and the background rock is
isotropic, Bakulin et al. (2000b) proposed the effective stiffness matrix C of the rock with
two orthogonal sets of vertical fractures

C =


C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66



=



Ml1m3

d
λl1m1

d
λl1m2

d
0 0 0

λl1m1

d
Ml3m1

d
λl2m1

d
0 0 0

λl1m2

d
λl2m1

d
M(l3m3−l4)

d
0 0 0

0 0 0 µ (1− δT2) 0 0
0 0 0 0 µ (1− δT1) 0

0 0 0 0 0 µ (1−δT1)(1−δT2)
1−δT1δT2

 ,
(1)
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where λ and µ are Lamé parameters of the isotropic background, M = λ+ 2µ, and

l1 = 1− δN1,

l2 = 1− (1− 2g) δN1,

l3 = 1− (1− 2g)2 δN1,

l4 = 4 (1− 2g)2 g2δN1δN2,

m1 = 1− δN2,

m2 = 1− (1− 2g) δN2,

m3 = 1− (1− 2g)2 δN2,

d = 1− (1− 2g)2 δN1δN2, (2)

and where

g =
µ

M
, (3)

and δN1, δN2, δT1 and δT2 are the normal and tangential fracture weaknesses related to
two orthogonal sets of vertical fractures (Bakulin et al., 2000b). Assuming the normal and
tangential fracture weaknesses are relatively small (i.e. 0 ≤ δN1, δN2, δT1, δT2 < 1), we
neglect the term proportional to δN1δN2 and δT1δT2; hence, the stiffness parameters are
simplified as

C11≈M
[
1− δN1 − (1− 2g)2 δN2

]
,

C12≈λ (1− δN1 − δN2) ,

C13≈λ [1− δN1 − (1− 2g) δN2] ,

C22≈M
[
1− (1− 2g)2 δN1 − δN2

]
,

C23≈λ [1− (1− 2g) δN1 − δN2] ,

C33≈M
[
1− (1− 2g)2 δN1 − (1− 2g)2 δN2

]
,

C44=µ (1− δT2) ,

C55=µ (1− δT1) ,

C66≈µ (1− δT1 − δT2) . (4)

Using the simplified stiffness parameters, we proceed to the derivation of reflection co-
efficients for an interface that separates an isotropic layer and a fractured layer. We first
express perturbations in stiffness parameters across the interface as

∆C11≈∆M −MδN1 −M (1− 2g)2 δN2,
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∆C12≈∆λ− λδN1 − λδN2,

∆C13≈∆λ− λδN1 − λ (1− 2g) δN2,

∆C22≈∆M −M (1− 2g)2 δN1 −MδN2,

∆C23≈∆λ− λ (1− 2g) δN1 − λδN2,

∆C33≈∆M −M (1− 2g)2 δN1 −M (1− 2g)2 δN2,

∆C44=∆µ− µδT2,

∆C55=∆µ− µδT1,

∆C66≈∆µ− µδT1 − µδT2, (5)

where ∆M and ∆µ are changes in P- and S-wave moduli across the interface, and we
stress that in the perturbations we neglect the term that is proportional to ∆MδN1, ∆MδN2,
∆λδN1, ∆λδN2, ∆µδT1 and ∆µδT2 again under the assumptions that changes in both elastic
parameters (M , µ, and λ) across the interface and two sets of fracture weaknesses are small.

Parameterization of P-to-P and P-to-S reflection coefficients

Following Pšenčík and Gajewski (1998), Pšenčík and Vavryčuk (1998) and Vavryčuk
and Pšenčík (1998), we first use the expressed perturbations in stiffness parameters to de-
rive the P-to-P reflection coefficient RPP (θ, φ) as the sum of isotropic part Riso

PP (θ) related
to background rock elastic parameters and anisotropic part Rani

PP (θ, φ) related to two sets of
fracture weaknesses (Appendix A)

RPP (θ, φ) = Riso
PP (θ) +Rani

PP (θ, φ) , (6)

where

Riso
PP (θ) = aρ (θ)

∆ρ

ρ
+ aM (θ)

∆M

M
+ aµ (θ)

∆µ

µ
,

Rani
PP (θ, φ) =aN1 (θ, φ)δN1 + aN2 (θ, φ)δN2

+ aT1 (θ, φ)δT1 + aT2 (θ, φ)δT2,
(7)

in which ρ is density, ∆ρ is the perturbation in density across the reflection interface, and

aρ (θ) =
1

4

cos 2θ

cos2 θ
,

aM (θ) =
1

4
sec2 θ,

aµ (θ) = −2gsin2 θ,

aN1 (θ, φ) =− 1

4

[
(1− 2g) cos θ + cos2 φsin θtan θ

]2
− (1− 2g)

2

[
sec2 θ − 1

2
sin2 φtan2 θ

−g
(
2 + sin2 φ tan2 θ

)] sin2 θsin2 φ,
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aN2 (θ, φ) =− 1

4

[
(1− 2g) cos θ + sin2 φ sin θ tan θ

]2
− (1− 2g)

2

[
sec2 θ − 1

2
cos2 φtan2 θ

−g (2 + cos2 φ tan2 θ)

]
sin2 θcos2 φ,

aT1 (θ, φ) =gcos2 φsin2 θ
(
1− sin2 φtan2 θ

)
,

aT2 (θ, φ) =gsin2 φsin2 θ
(
1− cos2 φtan2 θ

)
, (8)

where θ is the incidence angle of P-wave, and φ is the azimuth, which is equal to zero in
the (x, z) plane.

Following Shaw and Sen (2006) and Chen et al. (2018), we next utilize the perturbations
in stiffness parameters again to derive the reflection coefficient of P-to-S wave using the
scattering potential SPS. The P-to-S reflection coefficient is given by

RPS =
sin θ

2ρcosψsin (θ + ψ)
SPS, (9)

where ψ is the angle of reflected S-wave, and SPS is expressed as

SPS = ∆ρcos 2θ +

i=6,j=6∑
i=1,j=1

∆Cijηij, (10)

where ∆Cij represents the perturbation is stiffness parameter, and ηij is related to reflected
P- and S-wave angle and azimuthal angle (Appendix A).

Combining equations 9 and 10, we derive the P-to-S reflection coefficient as

RPS (θ, φ) =Riso
PS (θ) +Rani

PS (θ, φ) (11)

where

Riso
PS (θ) = bµ (θ)

∆µ

µ
+ bρ (θ)

∆ρ

ρ

Rani
PS (θ, φ) =bN1 (θ, φ) δN1 + bN2 (θ, φ) δN2

+ bT1 (θ, φ) δT1 + bT2 (θ, φ) δT2,
(12)

and where

bµ (θ) =
√
g

sin θ (sin 2ψ + sin 2θ cos 2ψ)

2cosψsin (θ + ψ)
,

bρ (θ) =
sin θcos 2θ

2cosψsin (θ + ψ)
,

bN1 (θ, φ) =
1
√
g

sin θsinψcos2 φ

sin (θ + ψ)

[
sin2 θcos2 φ

(
1− 2g2

)
− g (1− 2g)

]
,

bN2 (θ, φ) = −√g sin θsinψsin2 φ

sin (θ + ψ)

[
2gsin2 θsin2 φ+ (1− 2g)

]
,
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bT1 (θ, φ) =
√
g

sin θcos2 φ

2cosψsin (θ + ψ)

(
sin 2θcos 2ψ − 2sin2 θsin 2ψsin2 φ

)
,

bT2 (θ, φ) =
√
g

sin θsin2 φ

2cosψsin (θ + ψ)

(
sin 2θcos 2ψ − 2sin2 θsin 2ψcos2 φ

)
. (13)

Based on the Snell’s law, the relationship between angles of incident P-wave and re-
flected S-wave (θ and ψ) is given by

sin θ

α
=

sinψ

β
. (14)

Inversion of differences in azimuthal amplitudes for fracture weaknesses

Following Bakulin et al. (2000a), we express the normal and tangential fracture weak-
nesses for fluid saturated fractures under the assumption that there are no interaction be-
tween two sets of fractures, which indicates that we may utilize fracture density values e1

and e2 to compute the corresponding normal and tangential fracture weaknesses

δN1 =
4e1

3g (1− g)
[
1 + 1

πg(1−g)
Kf

µχ1

] ,
δT1 =

16e1

3 (3− 2g)
,

δN2 =
4e2

3g (1− g)
[
1 + 1

πg(1−g)
Kf

µχ2

] ,
δT2 =

16e2

3 (3− 2g)
, (15)

where χ1 and χ2 are aspect ratios of two sets of fractures. We emphasize that we assume
the fluid is evenly filled in two sets of fractures. Given different values of fracture density,
we plot how the normal fracture weakness δN varies with fracture aspect ratio α for the case
of gas-bearing fractures in Figure 2. We observe that given a certain fracture density and
water saturation for gas-bearing fractures, the normal fracture weakness is approximately
constant in the case of fracture aspect ratio being in 0.001 − 0.01, which means the effect
of fracture aspect ratio on δN can be neglected and δN changes significantly with fracture
density e. Hence, we may rewrite two sets of fracture weaknesses as

δN1 = γδN2,

δT1 = γδT2, (16)

where γ = e1
e2

is fracture density ratio, which may be obtained using well logging and core
data.

Based on the derived linearized reflection coefficients of PP and PS waves, we next
present how to employ PP- and PS-wave amplitude variations with incidence and azimuthal
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FIG. 2. Variations of normal fracture weakness with aspect ratio in the case of different values of
fracture density (water saturation Sw = 50%).

angles (AVAZ) to estimate fracture weaknesses. In the case that we have pre-stacked PP-
and PS-wave seismic datasets of two azimuthal angles φ1 and φk, differences in reflection
coefficients of two azimuthal angles for PP and PS waves are respectively expressed as

∆RPP (θ, φ1, φk) =PN (θ, φ1, φk) δN2 + PT (θ, φ1, φk) δT2,

∆RPS (θ, φ1, φk) =QN (θ, φ1, φk) δN2 +QT (θ, φ1, φk) δT2, (17)

where

PN (θ, φ1, φk) =γAN1 (θ, φ1, φk) + AN2 (θ, φ1, φk),

PT (θ, φ1, φk) =γAT1 (θ, φ1, φk) + AT2 (θ, φ1, φk),

QN (θ, φ1, φk) =γBN1 (θ, φ1, φk) +BN2 (θ, φ1, φk),

QT (θ, φ1, φk) =γBT1 (θ, φ1, φk) +BT2 (θ, φ1, φk), (18)

and where

AN1 (θ, φ1, φk) =aN1 (θ, φk)− aN1 (θ, φ1),

AN2 (θ, φ1, φk) =aN2 (θ, φk)− aN2 (θ, φ1),

AT1 (θ, φ1, φk) =aT1 (θ, φk)− aT1 (θ, φ1),

AT2 (θ, φ1, φk) =aT2 (θ, φk)− aT2 (θ, φ1),

BN1 (θ, φ1, φk) =bN1 (θ, φk)− bN1 (θ, φ1),

BN2 (θ, φ1, φk) =bN2 (θ, φk)− bN2 (θ, φ1),
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BT1 (θ, φ1, φk) =bT1 (θ, φk)− bT1 (θ, φ1),

BT2 (θ, φ1, φk) =bT2 (θ, φk)− bT2 (θ, φ1). (19)

Using the corresponding wavelets WPP and WPS, we express difference in azimuthal
seismic amplitudes as[

∆SPP (θ, φ1, φk)
∆SPS (θ, φ1, φk)

]
=

[
WPP PN (θ, φ1, φk) WPP PT (θ, φ1, φk)
WPS QN (θ, φ1, φk) WPS QT (θ, φ1, φk)

] [
δN2

δT2

]
, (20)

which is written succinctly as

d = Gm. (21)

To solve the inversion problem, we establish a Bayesian Markov chain Monte Carlo (MCMC)
approach to obtain the acceptable results of the unknown parameter vector m. In the Bayes’
theorem, the posterior probability distribution function (PDF), P (m|d), is proportional to
the likelihood function P (d|m) and the prior PDF P (m)

P (m|d)∝P (d|m)P (m), (22)

where the likelihood function is expressed as

P (d|m)∝ exp

(
−(d−Gm)T (d−Gm)

2σ2
noise

)
, (23)

and the prior PDF is given by

P (m)∝ exp

(
−(m−ma)T (m−ma)

2σ2
m

)
, (24)

under assumptions that both the noise and the priori are Gaussian, σ2
noise and σ2

m represent
the variances of noise and model parameter vector, and ma represents the average value
of m. The Metropolis-Hasting algorithm is employed to implement the Bayesian MCMC
inversion for estimating the unknown parameter vector, which involves two steps:

1) Generate a candidate vector m∗ by perturbating the current model vector m;

2) Determine if the obtained candidate vector can be accepted by comparing a proba-
bility computed by

ξ = min

[
1,
P (m∗|d)

P (m|d)

]
, (25)

with a random number Γ ∈ [0, 1]. We accept the candidate in the case of ξ > Γ ; otherwise,
we reject the candidate and generate a new candidate again perturbating the model vector
m.
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We employ the Newton algorithm to generate the candidate vector

mi+1 = mi + ν∆m, (26)

where ν ∈ [0, 1] is a random number, and ∆m is the perturbation in unknown parameter
vector, which is computed using the least-squares (LS) method

∆m =
(
GTG

)−1
GT (d−Gmi) . (27)

We emphasize that we combine the least-squares method and Bayesian MCMC algorithm
to generate a few of acceptable candidates for estimate the unknown parameter vector m,
and the average value of all the acceptable candidates is preserved as the final inversion
result.

NUMERICAL EXAMPLES

In this section, we first analyze AVAZ features of PP- and PS-wave reflection coeffi-
cients for the case of the rock containing one or two sets of fractures respectively, and then
we employ synthetic seismic data of different signal-to-noise ratios (SNR) and real data
sets to test the stability and reliability of the proposed inversion approach.

Analysis of PP- and PS-wave reflection coefficient AVAZ features

In the case of an reflection interface separating an isotropic sand layer and a fractured
shale layer, we compute PP- and PS-wave reflection coefficients using the derived equations
6 and 11). Assuming the shale layer contains one and two sets of factures respectively, we
compute PP- and PS-wave reflection coefficients for the reflection interface. For the gas-
saturated fractures (i.e. Let Kf = 0.02 GPa), we compute the frature weaknesses using
equation 15. Elastic parameters (P- and S-wave moduli), density and fracture weaknesses
are shown in Table 2, in which we use e1 = 0 and e2 = 0.15 for the case of shale containing
one set of fractures, and use e1 = 0.02 and e2 = 0.15 for that of shale containing two sets
of fracture weaknsses. We assume the same aspect ratio for fractures, i.e. χ1 = χ2 = 0.01.
In Figure 3, we focus on how anisotropic parts of PP- and PS-wave reflection coefficients
vary with incidence and azimuthal angles since the isotropic parts have no change for two
cases of fractured shale layer.

Table 1. Parameters of sand-shale model

M (GPa) µ (GPa) ρ (g/cm3) δN1 δT1 δN2 δT2

Sand 83 33 2.65 0 0 0 0

Shale (one set) 37 9 2.55 0 0 0.7849 0.3183

Shale (two sets) 37 9 2.55 0.1047 0.0424 0.7849 0.3183
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Table 2. Parameters of sand-shale model

δN1 δT1 δN2 δT2

Sand 0 0 0 0

Shale (one set) 0 0 0.7849 0.3183

Shale (two sets) 0.1047 0.0424 0.7849 0.3183
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-0.04
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0a)

0 90 180 270 360
-0.015
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0b)
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-0.01

0
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0.03c)
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-0.01

0

0.01

0.02

0.03d)

FIG. 3. Variations of PP- and PS-wave reflection coefficients with incidence and azimuthal angles.
a) RPP(θ, φ = 30◦), b) RPP(θ = 20◦, φ), c) RPS(θ, φ = 30◦), d) RPS(θ = 20◦, φ)

We observe that the additional set of fractures only changes the value of PP- and PS-
wave reflection coefficients; however, it has no effect on the AVAZ features of PP- and
PS-wave reflection coefficients.
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Verification of robustness and stability of the inversion approach

In Figure 4a, we show curves of different values of fracture densities e1 and e2, and
under the assumption of gas-bearing fractures (i.e. the fluid in fractures is a mixture of
water and gas), we use a given curve of water saturation SW to compute fluid bulk modulus
Kf . Using equation 15, we calculate two sets of fracture weaknesses (δN1, δT1, and δN2,
δT2), as shown in Figure 4b.
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FIG. 4. a) Curves of fracture densities e1 and e2 and water saturation SW, and b) Curves of two
sets of calculated fracture weaknesses.

We next use a Ricker wavelet of dominant frequency 25Hz to directly generate dif-
ferences in azimuthal seismic datasets based on the derived PP- and PS-wave reflection
coefficients. Given azimuthal angles of φ1 = 0◦, φ2 = 45◦ and φ3 = 90◦ and incidence
angle range of 25◦ ≤ θ ≤ 35◦, we plot differences in azimuthal PP- and PS-wave seismic
amplitudes in Figure 5. To testify the robustness of the proposed inversion approach, we
add random noise that is assumed to be Gaussian into the synthetic data to produce noisy
seismic data of signal-to-noise ratio (SNR) of 5 and 2, respectively. We emphasize that we
use the same wavelet for generating PP- and PS-wave amplitudes.

Inputing the generated PP- and PS-wave azimuthal amplitude difference datasets, we
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implement the estimation of unknown parameter vector m using the established inversion
approach. In Figure 6a and b), we plot comparisons between all the acceptable inversion re-
sults generated using Bayesian MCMC method, initial values, true values, results obtained
using the LS algorithm, and the final inversion results computed using all the acceptable
inversion results of fracture weaknesses δN2 and δT2 in the case of SNR of 5 and 2, re-
spectively. We observe that the final inverted results of fracture weaknesses δN2 and δT2
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FIG. 5. a) Difference between PP-wave amplitudes of φ1 = 0◦ and φ2 = 45◦; b) Difference between
PP-wave amplitudes of φ1 = 0◦ and φ3 = 90◦; c) Difference between PS-wave amplitudes of
φ1 = 0◦ and φ2 = 45◦; b) Difference between PS-wave amplitudes of φ1 = 0◦ and φ3 = 90◦. The
azimuthal seismic amplitude difference of SNR of 5 is shown in blue, and the azimuthal seismic
amplitude difference of SNR of 2 is shown in red.

calculated using all the acceptable results generated using the proposed Bayesian MCMC
inversion method can match the true values in the case of SNR of 2, and the proposed
inversion approach can produce more reliable results of fracture weaknesses than the LS
inversion. Using the inversion results of δN2 and δT2, we may compute the values of frac-
ture weaknesses δN1 and δT1. We compute the fracture weaknesses δN1 and δT1 using the
inverted fracture weaknesses δN2 and δT2 and the value of γ computed using fracture den-
sities e1 and e2 shown in Figure 4a, and we compare the computed results and true values
of δN1 and δT1, as shown in Figure 7. It reveals that the proposed inversion approach is
robust and can be used for estimating reliable fracture weaknesses.

Real data example

Real datasets of azimuthal PP and PS waves are utilized for the further verification
of the stability and reliability of the proposed inversion approach. We first plot in-line
and cross-line PP-wave angle gathers of azimuthal angles θ1 = 8◦, θ2 = 17◦ and θ3 = 26◦

extracted at the location of well log in Figure 8. We observe around the location of reservoir
(around time 1980 ms), seismic reflection amplitude variation with incidence and azimuthal
angles (AVAZ) appears, which can be used as the input data for the prediction of two sets
of fracture weaknesses.

Following Chen et al. (2017), we first extract PP-wave AVO intercept and gradient using
the angle gathers of different azimuths, and then we compute the curve of AVO anisotropic
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FIG. 6. Comparisons between all the acceptable inversion results generated using Bayesian MCMC
method (grey), initial values (black), inversion results estimated using the LS algorithm (green), the
final inversion results computed using all the acceptable inversion results (red) of fracture weak-
nesses δN2 and δT2. a) SNR of 5; b) SNR of 2.
r

gradient Bani at the location of well log. Using the relationship between the normal and
tangential fracture weaknesses, we convert the result ofBani to the tangential fracture weak-
ness δT and compute the fracture density ratio γ, as shown in Figure 9. We observe there
are differences betweenBani results computed using the inline and crossline PP-wave angle
gathers at the location of well log, which indicates different sets of fractures may exist at
the location where the hydrocarbon reservoir is explored. We also see that at the location
of hydrocarbon reservoir, two tangential fracture weaknesses computed using inline and
crossline anisotropic gradients shows relatively high values. The calculated fracture den-
sity ratio γ will be used in the inversion approach to replace the fracture weaknesses δN1
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FIG. 7. Compasions true values and inversion results of fracture weaknesses δN1 and δT1 for the
case of SNR of 5 and 2.
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FIG. 8. Inline and crossline PP-wave angle gathers extracted at the location of well log. Seismic
profiles plotted in red, blue and black represent angle gathers of azimuths φ1 = 170◦, φ2 = 25◦ and
φ3 = 50◦, respectively.

and δT1 with fracture weaknesses δN2 and δT2.

Using the proposed inversion approach, we next estimate the normal and tangential
fracture weaknesses δN2 and δT2 utilizing PP- and PS-wave AVAZ datasets. We emphasize
the input data are differences in azimuthal PP- and PS-wave seismic amplitudes, and instead
of using the data of all incidence angles, we employ the partially incidence-angle-stacked
seismic amplitudes of the dominant incidence angles θ1 = 8◦, θ2 = 17◦ and θ3 = 26◦ to
implement the inversion. In Figure 10, we show the partially incidence-angle-stacked PP-
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FIG. 9. Anisotropic AVO gradient Bani, tangential fracture weakness δT and fracture density ratio γ
computed at the location of well log.

and PS-wave seismic data of three incidence angles θ1 = 8◦, θ2 = 17◦ and θ3 = 26◦ and
three azimuthal angles φ1 = 170◦, φ2 = 25◦ and φ3 = 50◦.

Initial models of normal and tangential fracture weaknesses δN2 and δT2 are built using
the computed results of AVO anisotropic gradient Bani, as plotted in Figure 11. Following
the proposed inversion approach, we implement the inversion of differences in azimuthal
amplitudes of three incidence angles for the normal and tangential fracture weaknesses.
Inversion results of the inverted fracture weaknesses are shown in Figure 12. With the
inverted fracture weaknesses δN2 and δT2 in hand, we next compute the results of δN1 and
δT1 using the fracture density ratio γ, as plotted in Figure 13.

We see that at the location of hydrocarbon reservoir, the inverted fracture weaknesses
show relatively high values, and the reservior is more distinctly be observed in the inverted
results of tangential fracture weaknesses δT1 and δT2. Combining two sets of normal and
fracture weaknesses provides the possiblity to characterize how fractures distribute and
where fractures are connected in the reservoir.

CONCLUSIONS

Driven by an effective model for rocks containing two sets of orthogonal fractures, we
present simplified stiffness parameters in terms of fracture weaknesses and the correspond-
ing perturbations in stiffness parameters across the reflection interface, and then we derive
linearized PP- and PS-wave reflection coefficients in terms of two sets of fracture weak-
nesses. Based on the reflection coefficients, we propose an inversion approach combining
the least-squares inversion algorithm and Bayesian Markov chain Monte Carlo (MCMC)
method to employ differences in PP- and PS-wave azimuthal amplitudes variation with in-
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FIG. 10. PP- and PS-wave seismic data of incidence angles θ1 = 8◦, θ2 = 17◦ and θ3 = 26◦. a)-c)
PP-wave data of azimuthal angles φ1 = 170◦, φ2 = 25◦ and φ3 = 50◦; and e)-f) PS-wave data of
azimuthal angles φ1 = 170◦, φ2 = 25◦ and φ3 = 50◦. The curve is P-wave velocity.
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FIG. 11. a) Initial models of the normal fracture weakness δN2, and b) Initial models of the tangential
fracture weakness δT2. The curve is P-wave velocity.
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FIG. 12. a) Inversion results of the normal fracture weakness δN2, and b) Inversion results of the
tangential fracture weakness δT2. The curve is P-wave velocity.

cidence (AVA) to estimate two sets of fracture weaknesses. In the inversion, anisotropic
AVA gradients computed using pre-stack seismic data along two different directions is uti-
lized to bulid initial models of two sets of fracture weaknesses and to calculate fracture
density ratio.

Applying the proposed inversion and workflow to synthetic seismic datasets of different
signal-to-noise ratios (SNR) implies that the normal and tangential fracture weaknesses
can be estimated stably in the case of SNR being larger than 2, and the proposed inversion
approach can provide more accurate results of fracture weaknesses than the least-squares
inverison alogrithm. We finally utilize PP- and PS-wave amplitude datasets of different
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FIG. 13. a) Inversion results of the normal fracture weakness δN1, and b) Inversion results of the
tangential fracture weakness δT1. The curve is P-wave velocity.

azimuthal angles to implement the estimation of fracture weaknesses using the proposed
inversion approach. We conclude that reliable results of fracture weaknesses, which can
match the well log and anisotropic AVA gradient, are provided by the inversion approach,
which provides the possibility to characterize the fracture connectivity in the hydrocarbon
reservoir.
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APPENDIX A. DERIVATION OF LINEARIZED REFLECTION COEFFICIENTS
OF PP AND PS WAVES

Vavryčuk and Pšenčík (1998) proposed an expression of PP-wave reflection coefficient
in the case that an interface separates two weakly arbitrary anisotropic media. Extending
their PP-wave reflection coefficient to the case that an interface separating isotropic and
fractured media, we rewrite the reflection coefficient as

RPP (θ, φ)≈∆ (C33/ρ)

4α2
(1 + sin2 θ) +

(
1

2
− 2gsin2 θ

)
∆ρ

ρ
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(A.1)

where α is P-wave velocity of the isotropic background rock, θ is the angle of incident
P-wave, and φ is azimuthal angle. Substituting equations 4 and 5 into equation A.1, we
obtain the expression of PP-wave reflection coefficient after some algebra

RPP (θ, φ)≈1

4

cos 2θ
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1
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(A.2)
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Shaw and Sen (2006) and Chen et al. (2018) present the relationship between P-to-S
reflection coefficient RPS and scattering potential SPS as

RPS =
sin θ

2ρcosψsin (θ + ψ)
SPS

=
sin θ

2ρcosψsin (θ + ψ)

(
∆ρcos 2θ +

i=6,j=6∑
i=1,j=1

∆Cijηij

)
,

(A.3)

where ψ is the angle of reflected S-wave. Pertubation in stiffness parameter ∆C is shown
in equation 5, and angle-dependent η is expressed as
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αβ
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(A.4)

where β is S-wave velocity of the isotropic background rock.

Combining equations 5, A.3 and A.4, we obtain the P-to-S reflection coefficient after
some algebra
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(A.5)
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