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ABSTRACT

Detection of natural fractures and identification of infilling fluids in fractures are impor-
tant objectives in exploration and characterization of unconventional reservoirs (e.g. shale
or tight sand reservoirs). In the case of rocks containing interconnected aligned fractures,
both anisotropy and attenuation appears in reflected amplitudes of seismic wave. Starting
with an effective model of interconnected aligned fractures in an elastic and isotropic back-
ground, we first present simplified complex stiffness parameters as a function of attenuation
factor 1/Q in an attenuative anisotropic medium, and perturbations in stiffness parameters
across an interface separating two attenuative anisotropic media. Using an approximate
relationship between reflection coefficient and scattering potentials, we derive a linearized
complex PP-wave reflection coefficient in terms of reflectivities of P- and S-wave moduli
and density and changes in the tangential fracture weakness δT and attenuation factor 1/Q,
which provides a possibility to estimate fracture weakness and attenuation factor from re-
flection amplitudes. Based on the derived reflection coefficient, we propose an inversion
approach of employing real and imaginary parts of complex seismic data in frequency
domain for estimating unknown parameters following a Bayesian framework. Applying
the inversion approach to frequency-dependent synthetic seismic datasets of different inci-
dence and azimuthal angles, we may obtain the inverted tangential fracture weakness that
can match the true value, and the attenuation factor can be estimated reliably even though
the estimation should be improved at the location of fractured reservoir. Future work should
focus on the illustration of stability and robustness of the proposed inversion approach and
the verification of reliability of the approach using real datasets.

INTRODUCTION

Interconnected fractures are important pathways for fluid movements within rocks when
seismic wave propagates in underground layers. Anisotropy and attenuation can be ob-
served in reflected seismic amplitude, which behaves as amplitude variation with incidence
and azimuthal angles (AVAZ) and change of seismic wave phase during seismic wave prop-
agation; and estimating anisotropy and attenuation from seismic AVAZ data can provide
information for the identification of hydrocarbon-bearing fractured reservoirs.

In the case of a rock containing interconnected aligned fractures, Hudson et al. (1996)
present how fracture connectivity and infilling materials affect the displacement and pro-
pose stiffness parameters in terms of fluid and fracture properties (e.g. fluid bulk modulus,
fracture density). Pointer et al. (2000) model the influence of fractures and fluids on seismic
wave velocity and attenuation factor variation with frequency for two cases of a rock con-
taining interconnected aligned cracks and that containing interconnected randomly oriented
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cracks. Rubino et al. (2017) conclude that fracture connectivity can reduce anisotropy, and
Guo et al. (2018) present expressions of dynamic stiffness parameters and anisotropic pa-
rameters in the case of rocks containing interconnected two orthogonal fractures.

Features of frequency-dependent AVAZ data can provide valuable information for esti-
mating where natural fractures exist and what types of infilling fluids are in fractures. Fo-
cusing on a rock containing a single set of parallel cracks, Chen et al. (2020) present an indi-
cator of oil-bearing fractured reservoirs, in which a fluid movement related parameter is in-
volved, and propose an inversion approach of employing real parts of frequency-dependent
AVAZ data to estimate the indicator and fracture weaknesses; however, the imaginary part
that is much sensitive to fluids has been ignored.

In the present study, starting with an effective model of a rock containing interconnected
aligned fractures, we first present simplified complex stiffness parameters as a function of
attenuation factor 1/Q in the case of infilling fluids being a mixture of water and oil, and
the attenuation factor is involved in the imaginary parts. Using the simplified stiffness pa-
rameters, we derive a linearized PP-wave reflection coefficient in terms of perturbations
in the tangential fracture weakness δT and the attenuation factor 1/Q across an interface
separating two attenuative anisotropic media. Based on the derived reflection coefficient,
we establish an approach of employing both real and imaginary parts of azimuthal AVAZ
datasets to estimate fracture weakness and attenuation factor. We apply the inversion ap-
proach to frequency-dependent synthetic seismic data of different incidence and azimuthal
angels, and we obtain the inversion results of fracture weakness and attenuation factor that
may match true values. The future work should focus on the verification of stability and
robustness of the inversion approach, and clarify how to apply the inversion approach to
real datasets to provide valuable information for the detection of natural fractures and the
identification of infilling fluids.

THEORY AND METHOD

In this section, we derive the complex reflection coefficient in terms of indicators of flu-
ids and cracks in the case of an interface separating two attenuative anisotropic media; and
we present an approach of employing real and imaginary parts of azimuthal seismic data
variation with frequency and incidence angle (Frequency-dependent AVAZ) to estimate the
tangential fracture weakness and attenuation factor.
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Stiffness parameters of rocks containing interconnected aligned cracks

In the case of normals of cracks being aligned along x1-axis, the complex stiffness
matrix of a cracked rock C̃ is given by Hudson (1980) as

C̃ =



C̃11 C̃12 C̃12 0 0 0

C̃12 C̃33 C̃23 0 0 0

C̃12 C̃23 C̃33 0 0 0

0 0 0 C̃44 0 0

0 0 0 0 C̃55 0

0 0 0 0 0 C̃66



=
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 ,
(1)

where g = µ/M , M = λ + 2µ, λ and µ are Lamé parameters of the isotropic background
rock, e is crack density, and Ũ11 and Ũ33 are variables influenced by crack properties (e.g.
crack aspect ratio) and fluid parameters (e.g. fluid bulk modulus). In the case of inter-
connected aligned cracks embedding in an isotropic background rock, Ũ11 and Ũ33 are
expressed as (Pointer et al., 2000)

Ũ11 =
16

3

1
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where ω is the angular frequency, and
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1

V 2
, (3)

in which ηf is fluid viscosity, α is crack aspect ratio, Kf is fluid bulk modulus, Pe is perme-
ability of cracked rock, and V is wave speed.

Pointer et al. (2000) point out only in the case of α ≤ 10−5 and f ≥ 100kHz, Ũ11

generates a significant attenuation, which is outside the realm of seismology. Hence, fo-
cusing on the seismic frequency range, we neglect the attenuation generated by Ũ11, and
we expand and rewrite Ũ33 as

Ũ33≈
4

3

1

1− g
(1− Γ − iωΓ τ) . (4)
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FIG. 1. a) Variation of Γ with water saturation SW in the case of α = 0.01; b) Variation of Γ with
crack aspect ratio α in the case of SW = 0.5. Bulk moduli of water and oil are 2.25 GPa and
1.35 GPa, respectively; g = 0.36 and µ = 9 GPa are used as elastic parameters of the isotropic
background rock.

Focusing on oil-bearing fractures, we show how Γ varies with water saturation SW and
crack aspect ratio α in the case that fluids in cracks are the mixture of oil and water, as
plotted in Figure 1. We observe the value of Γ varies in the range 0.8 − 1 for oil-bearing
cracked reservoirs in the case of α≤0.01, and we may use Γ≈1 to further simplify Ũ33.
Hence, in this study, the simplified and approximate expressions of U11 and U33 are given
by

Ũ11≈
16

3

1

3− 2g
,

Ũ33≈
4

3

1

1− g
(−iωτ) . (5)

Substituting equation 5 into equation 1, we obtain the approximate and simplified stiff-
ness parameters as

C̃11≈M
(

1 + ω
i

Q

)
,

C̃12≈λ
(

1 + ω
i

Q

)
,

C̃22≈M
[
1 + (1− 2g)2ω

i

Q

]
,

C̃23≈λ
[
1 + (1− 2g)ω

i

Q

]
,

C55≈µ− µδT, (6)
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where 1/Q and δT are attenuation factor and tangential fracture weakness given by

1

Q
=

1

π

Pe

α

Kf

ηf

1

g (1− g)

1

V 2
,

δT =
16e

3 (3− 2g)
. (7)

In equation 7, we observe that the tangential fracture weakness δT is mainly affected
by fracture density, which means δT may be used an indicator of cracks. For oil-bearing
fractured reservoirs, we model how the attenuation factor 1/Q varies with fracture density
e, water saturation SW and fracture aspect ratio α, as displayed in Figure 2. In Appendix
A, we show how to compute the total permeability Pe, fluid bulk modulus Kf , and fluid
viscosity ηf using fracture parameters (e.g. fracture density and aspect ratio) and fluid
content (e.g. water saturation).

In Figures 2a and 2b, we observe that the attenuation factor increases with water satu-
ration SW and hardly changes with the fracture aspect ratio α, and 1/Q shows a relatively
low value in the case of oil-bearing reservoir. However, in Figure 2c, we see that the atten-
uation factor changes much more faster with fracture density e than it changes with water
saturation SW.

Since 1/Q is influenced by both fracture density and fluid saturation, we should estab-
lish a more sensitive fluid indicator, e.g. a novel factor combining 1/Q and δT, in which we
try to remove the effect of fracture density using the tangential fracture weakness. In this
study, we will implement the inversion for the attenuation factor 1/Q and the tangential
fracture weakness δT, and then we combine the inversion results of 1/Q and δT to identify
the oil-bearing fractured reservoirs.

Derivation of linearized reflection coefficient in attenuative anisotropic media

Using the simplified stiffness parameters shown in equation 7, we first express per-
turbations in stiffess parameters across a reflection interface separating two attenuative
anisotropic media as shown in Figure 3.

In the case that changes in elastic properties (i.e. ∆M , ∆λ, and µ) across the reflec-
tion interface and the attenuation factor of the background rock are small, we express the
perturbations in stiffness parameters as

∆C̃11≈∆M + iωM∆
1

Q
,

∆C̃12≈∆λ+ iωλ∆
1

Q
,

∆C̃22≈∆M + iωM(1− 2g)2∆
1

Q
,

∆C̃23≈∆λ+ iωλ(1− 2g)∆
1

Q
,
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FIG. 2. a) Variation of attenuation factor with water saturation SW; and b) Variation of attenuation
factor with fracture aspect ratio. Parameters used for computing 1/Q are V = 3300 m/s and g =
0.36. Fracture aperture is h = 0.0001 m

∆C44 = ∆µ,

∆C55≈∆µ− µ∆δT, (8)

where ∆ 1
Q

and ∆δT are perturbations in attenuation factor and tangential weakness across
the reflection interface, respectively. We emphasize that we neglect the term that is propor-
tional to 1

Q
∆M , ∆M∆ 1

Q
, δT∆µ, and ∆µ∆δT in the derivation of perturbations in stiffness

parameters. We employ the scattering potential given by Beylkin and Burridge (1990) and
Shaw and Sen (2006) to derive a P-to-P reflection coefficient for the interface separating
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FIG. 3. A reflection interface separating two attenuative media. Parameters M , µ, ρ, δT, and
Q−1 are P- and S-wave moduli, density, tangential fracture weakness, and attenuation factor of
background medium, and ∆M , ∆µ, ∆ρ, ∆δT, and ∆Q−1 are the corresponding perturbations.

two attenuative anistropic media as

RPP =
∆ρ cos 2θ

4ρcos2 θ
+

1

4ρcos2 θ



∆C11
ρsin4 θcos4 φ

M

+∆C12

(
2ρsin4 θcos2 φsin2 φ

M
+ 2ρsin2 θcos2 θcos2 φ

M

)
+∆C23

2ρsin2 θcos2 θsin2 φ
M

+∆C33

(
ρsin4 θsin4 φ

M
+ ρcos4 θ

M

)
+∆C44

(
−4ρsin2 θcos2 θsin2 φ

M

)
+∆C55

(
4ρsin4 θcos2 φsin2 φ

M
− 4ρsin2 θcos2 θcos2 φ

M

)


, (9)

where θ is the incidence angle of P wave, and φ is azimuth indicating difference between
the symmetry of cracks (i.e. x1-axis) and the source-receiver seismic line. Combining
equations 8 and 9, we derive the P-to-P reflection coefficient after some algebra as

RPP (θ, φ, ω) =R+ i Q, (10)

where

R =
1

4cos2 θ
RM − 2gsin2 θRµ +

cos 2θ

4cos2 θ
Rρ

+ gsin2 θcos2 φ
(
1− tan2 θ sin2 θ

)
RT,

Q =
ω

4 cos2 θ

[
1− 2g

(
sin2 θ sin2 φ+ cos2 θ

)]2
RQ, (11)

and where RM = ∆M/M , Rµ = ∆µ/µ and Rρ = ∆ρ/ρ are reflectivities of P- and S-
wave moduli and density of the isotropic elastic background rock, RT = ∆δT, and RQ =
∆ (1/Q). In the derived linearized P-to-P reflection coefficient, we observe the attenuation
factor only appears in the imaginary part, and the variation of real part with azimuth φ
is only related to the tangential fracture weakness. Hence, in the present study, we focus
on proposing an inversion approach of employing seismic reflection amplitude variation
with incidence angle, azimuth and frequency (AVAZF) to estimate the tangential fracture
weakness δT and the attenuation factor 1

Q
.
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Inversion for attenuation factor and tangential fracture weakness

The convolutional model for generating seismic data of different incidence and az-
imuthal angles is expressed in frequency domain as

S (θ, φ, ω) = W (ω)RPP (θ, φ, ω), (12)

where S = X + i Y and W = A + i B are seismic and wavelet in frequency domain,
respectively. In the case of seismic data of two azimuths φ1 and φ2, the difference between
the seismic data in the frequency domain is expressed as

∆S (θ, φ1, φ2, ω) = W (ω) ∆RPP (θ, φ1, φ2, ω), (13)

where ∆RPP (θ, φ1, φ2, ω) is the difference between reflection coefficients of φ1 and φ2 in
the frequency domain. Combining equations 10 and 13, we express differences between
seismic data of φ1 and φ2 as[

∆X (θ, φ1, φ2, ω)
∆Y (θ, φ1, φ2, ω)

]
=

[
A pT −B pQ
B pT A pQ

] [
RT

RQ

]
, (14)

where

pT = gsin2 θ
(
cos2 φ2 − cos2 φ1

) (
1− tan2 θ sin2 θ

)
,

pQ = gωtan2 θ
(
sin2 φ2 − sin2 φ1

) [
1− g sin2 θ

(
sin2 φ2 + sin2 φ1

)
− 2g cos2 θ

]
. (15)

Equation 14 can be expressed succinctly as

d = Gm, (16)

where d is vector of input data involving differences in real and imaginary parts computed
using seismic data of φ1 and φ2 in frequency domain, G is the operator related to the fre-
quency, incidence and azimuthal angles, and m is the model vector involving reflectivities
of tangential fracture weakness ∆δT and attenuation factor ∆ 1

Q
, respectively.

Following a Bayesian framework, we implement the inversion of azimuthal amplitude
difference variation with frequency and incidence for estimating the unknown parame-
ter vector using probabilistic constraints. The posterior Probability Distribution Function
(PDF), P (m|d), is computed using the likelihood function, P (d|m), and a prior PDF,
P (m), as

P (m|d)≈P (d|m)P (m) , (17)

and in the case of the noise being assumed to be Gaussian, we write the likelihood function
as

P (d|m)∝ exp

(
−(d−Gm)† (d−Gm)

2σ2
n

)
, (18)
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where † denotes the transpose, and σ2
n is the variance of the noise. To produce a sparse

solution for the unknown parameter vector, we employ the univariate Cauchy distribution
priori to constrain the inversion problem, and in the case of N interface, the expression of
P (m) is given by

P (m)∝ exp

(
−

2N∑
l=1

ln

(
1 +

(
ml

σm

)2
))

, (19)

where σm is a scale value that is related to the variance of the unknown parameter vector.
Hence, we obtain the posterior PDF as

P (m|d)≈ exp

(
−(d−Gm)† (d−Gm)

2σ2
n

−
2N∑
l=1

ln

(
1 +

(
ml

σm

)2
))

. (20)

To implement the inversion for the unknown parameter vector, we need to minimize the
following objective function

J (m) =
(d−Gm)† (d−Gm)

2σ2
n

+
2N∑
l=1

ln

(
1 +

(
ml

σm

)2
)
, (21)

to obtain the maximum posterior PDF. We compute the derivative of J (m) with respect to
m as

∂J (m)

∂m
=
−d†G + m†G†G

σ2
n

+
2

σ2
m

1

U
m, (22)

where Ull = 1 +
(
ml
σm

)2
is a diagonal matrix, and letting the derivative of J (m) with

respect to m be zero, we get

m =

(
G†G +

2σ2
n

σ2
m

1

U

)−1
G†d. (23)

In equation 22, we observe the matrix Ull is related to the unknown parameter itself, which
means the inversion for m is a nonlinear problem; hence, following Alemie (2010), we
employ the Iterative re-weighed least squares (IRLS) method to obtain the final inversion
results of δT and 1

Q
.

NUMERICAL EXAMPLES

In this section, we first model how real and imaginary parts of reflection coefficient
variation with incidence angle and azimuth in the case of different values of frequency,
and then we generate synthetic complex seismic data in frequency and utilize real and
imaginary parts of synthetic data to implement the inversion for indicators of fractures and
fluids.
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Frequency-dependent reflection amplitude variation with incidence angle and
azimuth (Frequency-dependent AVAZ)

Given an interface separating two attenuative anisotropic layers, we model how the
frequency-dependent reflection coefficient varies with incidence and azimuthal angles. Ta-
ble 1 shows P- and S-wave moduli (M and µ), density (ρ), tangential fracture weakness
(δT) and attenuation factor (1/Q) of two attenuative anisotropic layers, and we assume the
lower layer shows relatively high values of fracture weakness and attenuation factor. We
calculate the complex reflection coefficients using the derived equation 11, and we plot the
real and imaginary parts of reflection coefficients varying with incidence and azimuthal
angles in Figure 4.

Table 1. Parameters of sand-shale model

M (GPa) µ (GPa) ρ (g/cm3) δT 1/Q

Upper layer 25 8.3 2.3 0.01 0.01

Lower layer 12.5 3.38 2 0.35 0.5

Combining the derived reflection coefficient and the AVAZ modelling results, we ob-
serve both the real and imaginary parts of reflection coefficient vary with incidence and
azimuthal angles; however, only the imaginary part of reflection coefficient changes with
frequency.

Synthetic examples

We next apply the established inversion approach to synthetic datasets generated using
a well-log model. In Figure 5a, we show curves of P- and S-wave velocities VP and VS
and density ρ, and in Figure 5b, we plot crack porosity ϕcrack, water saturation SW and the
computed attenuation factor 1

Q
, tangential fracture weakness δT and a new parameter 1

QδT
.

In Figure 5, we plot the curve of oil-bearing reservior in red. We observe at the loca-
tion of oil-bearing reservoir, P- and S-wave velocities, density and water saturation show
relatively low values, and the crack porosity shows relatively high values. However, the
computed attenuation factor 1

Q
exhibits relatively low values, which again verifies the at-

tenuation factor is much more influenced by crack density than by fluid content. Hence, to
identify fluid type in the fractured reservoirs, we establish a new indicator that combines 1

Q

and δT, i.e. 1
QδT

, in which we try to get rid of the influence of fracture density via dividing
1
Q

by δT. In the calculated result of 1
QδT

shown in Figure 5b), we also observe at the location
of oil-bearing reservoir the computed 1

QδT
shows relatively low values, and the reason is the

low water saturation SW may produce a low fluid bulk modulus Kf and a high viscosity ηf ,
which finally induce a much lower value of Kf

ηf
in the attenuation factor 1

Q
.

Using the derived reflection coefficients, we first generate both real and imaginary parts

10 CREWES Research Report — Volume 32 (2020)
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FIG. 4. Variation of complex reflection coefficients with incidence and azimuthal angles (AVAZ). a)
and b) Real and imaginary parts of reflection coefficients of frequency 20 Hz; and c) and d) Real
and imaginary parts of reflection coefficient of frequency 50 Hz.

of seismic data of different incidence angles (θ1 = 10◦, θ2 = 20◦ and θ3 = 30◦), azimuthal
angles (φ1 = 0◦, φ2 = 30◦, and φ3 = 60◦) and frequencies (f1 = 10 Hz and f2 = 30 Hz)
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FIG. 5. a) Curves of P- and S-wave velocities VP and VS, density ρ; b) Curves of crack porosity
ϕ, water saturation SW, the computed attenuation factor 1/Q, the computed tangential fracture
weakness δT and a new parameter combining 1/Q and δT. The curves plotted in red indicate an
oil-bearing reservoir.

using a Ricker wavelet of dominant frequency 20 Hz, as shown in Figure 6. We observe
that the difference between real parts of synthetic seismic data of frequency f1 = 10 Hz and
f2 = 30 Hz is small, and the large difference exihibits in the imaginary parts of synthetic
seismic data. At the location of fractured reservoir around time 2072 ms, we see the am-
plitude variation with the incidence angle exists. Employing the data of amplitude real and
imaginary parts variation with frequency, incidence and azimuthal angles, we may imple-
ment the inversion for the tangential fracture weakness and attenuation factor, as shown in
Figure 7. We observe there is a good match between the inversion result and the true value
of tangential fracture weakness δT; however, the inverted attenuation factor can match the
true value except the area of fractured reservoir. We conclude the accuracy of inversion for
attenuation factor should be improved by employing more frequency components of real
and imaginary parts of seismic data.
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FIG. 6. Real and imaginary parts of synthetic seismic profiles of frequency f1 = 10 Hz and f2 =
30 Hz. a) φ1 = 0◦, b) φ2 = 30◦, and c) φ3 = 60◦. Seismic profiles plotted in red, blue and black
represent the synthetic data generated for the case of incidence angle θ1 = 10◦, θ2 = 20◦ and
θ3 = 30◦, respectively.

CONCLUSIONS

In the case of a rock containing interconnected aligned fractures, seismic wave prop-
agation exhibits engery loss and anisotropy. Based on an effective model for intercon-
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FIG. 7. Comparisons between inversion results and real values of tangential fracture weakness
and attenuation factor. Initial model is the smoothed version of true value.

nected aligned fractures in an elastic and isotropic background, we first express simplified
stiffness parameters in terms of elastic parameters (P- and S-wave moduli M and µ) and
attenuation factor 1

Q
, and the attenuation factor is involved in the imaginary part of com-

plex stiffness parameter. Using the simplified complex stiffness parameters, we express
perturbations in stiffness parameters across an reflection interface separating two atten-
uative anisotropic media and derive a linearized complex PP-wave reflection coefficient
in terms of reflectivities in elastic parameters and changes in attenuation factor and tan-
gential fracture weakness, which is frequency-dependent and varies with incidence and
azimuthal angles (Frequency-dependent AVAZ). Using the derived reflection coefficient,
we propose an inversion approach of employing differences in frequency-dependent AVAZ
data to estimate fracture weakness and attenuation factor following a Bayesian framework.
We apply the proposed inversion approach to synthetic seismic datasets, and we employ
the difference in real and imaginary parts of synthetic azimuthal complex seismic data of
two different frequencies to estimate tangential fracture weakness and attenuation factor.
We conclude that the tangential fracture weakness can be estimated reliably; however, the
accuracy of the inversion for attenuation factor should be improved by involving AVAZ of
more frequencies.
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APPENDIX A. EXPRESSIONS OF ROCK PERMEABILITY AND FLUID BULK
MODULUS AND VISCOSITY

For the case of fractured rocks with a tight background (i.e. the permeability of tight
background Pe≈0), the total permeability of the fractured rock is computed as (Mavko
et al., 2009)

Pe≈
h2

12
ϕcrack, (A.1)

where h is fracture aperture, and ϕ is fracture porosity expressed as

ϕcrack =
4

3
πeα, (A.2)

where the fracture aspect ratio α is computed as

α =
h

l
, (A.3)

in which l is the semimajor axis of fracture.

In the case of fluids being the mixture of water and oil, the bulk modulus and viscosity
of the fluids are given by

1

Kf

=
1

KW

+
1

KO

,

1

ηf
=

1

ηW
+

1

ηO
,

(A.4)

where KW and KO are bulk moduli of water and oil, and ηW and ηO are the viscosity of
water and oil.
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