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ABSTRACT

An important key for seismic structural interpretation and reservoir characterization
is the delineating faults that are considered as seismic reflection discontinuities in con-
ventional methods. Fault detection considers as a binary image segmentation problem of
labeling a seismic image with ones on faults and zeros on non-faults using a fully super-
vised convolutional neural network. The network is trained by using 3D synthetic seismic
images and their corresponding binary labels images. The network learns to calculate fea-
tures that are important for fault detection after training with a synthetic data set. We apply
this method to a migrated 3D volume from Australia. The results indicate that the neural
network can predict faults from 3D seismic images. Effective Visualization analysis of 3D
seismic data volumes is challenging because of their large volumes and highly complex
nature. 3D virtual reality (VR) visualization is a useful tool that can benefit seismic data
interpretation. In this paper, the seismic information extended reality analytics (SIERA)
presents a seismic data visualization in an extended reality environment. Because it is
highly customizable, it provides an effective way to interact with seismic data and machine
learning results.

INTRODUCTION

Faults are one type of geological structural surfaces that are typically recognized as lat-
eral reflection discontinuities in a 3D seismic image (Hale, 2013). Hence, to automatically
detect faults, some methods have been proposed to calculate signal continuity attributes
such as semblance (Marfurt et al., 1998) and coherency (Marfurt et al., 1999; Bakker,
2002; Wu, 2017), or the opposite, reflection discontinuity such as variance (Van Bemmel
and Pepper, 2000; Randen et al., 2001) and gradient magnitude (Aqrawi and Boe, 2011).
However, reflector discontinuity alone is insufficient to detect faults, because incoherent
noise and stratigraphic features can also correspond to reflection discontinuities in a seis-
mic image (Hale, 2013).

Gersztenkorn and Marfurt (1999) suggest measuring continuity or discontinuity using ver-
tically elongated windows for fault detection while using a larger horizontal window for
detecting stratigraphic features. In this method, fault features can be enhanced and strati-
graphic features can be suppressed because faults are often more vertically aligned in a
seismic volume than the stratigraphic features. By assuming that faults are typically normal
to reflections, Wu (2017) applies smoothing in directions perpendicular to seismic reflec-
tions in computing coherence or semblance. However, faults are rarely vertical or are not
necessarily perpendicular to seismic reflections. Based on this observation, Hale (2013)
proposes an efficient implementation of such a scanning processing to compute a fault-
oriented semblance or fault likelihood volume to highlight fault positions from a seismic
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volume. However, this method is expensive because it requires scanning over all possible
combinations of fault strikes and dips to find the maximum fault likelihoods.

The convolutional-neural-network (CNN) method is another way that has been introduced
to detect faults by pixel-wise fault classification (fault or non-fault) with multiple seismic
attributes (Huang et al., 2017; Di et al., 2018; Guitton, 2018; Guo et al., 2018; Zhao and
Mukhopadhyay, 2018). Wu et al. (2018) propose a CNN-based pixel-wise classification
method to predict the fault probability and estimate the fault orientations at the same time.
However, to predict fault at every image pixel, a local window or cube is required, which
is computationally expensive.

In this paper, we present a CNN to detect faults from 3D seismic images, in which the fault
detection is considered as a binary segmentation problem (Wu et al., 2019). We simplify
the original U-Net by reducing the number of convolutional layers and features at each
layer to save GPU memory and computational time, but still preserve high performance in
the 3D fault detection tasks. The neural network is trained by using only 200 pairs of 3D
synthetic seismic and fault volumes. After training with only the synthetic data sets, the
neural network can accurately detect faults from 3D field seismic volumes.

The analysis of large amounts of complex data with unknown patterns and multiple
interrelated parameters is a challenging task that requires scientific visualization tools with
the potential for multidimensional data processing. Virtual reality (VR) is a scientific visu-
alization tool that permits the data to be presented in dynamic images, revealing intrinsic
patterns and dependencies. VR is quite demanding computationally but is made possi-
ble by modern high-performance computing and advanced computer graphics hardware
and software. VR environments are the result of a demand for interactivity in computer
visualization. Hence, the purpose of scientific computing visualization is drawing the
three-dimensional space data field to make an intuitive image or graphics and making a
three-dimensional interpretation for 3d seismic data. Therefore, detailed information about
the geological structure is vividly displayed helping on the interpretation and analysis of
the geological structure (Kaufman, 1994). Even for large seismic datasets, trained geo-
scientists can view the data details and make informed decisions concerning whether or
not important features are present within the geologic structures. The limitation of con-
ventional visualization tools is using computer monitors to act as the interface between
users and data, and thus trust on two-dimensional projections to display these large, three-
dimensional datasets. The limited screen space of monitors and representation of 3D data
using a 2D screen puts large constraints on how one can interact with seismic data effec-
tively. In this paper, we apply the SIERA tool (Lawton et al., 2020), an immersive analytics
application helping geoscientists understand and visualize seismic data and the results of
machine learning (ML) applied to seismic datasets (Douglas et al., 2019). By using virtual
reality (Kwon et al., 2016; Usher et al., 2017), SIERA can improve the results by providing
one with a virtual 3D environment in which to more naturally, efficiently, and effectively
analyze 3D seismic data and higher-level ML results.
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FIG. 1. Convolutional neural network architecture.
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FIG. 2. A simplified end-to-end convolutional neural network (U-Net).

DEEP LEARNING METHODOLOGY

Deep learning is a branch of machine learning the tries to model data using a a high-

level representation by multiple layers of neurons with nonlinear transformations (LeCun
et al., 2015). By increasing the number of layers in the deep learning models, this method
becomes very powerful and is one of the most popular techniques to process big data. Us-
ing deep learning allows the computer to build complex concepts out of simpler concepts
by constructing deeper neural networks. There are different deep learning architectures,
such as deep neural networks, convolutional deep neural networks, deep belief networks,
and recurrent neural networks with deep feature layers.
Convolutional neural networks (CNN) are a kind of feed-forward artificial neural network
that can be formed among artificial neurons inspired by the organization of human neu-
rons (LeCun et al., 2015). The CNN is applicable to solve problems such as image and
video recognition (Krizhevsky et al., 2012; Karpathy et al., 2014) and recommender sys-
tems (Van den Oord et al., 2013). Figure 1 shows the CNN architecture formed by a stack
of distinct hidden layers that transform the input data into an output volume. In this ar-
chitecture, each convolution layer consists of a set of trainable filters. It is common to
periodically insert a pooling layer in between convolution layers to reduce the spatial size
of the representation which helps in decreasing the amount of parameters and therefore
computation load.
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FIG. 3. The top row correspond to (a)inline, (b) crossline and (c)time slice synthetic seismic images
that are cropped from the 3D synthetlc tralnlng data sets. The bottom row shows corresponding
true fault images (with labeling ones on faults and zeros elsewhere).

The main purpose of a CNN is to learn the feature mapping of an image and exploit it to
make more nuanced feature mapping. In image segmentation using CNN, the feature map
needs to convert the input into a vector and also reconstruct an image from this vector. The
whole idea of U-Net (Ronneberger et al., 2015) is revolved around this problem. When
converting the image into a vector, we learn the feature mapping of the image. In U-Net
we use the same feature mapping to convert a vector again to the image. The workflow of
U-Net preserves the structural integrity of the image which reduces distortions enormously.

In this paper, we use the U-Net architecture proposed by Wu et al. (2019). U-Net ar-
chitecture is shown in Figure 2. This network contains a contracting path and an expansive
path. In the contracting path (left side), each step contains two 3 x 3 x 3 convolutional
layers and a 2 x 2 X 2 max pooling operation with stride 2 for downsampling and the
number of features is doubled after each step. In the expansion path (right side), every step
contains a 2 X 2 x 2 upsampling operation, a concatenation with features from the left
contracting path, and two 3 X 3 x 3 convolutional layers. The final output layerisa 1 x 1
x 1 convolutional layer, which has the same size as the input seismic image.
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FIG. 4. lllustrate (a) the inline, b) crossline, and c) time slice of the validation seismic and label
fault images, and d), e) and f) the corresponding predictions by using the CNN method. The fault
locations and their predictions are indicated by the purple lines and red lines, respectively. The
CNN method achieves the best performance in obtaining an accurate, clean, and complete fault
detection.
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TRAINING AND VALIDATION

In a CNN, training a model often needs a large number of images and corresponding
labels. To avoid the manual labor involved in labeling or interpreting faults in a 3D seismic
image and inaccurate manual interpretation, Wu and Hale (2016) and Wu et al. (2019)
propose an effective and efficient way to create synthetic seismic images and corresponding
fault labels for training and validating a CNN model. With this approach, they created
a set of synthetic seismic and fault images which we used to train our model. A final
training set of seismic images (Figure 3) with size of 128 x 128 x 128 can be obtained by
cropping windows from the 3D Synthetic seismic image. In the second row of Figure 3,
the corresponding binary fault labeling images are shown.

We used 200 pairs of unique seismic images and corresponding fault labeling images
for training, and 20 pairs of seismic and fault labeling images for validation. Also, to
increase the variety of the data sets and to prevent the neural network from learning inco-
herent patterns, we use data augmentation during the training. Simple data augmentations
including vertical flip and rotation around the vertical time or depth axis during training are
applied without rotating the seismic and fault volumes around the inline or crossline axis.
The rotation around the inline or crossline axis causes vertical seismic structures and flat
faults, which are geologically unrealistic.

The top row of Figure 4 (Figure 4a, 4b, and 4c) shows the inline, crossline, and time
slice of the validation seismic and fault images. The corresponding true fault image (purple
lines)is overlaid with the cropped seismic image. We choose a size 128 x 128 x 128 for
each 3D seismic or fault image because of limitations in memory and GPU. The network
will train with 25 epochs, and all training images process at each epoch. We apply the
trained model to the synthetic seismic volume (Figure 3a, 3b, and 3c) to verify the CNN
model trained with 25 epochs. The second row of Figure 4 (4d, 4e, and 4f) Shows fault
detection results that are computed by using the CNN-based segmentation. In these figures,
the red lines refer to the prediction of the fault. By comparison between the fault detection
results and the validation fault images, we found that the CNN method achieves the best
performance in computing an accurate, clean, and complete fault detection, which is most
consistent with the true fault labeling shown in Figure 3 (Figure 3d, 3e, and 3f).

APPLICATION TO THE FIELD SEISMIC DATA

To verify the CNN we apply the same CNN model on the seismic images that are ac-
quired from the Australian seismic data. The 3D seismic volume is a subset (128 [vertical]
x 128 [inline] x 128 [crossline] samples) extracted from the Australian’s Offshore seismic
data, which is graciously provided by the geoscience Australia’s data repository using the
NOPIMS. Figure 5 shows the fault probability image predicted for crossline (Figure 5b),
inline (Figure 5d), and time slice (Figure 5f) by using the trained CNN model. Our results
show that the CCN model, although trained by only synthetic data sets, works very well
to provide a clean and accurate prediction of faults in this field seismic image. In CNN
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FIG. 5. The crossline, inline, and time slice of 3D seismic image are displayed with faults that are
detected by using the trained CNN model.
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FIG. 6. Magnified view of the seismic images (crossline, inline, and time slice) and correspond fault

detection using the CNN method.
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FIG. 7. A seismic data set (Australian data) visualized with SIERA in virtual reality as a three-
dimensional volume.

fault detection images, most fault features have very high probabilities, and there are very
limited noisy features. To verify the fault prediction result, we show in Figure 6 magnified
views of the crossline, inline, and time slice images that are illustrated in Figure5. We
observe that most faults are clearly labeled in the CNN fault probability images (Figure 6b,
6d, and 6f), and these faults can track by following the probability features.

We observe the CNN model works very well to detect faults in 3D field seismic, while this
model is trained by using only 200 synthetic seismic images. The results show that the 3D
fault prediction using the trained CNN model is highly efficient and also needs less time to
compute the large CNN fault probability volume by using GPU.

SEISMIC DATA VISUALIZATION

Visualization has strong advantages in complex data because it provides a visual en-
coding to get insight into revealing more information and feature presented in the data. It
helps users perform effective analytics employing various human-computer interactions.
SIERA can take whole seismic datasets and visualize them in VR as interactive 3D vol-
umes by utilizing volumetric rendering techniques. These 3D volumes include numerous
tiny voxels which each contain their own values for multiple assigned data variables, such
as amplitude or ML certainty values. Each data volume contains a large number of vox-
els, which corresponds to the seismic data resolution. By reading the values of the data
stored in voxels and applies end-user customizable color and transparency settings, SIERA
presents a unique and desired visualization of the dataset volumetrically. Figure 7 shows
the visualization of the Australian data. In VR, users can physically walk into these vol-
umes and view the sub-surface structure from within, providing a more immersive way
to view the data in close detail. Manipulation of the color and transparency for each of
the many voxels which together make up a visualization’s volume allows for the ability to
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FIG. 8. Data visualization with colors chosen to correspond with specific data ranges.

FIG. 9. Color-manipulated data volume with full-transparency applied to low ML certainty values,
allowing one to view only the higher-certainty potential internal structures identified by ML.
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emphasize important perspectives of the data by highlighting these with color (Figure 8),
and the efficient filtering out of data which one does not want to view through adjusting
transparency (Figure 9). Figure 9 shows that transparency manipulation is especially use-
ful for allowing to see internal sub-surface structures that may not be visible when viewing
an opaque visualization in its entirety. The color gradient mapped to an original dataset
variable and the transparency gradient mapped to ML certainty values let a user see and
directly compare how ML results relate back to aspects of the original data.

CONCLUSIONS

We have presented a CNN to detect faults from 3D seismic images, in which the fault
detection is considered as a binary segmentation problem. We simplify the original U-Net
by reducing the number of convolutional layers and features at each layer to save GPU
memory and computational time, but still preserves high performance in the 3D fault de-
tection tasks. The neural network is trained by using only 200 pairs of 3D synthetic seismic
and fault volumes. After training with only the synthetic data sets, the neural network can
accurately detect faults from 3D field seismic volumes. To improve geoscientists abili-
ties to analyze their data and to collaborate on its interpretation, virtual reality (VR) has
significant potential. In this paper, we use the SIERA tool to provides a way to more intu-
itively and immersively interact with the three-dimensional nature of seismic data and ML
results. This tool allows for analyzing several large data volumes simultaneously and scale
them to sizes impractical with traditional techniques for better analysis and the creation of
completely customizable and unique data visualizations through the use of voxel color and
transparency manipulation.
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