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ABSTRACT

Distributed acoustic sensing has become a prevalent technology for reservoir moni-
toring, and has potential for applications in earthquake seismology. In preparation for
advanced applications of these datasets such as imaging and inversion, we develop two
methods for forward modeling DAS datasets generated by moment tensor type sources.
The first is an efficient analytic modeling algorithm well-suited to modeling large datasets
of DAS-microseismic direct arrivals. Another paper in this issue uses this algorithm for
generation of a datasets used as input for a machine learning study for source mechanism
estimation. The second method we develop is a full 3D finite-difference method based on
the velocity-stress method.

INTRODUCTION

Distributed acoustic sensing (DAS) is a rapidly advancing technology for seismic ac-
quisition, especially in reservoir monitoring settings. Its use of noninvasive optical fibers to
make measurements of the strain induced by propagating seismic wavefields offers many
advantages in these settings. Chief among theses is their ability to be placed in active treat-
ment wells during reservoir treatments such as hydraulic fracturing (Webster et al., 2013).
DAS is also attractive for earthquake seismology studies (Lindsey et al., 2017; Yu et al.,
2019), due in large part to the opportunity to leverage subsea telecommunication fiber op-
tics, mitigating problems associated with the continental deployment bias of traditional
seismology recording equipment.

The seismic signals generated by earthquakes and fractures can be modeled by con-
sidering moment tensor source mechanisms which are a function of the fracture mechanics
(Aki and Richards, 2002). As the application of DAS for reservoir monitoring and seismol-
ogy studies increase, methods for modeling the signals generated by moment tensor sources
and recorded by DAS fibers become increasingly important. In this paper we develop two
methods for modeling DAS signals generated by moment tensor source mechanisms. The
first is an extension of analytic approach of Aki and Richards (2002) to strain wavefields.
The second is the extension of the velocity-stress finite-difference method to computing
the strain field required for DAS modeling. To validate our methods, we then compare our
modeled wavefields to a field data DAS-microseismic record.

SIMULATION OF DAS DATA

Distributed acoustic sensing employs optical fibers to sense the strain,

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(1)
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induced by propagating seismic waves. However, due to the rigidity of the optical fibers
used in DAS systems these fibers are only sensitive to components of the seismic wavefield
inducing normal strains in the tangential direction of the fiber, εtt. Therefore, DAS is inher-
ently a single component, and directional, recording technology. The tangential response
of the DAS fiber is computed through projection of the strain tensor onto the fiber,

εtnb = R(s)εxyzR(s)T (2)

where εxyz is the strain tensor in the field coordinate system, εtnb is the strain tensor in
the coordinates of the fiber, and R(s) is an operator transformng between the two systems
defiend as,

R(s) =


t̂(s) · x̂ t̂(s) · ŷ t̂(s) · ẑ
n̂(s) · x̂ n̂(s) · ŷ n̂(s) · ẑ

b̂(s) · x̂ b̂(s) · ŷ b̂(s) · ẑ

 . (3)

The normal tangential component of the strain tensor εtnb is,

εtt(s) = (̂t · x̂)2εxx + 2(̂t · x̂)(̂t · ŷ)εxy + 2(̂t · x̂)(̂t · ẑ)εxz

+(̂t · ŷ)2εyy + 2(̂t · ŷ)(̂t · ẑ)εyz + (̂t · ẑ)2εzz
(4)

where s is the arclength along the fiber, t̂ is the tangent direction of the fiber at s and x̂,
ŷ, and ẑ are the field coordinates. Equation (4) clearly expresses the strain response of the
fiber as a function of the fiber geometry. Commonly, straight fibers are deployed in vertical
wells for VSP acquisition resulting in fibers only sensitive in the z-direction and εtt = εzz.
However, fibers can be shaped on both a large scale (for example tracking a horizontal
well), and a small scale (wound in some characteristic shape such as a helix). This exposes
the fiber to a different portion of the wavefield, and perhaps enhances its sensitivity, if these
other wavefield components contain significant energy.

The DAS fiber does not supply local point measurements of the strain. In practice, due
to the weak response of the fiber on a local scale, the strain response is averaged over a
length of fiber to improve the signal-to-noise ratio of the recorded. This length of fiber,
L, is known as the gauge length. The gauge length averaged response of the fiber to a
propagating wavefield at a fixed time t is,

d(s) =

∫ L/2

−L/2
W (s− s′, L)εtt(s

′)ds′ (5)

where W (s− s′, L) is an averaging operator, which in this paper is defined as,
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W (s, L) =

{
1/L, −L/2 < s < L/2
0, otherwise . (6)

Thus to simulate DAS datasets requires a geometric model for the fiber, computation of
the strain field in the field coordinate system (x̂, ŷ, ẑ), and then projection of that strain onto
the fiber. In this paper we are interested in modeling the response of DAS fibers to moment
tensor type sources so that we may model the datasets recorded in seismology studies or
during hydraulic fracture treatments. We consider both analytic and numerical simulations
in this study.

ANALYTIC EXPRESSIONS FOR STRAIN FROM A MOMENT TENSOR
SOURCE

Perhaps the most important features in microseismic data, containing information about
the source location and source mechanism, are the direct arrivals. Analytic methods pro-
vide a means for the efficient modelling of these direct arrivals and can provide important
insights into how source mechanics influence the recorded data. Aki and Richards (2002)
develop equations for modelling the displacement generated by the excitation of a moment
tensor source Mpq,

ui =
1

4πρ

15mγi − 3tγi − 6γ′i
r4

∫ r/β

r/α

τs(t− τ)dτ

+
1

4πρα2

6mγi − tγi − 2γ′i
r2

s(t− r/α)− 1

4πρβ2

6mγi − tγi − 3γ′i
r2

s(t− r/β)

+
1

4πρα3

mγi
r
ṡ(t− r/α)− 1

4πρβ3

mγi − γ′i
r

ṡ(t− r/β)

(7)

where we have made use of the simplifying identities,

m = γpMpqγq δpqMpq =
∑
p

Mpp = tr(M) = t δinγqMqn = γqMqi = γ′i

and where, γi = xi/r, s(t− r/v), and ṡ(t− r/v) are the directional cosine, a source time
function with velocity v, and its time derivative ṡ respectively.

Modelling DAS microseismic data requires analytic expressions of the strain propa-
gated by moment tensor type sources. The strain tensor in equation (1) suggests that this
requires derivatives of the form ∂ui/∂xj . Therefore, spatial derivatives of the expressions
for the analytic displacement developed by Aki and Richards (2002), provide the key ex-
pressions required for development of the analytic strain tensor. The identities,
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∂r−n

∂xj
= −n γj

r(n+1)

∂mγi
∂xj

=
2γiγ

′
j − 3mγiγj +mδij

r

∂s(t− r/v)

∂xj
= −ṡ(t− r/v)

γj
v

∂γi
∂xj

=
δij − γiγj

r

∂γ′i
∂xj

=
Mij − γ′iγj

r

Γij =
1

2
(γiγ

′
j + γ′iγj)

ease the computation of the spatial derivatives. Using these identities to compute the
derivatives of equation (7) provides one of the two terms in the strain tensor of equation
(1). The other term can be computed by switching the i′s and j′s in the derivative (i.e.
∂ui/∂xj → ∂uj/∂xi), and the full strain tensor can be computed by summing ∂ui/∂xj and
∂uj/∂xi. Computing the analytic expressions for the strain tensor produced by moment
tensor sources results in expressions for P-waves and S-waves each consisting of three
terms and a near-field expression. For the P-wave we have,

εPFij =
−1

4πρα4

mγiγj
r

s̈(t− r/α) (8a)

εPI1ij =
1

4πρα3

m(δij − 10γiγj) + tγiγj + 4Γij
r2

ṡ(t− r/α) (8b)

εPI2ij =
1

4πρα2

m(6δij − 45γiγj)− t(δij − 6γiγj) + 24Γij − 2Mij

r3
s(t− r/α) (8c)

where equation (8a) is the far-field (r−1 dependence) P-wave term, and equations (8b)
and (8b) are intermediate P-wavefield terms with r−2 and r−3 dependence respectively.
Similarly, the expressions for the S-wave far-field and intermediate-field terms are,

εSFij =
1

4πρβ4

mγiγj − Γij
r

s̈(t− r/β) (9a)

εSI1ij =
−1

4πρβ3

m(δij − 10γiγj) + tγiγj + 7Γij −Mij

r2
ṡ(t− r/β) (9b)

εSI2ij =
−1

4πρβ2

m(6δij − 45γiγj)− t(δij − 6γiγj) + 27Γij − 3Mij

r3
s(t− r/β) (9c)

and the near-field term is,
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εNFij =
1

4πρ

m(15δij − 105γiγj)− 3t(δij − 5γiγj) + 60Γij − 6Mij

r5

∫ r/β

r/α

τs(t− τ)dτ.

(10)

All of the terms above consist of a constant scalar multiplied by a fraction whose nu-
merator is a term of varying complexity in the moment tensor Mij and directional cosines
γi, and whose denominator describes the wavefields decay with distance r. Together the
constant scalar and the fraction it pre-multiplies describe the amplitude, its decay with dis-
tance, and the angle dependent radiation of seismic energy away from the source. This is
then multiplied by a source time function, producing the strain tensor at a given distance r
and point ~x in the subsurface.

P-wave terms

If the terms in equations (8a)-(8c) are those describing pure P-wave motion in a ho-
mogeneous medium, then they should produce no rotational motion (i.e. ∇ × u = 0 (e.g.
Krebes, 2019)). Because our terms describe the strain tensor and not displacements, it is
beneficial to rewrite this cross product in terms of the strain as,

∇× u =

∂u3/∂x2 − ∂u2/∂x3∂u1/∂x3 − ∂u3/∂x1
∂u2/∂x1 − ∂u1/∂x2

 = 2

ε32 − ∂u2/∂x3ε13 − ∂u3/∂x1
ε21 − ∂u1/∂x2

 . (11)

It may seem that in rewriting the curl in terms of strains, we have increased the com-
plexity required to evaluate it. However, in deriving the expressions for the analytic strain
for a P-wave, we have already computed the strain components and derivatives required
to evaluate equation (11). If all of the terms that make up the derivatives ∂ui/∂xj are
symmetric then,

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xj

)
=
∂uj
∂xi

(12)

and the curl, ∇× u will be ~0. The derivative contributing to the far-field P-wave term can
be shown to be,

∂ui
∂xj
∝ mγiγj = mγjγi ∝

∂uj
∂xi

(13)

which satisfies the condition of a symmetric derivative, leading to ∇× u = ~0 as expected
for P-waves. It can be shown in a similar way that the other two P-wave terms also have
symmetric derivatives, and therefore produce no rotational motion as expected.
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S-wave terms

In contrast to P-waves, S-waves produce purely rotational motion, and no dilational
motion (i.e. ∇ · u = 0). This is equivalent to saying that the trace of the strain tensor is
zero, i.e. tr(ε) = ε11 + ε22 + ε33 = 0. Evaluating the trace of the far-field S-wave term, we
have,

tr(ε) ∝ m(γ21 + γ22 + γ23)− (Γ11 + Γ22 + Γ33) = m−m = 0. (14)

Where we made use of the fact that the vector γi is a unit vector with magnitude γ21 + γ22 +
γ23 = 1. Additionally, Γ11 + Γ22 + Γ33 = m which can be shown in the following way:

Γ11 = γ1M1kγk = γ1(M11γ1 +M12γ2 +M13γ3) (15a)

Γ22 = γ2M2kγk = γ2(M21γ1 +M22γ2 +M23γ3) (15b)

Γ33 = γ2M2kγk = γ3(M31γ1 +M32γ2 +M33γ3) (15c)

∴ Γ11+Γ22 + Γ33 = γpMpqγq = m (15d)

Carrying out the same analysis on the other two S-wave terms shows that the trace
of their general strain tensor, and therefore dilatation are also zero. Thus all three terms
that travel with velocity β, equations (9a)-(9c), produce purely rotational motion which is
consistent with purely S-wave propagation in a homogeneous medium.

Analytic modeling

The above analysis precludes modeling in complex media, especially of the type that
develops as hydraulic fracturing treatments progress. However, these equations contain
important insights into the character of the seismic waves produced by engineered frac-
tures and earthquakes. Typically, the traveltime differences in the P-wave and S-wave first
arrivals are used to localize fractures and earthquakes. Analytic modeling provides an ef-
ficient means of modeling these direct arrivals. Perhaps the most important feature of the
analytic modeling expressions is the far-field P-wave and S-wave radiation patterns which
can be used to predict moment tensor source types, and gain an understanding of the fault
mechanism (Eaid et al., 2020).

Radiation patterns

The analytic expressions for the strain radiated by moment tensor sources in equations
(8a)-(10) have the form,

c
Rp

rn
∂ks(t− r/v)

∂tk
(16)
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where c is a constant that is dependent on the medium density and P-wave (α) or S-wave ve-
locity (β), rn is the distance between source and receiver to the nth power, ∂ks(t−r/v)/∂tk

is the kth partial derivative of the source function with respect to time, and Rp, which is
a function of the moment tensor M and the directional cosines between the source and
receiver, is known as the radiation pattern. Consider a unit sphere of uniformly distributed
strain sensors, and temporarily assume that these strain sensors have independent access
to each component of the strain tensor. If we neglect the effects of geometric spreading
and the source time function, the response of these sensors describes the seismic energy
generated by a given moment tensor M as a function of the angle γ = x/r between the
source and receiver.

For a given source-receiver pair, the angle γ is consistent for varying source mech-
anisms. Thus, the source mechanism controls the angular radiation of seismic energy.
Figure 1 plots the εxx component of these radiation patterns for the P-wave and S-wave
motions generated by an explosive source in Figures 1a and 1e, for the P-wave and S-wave
motions generated by a tensile crack source in Figures 1b and 1f, for the P-wave and S-
wave motions generated by a compensated linear vector dipole (CLVD) source in Figures
1c and 1g, and for the P-wave and S-wave motions generated by a double couple source in
Figures 1d and 1h. The moment tensors for each of these source types expressed as the six
independent components MT = {Mxx,Mxy,Mxz,Myy,Myz,Mzz} are :

MEXP = {1, 0, 0, 1, 0, 1}
MTC = {2, 0, 0, 3, 0, 2}

MCLVD = {−1, 0, 0, 2, 0,−1}
MDC = {0, 1, 0, 0, 0, 0}

(17)

Consider a straight fiber in a horizontal well that is oriented in the x-direction so that
only the εxx component of the strain tensor is sensed. Figure 2a plots the trajectroy of a
well having this geometry; Figure 2b-2e plots the seismic data recored by a fiber in this
well for the four source types generatring the radiation patterns in Figure 1. Provided a
sufficient solid angle of the unit sphere surrounding the source is sampled, then the data
contain sufficient angular variation in the amplitude and polarity such that predictions can
be made about the source mechanism (Eyre and van der Baan, 2015). Eaid et al. (2020),
in this issue, use equation (8a) and (9a) to model synthetic data which is used as input to
a machine learning study focused on moment tensor estimation. The extension of their
synthetically trained neural network to field data shows the power of analytically modeled
data, despite its preclusion to modeling in complex geology.

Near-field and far-field dominance

Each of the terms in equations (8a)-(10) decays as function of the distance from the
source r. Equations (8a) and (9a) are the far-field P-wave and S-wave terms, so named
because they travel at the P-wave and S-wave velocity respectively, and decay with r−1,
allowing them to dominate the other terms far from the source. Because of this, the far-
field P-waves and S-waves are typically the body wave component measure during fracture
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FIG. 1. The εxx component of the analytic strain radiation patterns for four source types. P-wave
radiation patterns for (a) MEXP, (b) MTC, (c) MCLVD, (d) MDC. S-wave radiation patterns for (e) MEXP,
(f) MTC, (g) MCLVD, (h) MDC.

FIG. 2. (a) Schematic representation of the fiber trajectory shown by the black line, and the source
location indicated by the red star. Data recoded by the fiber for (b) MEXP, (c) MTC, (d) MCLVD, and
(e) MDC.

propagation or fault initiation. However, DAS places sensors much closer to the source
locations, especially during hydraulic fracturing, potentially leading to measurement of the
near-field term in equation (10), which is dominate close to the source. The region around
the source in which the near-field term dominates is important to study.

Consider the source-time function,

8 CREWES Research Report — Volume 32 (2020)



Modelling of DAS-microseismic data

s(t) =
T 2

T 2 + t2
(18)

where T the half-width at half the maximum value of the pulse, and t is the time after
source excitation. This source time function and its first two time derivatives are plotted in
Figure 3a-3c.

FIG. 3. (a) Displacement source time function from equation (18), (b) normalized first time derivative
s′(t) of the source time function normalized, and (c) normalized second time derivative s′′(t) of the
source time function.

Using this source time function and its time derivatives as input to equations (8a)-
(10), and plotting traces at various distances r from the source allows us to investigate
the contribution of near-field and far-field terms. Eaton et al. (2010) show that the near
field term for the analytic displacement dominates within approximately one-wavelength
of the source. Using medium properties of Vp = 4000 m/s, Vs = 2000 m/s, and T =
1.6E − 2 leading to a dominant frequency of 100 Hz for the velocity component, the near-
field displacement should dominate within the 40 meter range.

Figures 4a, 4c, and 4e plot the full-field displacement for distances of 40 meters, 200
meters, and 500 meters from the source, while Figures 4b, 4d, and 4f plot the near-field
components in red, and the far-field components in blue. At 40 meters from the source, ap-
proximately one-wavelength, the near-field component is dominate and changes the shape
of the pulse while masking the occurrence of the P-wave. At 100 meters, the P-wave and S-
wave are identifiable but the near-field is still relatively large, manifesting in low frequency
energy between the P-wave and S-wave arrivals. At 500 meters, the near-field has become
relatively small. In contrast Figures 5a, 5c, and 5e plot the full-field strain for distances of
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40 meters, 200 meters, and 500 meters from the source, while Figures 5b, 5d, and 5f plot
the near-field components in red, and the far-field components in blue. It is evident that the
near-field strain does not dominate at any of the three distances.

FIG. 4. (a) Full-field displacement for r = 40 meters, (b) near-field (red) and far-field (blue) dis-
placement for r = 40 meters, (c) full-field displacement for r = 100 meters, (d) near-field (red) and
far-field (blue) displacement for r = 100 meters, (e) full-field displacement for r = 500 meters, (f)
near-field (red) and far-field (blue) displacement for r = 500 meters.

The far-field strain is a function of the particle acceleration (̈s)(t), which has a higher
frequency (fMAX = 200 Hz) than the velocity component that the far-field displacement
is a function of. The near-field strain also decays faster, being a function of r−4, than
the displacement . Figure 6a plots the full-field strain and Figure 6 the near-field strain
for a distance of r = 18 meters, which is approximately one-wavelength for the P-wave
component of the particle acceleration. At this distance from the source, the near-field
becomes more dominant, masking the P-wave arrival which is beginning to separate from
the S-wave arrivals and changing the overall shape of the pulse. This analysis suggests that
the near-field strain terms are also only dominant within approximately one wavelength
from the source, but that the wavelength is much smaller due to the higher frequency nature
of far field strain.

VELOCITY-STRESS FINITE DIFFERENCE METHOD

The incorporation of complex geology in modeling DAS signals from microseismic
moment tensor sources requires treatment with finite-difference methods. Eaid et al. (2017)
coupled geometric models of the fiber to a 3D finite-difference elastic wave propagator
based on the velocity-stress method (Virieux, 1986). Eaid et al. (2017) provides a detailed
analysis of how to model DAS signals with this method, for brevity only the key compo-
nents are summarized here. The elastodynamic equation of motion is,
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FIG. 5. (a) Full-field strain for r = 40 meters, (b) near-field (red) and far-field (blue) strain for r = 40
meters, (c) full-field strain for r = 200 meters, (d) near-field (red) and far-field (blue) strain for r = 200
meters, (e) full-field strain for r = 500 meters, (f) near-field (red) and far-field (blue) strain for r = 500
meters.

FIG. 6. (a) Full-field strain for r = 18 meters, (b) far-field (blue) and near-field (red) strain for r = 18
meters.

∇ · σ + f = ρ
∂v

∂t
(19)

where v is the particle velocity, f is the source function, and σ is the stress tensor defined
through Hooke’s Law as,
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σ = Cε (20)

with the strain tensor ε defined by equation (1), and C is the stiffness tensor. Subbing
the stress-strain relation (Hooke’s Law) in equation (19) defines the equation of motion in
terms of strain,

∇ · (Cε) + f = ρ
∂v

∂t
. (21)

In practice, solving equation (21) alternates between computing the strain and particle
velocity on staggered grids. At each time step, the strains are projected onto the fiber
tangents using equation (4).

Moment tensor sources in the velocity-stress method

This paper is interested in modeling signals of the type recorded during microseismic
monitoring or for future applications in seismological studies. To accomplish this, we
require a method for inclusion of moment tensor type source functions for f in equation
(21). Each component of the moment tensor is defined by a force couple fi acting in the ith

direction, separated by a small distance δxj in the jth direction,

Mij(t) = fi(t)δxj. (22)

Equation (22) suggests that finite-difference methods can incorporate the moment tensor
by the defining each component of the source time function as,

fi(t) =
∑
j

M(t)ij
δxj

x̂j. (23)

In this paper, following Frankel (1993) and Graves (1996), the source terms in equation
(23) are applied to the velocity components.

To compare the finite-difference simulation to the analytically simulated waves, we
propagate a wavefield through a homogenous medium with Vp = 4000 m/s, and Vs =
2000 m/s, and compare a snapshot of this wavefield to analytically modeled radiation pat-
terns. These simulations are carried out using the double couple moment tensor MDC =
{0, 1, 0, 0, 0, 0} Figure 7a-7f plot a snapshot of the wavefiled for εxx, εyy, εzz, εxy, εxz, and
εyz. Figures 8a-8f plot the P-wave component of the analytic radiation patterns for εxx, εyy,
εzz, εxy, εxz, and εyz. Figures 9a-9f plot the plot the same for the S-wave component. Com-
parison of these figures show similar radiation of the P-wave and S-wave components for
both the analytic and numerical experiments lending further evidence that equations (8a)
and (9a) are the far-field P-wave and S-wave modes radiated by moment tensor sources.
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FIG. 7. Finite-difference strain wavefields radiated by MDC. (a) εxx, (b) εyy, (c) εzz, (d) εxy, (e) εxz,
(f) εyz

FIG. 8. P-wave component of the analytic strain wavefields radiated by MDC. (a) εxx, (b) εyy, (c) εzz,
(d) εxy, (e) εxz, (f) εyz

We also consider another example of in which a compensated linear vector dipole
(CLVD) source with components MCLVD = {1, 0, 0,−2, 0, 1}. Figures 10-12 plot the same
results as Figures 7-9 for the CLVD source. Again the numerical and analytically results
are strongly correlated.

COMPARISON TO FIELD DATA

The analytic and finite-difference modeling methods presented above produce similar
strain field radiations lending confidence that the two methods are comparable. To ensure
that the two methods can accurately model field data of the type that may be acquired during
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FIG. 9. S-wave component of the analytic strain wavefields radiated by MDC. (a) εxx, (b) εyy, (c) εzz,
(d) εxy, (e) εxz, (f) εyz

FIG. 10. Finite-difference strain wavefields radiated by MCLVD. (a) εxx, (b) εyy, (c) εzz, (d) εxy, (e)
εxz, (f) εyz

hydraulic fracturing we use each method to simulate data and compare the data to a field
event from a DAS-microseismic dataset plotted in Figure 14(a). Consider a horizontal well
with length of 5700 feet at a depth of 9300 feet containing a length of straight DAS fiber
embedded in a homogeneous medium with Vp = 15600 feet/s, and Vs = 9530 feet/s. Figure
14(b) plots the analytically modeled DAS data from this model using the prescribed fiber
geometry. We also consider a slightly more complex medium plotted in Figure 13, where
the velocities in the layer containing the fiber are the same as those in the homogeneous
medium. Figure 14(c) plots the data from the layered model computed using the velocity-
stress finite-difference method. Both datasets were modeled with the moment tensor
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FIG. 11. P-wave component of the analytic strain wavefields radiated by MCLVD. (a) εxx, (b) εyy, (c)
εzz, (d) εxy, (e) εxz, (f) εyz

FIG. 12. S-wave component of the analytic strain wavefields radiated by MCLVD. (a) εxx, (b) εyy, (c)
εzz, (d) εxy, (e) εxz, (f) εyz

M =

 0.69 1.00 −0.69
1.00 0.35 −0.22
−0.69 −0.22 0.69

 (24)

which estimated from the field data by Eaid et al. (2020) using their deep learning method.
Both modeled datasets capture the important features of the field data. For example, both
have the distinct polarity pattern of the field data S-wave, and both show attenuation of the
P-wave to the toe side of the well (right side of Figure 14). Additionally, the numerically
modeled data captures some of the complexity in the field data such as head waves from the
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S-wave modes refracting from the upper and lower interfaces of the layer containing the
fiber, as well as reflections which are buried in noise in the field data. The strong correlation
between the field data and modeled datasets is encouraging and suggests the use of these
modeling techniques is a viable strategy for modeling DAS-microseismic data.

FIG. 13. (a) Vp model for finite-difference simulation, (b) Vs model for finite-difference simulation,
(c) density model for finite-difference simulation.

CONCLUSIONS

With the rapid advancement of DAS for reservoir monitoring and earthquake seismol-
ogy, methods for modeling DAS data from moment tensor type sources are required to en-
hance our understanding of these complex datasets. In this paper we present two methods
for modeling strain fields in media of differing complexity and couple each to geometric
models of DAS fibers to simulate DAS data. The first is an analytic method for modeling
the strain field generated by a general moment tensor source, which is limited to modeling
in homogeneous media, but is very efficient for modeling large datasets of direct arrival
information. The second is an extension of the velocity-stress finite-difference method to
modeling strain fields with the incorporation of moment tensor source distributions. Both
methods are compared to each other, and produce similar direct arrival information. Each
method has distinct advantages dependent on the type of data modeling that is desired. We
then use each method to simulate data using the geometry of a field deployed DAS fiber and
a source mechanism predicted by Eaid et al. (2020). Each method simulates data which cor-
relates well to the field data suggesting the modeling algorithms presented here can be used
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FIG. 14. (a) Field data event from DAS-microseismic dataset, (b) analytically modeled DAS data,
(c) DAS data modeled through the velocity-stress finite-difference method. Note that the numerical
finite-difference data was modeled with a lower frequency (110 Hz) wavelet due to computational
restrictions.

to simulate field data. It is expected that these algorithms will be used to simulate datasets
for further studies involving imaging and inversion. Another communication in this issue
(Eaid et al., 2020) uses the analytic modeling method presented here to efficiently model
a large datasets for a DAS-microseismic study focused on using deep learning techniques
for source mechanism estimation.
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