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ABSTRACT

Simulation of wave propagation in a TTI viscoacoustic medium is an important prob-
lem. We have developed a derivation of a system of equations for viscoacoustic waves
in a medium with transverse isotropy (TI) in velocity and attenuation based on a stan-
dard linear solid model. The resulting system of equations is first order in time for the
stress-strain relationship. The numerical implementation of this system determines with
the finite-difference method, with second-order accuracy in time and fourth-order accuracy
in space. Our results show that the proposed approach for modeling is able of capturing TI
effects in attenuation and illustrating the efficiency of this system of equations for applica-
tions in seismic imaging and inversion.

INTRODUCTION

Attenuation and anisotropy are increasingly indispensable components of wavefield
simulation in seismic exploration and monitoring applications. They are especially im-
portant in modern seismic amplitude modeling and reverse time migration (RTM) proce-
dures. The approximate use of the isotropic acoustic approximation in situations involving
significant anisotropy and attenuation leads to resolution degradation and mispositioning
of reflectors within images (Zhou et al., 2006). In these cases, including anisotropy and
viscosity in our physical models is essential; however, the computational expense involved
in the use of full elastodynamic equations (i.e., those needed for a proper treatment of
anisotropy and viscoelasticity) motivates approximate wave formulations which remain as
close as possible to the acoustic case. Alkhalifah (1998, 2000) derived a pseudo-acoustic
wave equation from the elastic dispersion relation by setting to zero the shear-wave veloc-
ity along the anisotropy symmetry axis. This approach is demanding on memory because
of the need to approximate fourth-order partial derivatives of the wavefield. To further
reduce the computational cost, the pseudo-acoustic equation was shown to be separable
into two coupled second-order partial differential equations using an auxiliary wavefield
(Zhou et al., 2006; Du et al., 2008). Transverse isotropic media with a vertical symme-
try axis (VTI) are appropriate for thin and approximately horizontal layering or fracturing
(Crampin, 1984). Tilted transverse isotropy (TTI) is derived from VTI equations by as-
suming the symmetry axis is non-vertical and locally variable (Fletcher et al., 2008; Zhang
and Zhang, 2008); this formulation is suitable for aligned fractures with a symmetry axis
lying between vertical and horizontal. Zero-valued SV wave velocities on the symmetry
axis within the pseudo-acoustic approximation lead to instabilities in the TTI equations as-
sociated with the appearance of a residual shear wave (Grechka et al., 2004; Du et al., 2008;
Zhang et al., 2009). It is well known that imposing the elliptical anisotropy approximation,
i.e., a small smoothly tapered circular region with ε = δ around the source, can be effective
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in suppressing shear wave artifacts (Du et al., 2008; Zhang and Zhang, 2008; Yoon et al.,
2010).
In this work, we derive the equations for a viscoacoustic TI medium with anisotropy in
velocity and attenuation based on the standard linear solid model. When the quality factor
goes to infinity, the equations reduce to the derived system of equations introduced by Du-
veneck and Bakker (2011) for TI anisotropic velocity. This paper is organized as follows.
First, we introduce our formulation of the approximate viscoacoustic wave equation with
transverse isotropy (TI) in velocity and attenuation. Then, we discuss the stability of the
computations for a discretization with the finite difference method. Numerical results on
2D synthetic data are presented in the last section.

VISCOACOUSTIC WAVE EQUATION IN TTI MEDIA

In the 2D case, the first-order differential acoustic wave equations of VTI media is
expressed as follows (Du et al., 2008):

∂tσH = ρV 2
P

[
(1 + 2ε)ε̇11 +

√
1 + 2δε̇33

]
, (1)

∂tσV = ρV 2
P

[√
1 + 2δε̇11 + ε̇33

]
, (2)

where σH and σV represent the horizontal and vertical stress components respectively. ε
and δ are the Thomsen parameters, and the εij are the diagonal elements of strain ten-
sor. To obtain the viscoacoustic wave equation in an anisotropic medium, we can modify
the acoustic anisotropic medium. In this work, we will focus on anisotropic velocity and
isotropic Q, therefore Q is independent of direction. The general stress-strain relationship
in viscoelastic media reads (Christensen, 1982)

σij = Gijkl ∗ ε̇kl, (3)

where ∗ denotes convolution in time, σij is the stress tensor, εkl is the strain tensor andGijkl

is the stiffness tensor that determines the behavior of material. We will consider standard
linear solid models (SLS) in anelastic anisotropic media. The time response for this model
is given by (Blanch et al., 1993)

Gijkl(t) = MR
ijkl

(
1− 1

L

L∑
`=1

(1− τε`
τσ`

)e
− t
τσ`

)
H(t), (4)

where L is the number of mechanism, MR
ijkl is the relaxation modulus of medium (Pipkin,

1986), and H(t) is the heaviside function. The Gijkl(t) is equivalent to a series of L stan-
dard linear solid (Blanch et al., 1993), and is also the best Padé approximation for constant-
Q (Day and Minster, 1984). Elements τσ` and τε` refer to the stress and strain relaxation
times of the `th mechanisms. In Voigt notation (using the identification GIJ ↔ Gijkl by
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mapping of indexes 1, 2, 3, 4, 5, 6 into the pairs (1, 1), (2, 2), (3, 3), (2, 3), (1, 3), (1, 2)) the
components of the tensor of anelasticity become

GIJ(t) = MR
IJ

(
1− 1

L

L∑
`=1

(1− τε`
τσ`

)e
− t
τσ`

)
H(t), (5)

The anelasticity matrix for transversely isotropic media with vertical axis (VTI media) can
be written as (Du et al., 2008; da Silva et al., 2019)

GIJ(t) =


G11 G11 − 2G66 G13 0 0 0

G11 − 2G66 G11 G13 0 0 0
G13 G13 G33 0 0 0
0 0 0 G44 0 0
0 0 0 0 G44 0
0 0 0 0 0 G66

 . (6)

The elements of the anelasticity tensor can be calculated by definition of the relaxation
modulus in VTI media. The relaxation modulus in VTI media can be described in terms
of the vertical P- and S- velocities and the Thomsen parameters (Thomsen, 1986). The
elements MR

IJ of elastic tensor are related to these quantities by

MR
11 = ρV 2

P (1 + 2ε), MR
33 = ρV 2

P , MR
44 = ρV 2

S , MR
66 = ρV 2

S (1 + 2γ), (7)

(MR
13 +MR

44)
2 = ρ2(V 2

P − V 2
S )2 + 2δρ2V 2

P (V 2
P − V 2

S ).

Applying the acoustic TI approximation, i.e., setting VS = 0, simplifies the elements MR
IJ

for VTI media as

MR
11 = ρV 2

P (1 + 2ε), MR
33 = ρV 2

P , MR
44 = 0, MR

66 = 0, (8)

MR
13 = ρV 2

P

√
1 + 2δ.

After the elimination of the shear components, the number of stiffness relaxation param-
eters is reduced to three components. In viscoacoustic medium with transverse isotropy
(TI) in attenuation, the strain relation times dependent on the direction. Hence, we can
introduce the strain relaxation time components (horizontal, normal, and vertical) as

τ εlh = τ εl11, τ
εl
n = τ εl13, (9)

τ εlv = τ εl33.

Eliminating the shear components and substituting expressions 6-9 into equation 5,
yields

CREWES Research Report — Volume 32 (2020) 3



Fathalian et. al

G(t) =

 M11 M11 M13

M11 M11 M13

M13 M13 M33

(1− 1

L

L∑
`=1

(1− τ ε`m
τσ`

)e−
t

τσ`

)
H(t);m = h, n, v. (10)

The viscoacoustic wave equation in VTI media can be obtained by a combination of
equations 3 and 10. Hence, the relation between stress and strain is given by

σH = MR
11

(
1− 1

L

L∑
`=1

(1− τ ε`h
τσ`

)e
− t
τσ`

)
H(t) ∗ (ε̇11 + ε̇22) (11)

+MR
13

(
1− 1

L

L∑
`=1

(1− τ ε`n
τσ`

)e
− t
τσ`

)
H(t) ∗ ε̇33,

σV = MR
13

(
1− 1

L

L∑
`=1

(1− τ ε`n
τσ`

)e
− t
τσ`

)
H(t) ∗ (ε̇11 + ε̇22) (12)

+MR
33

(
1− 1

L

L∑
`=1

(1− τ ε`v
τσ`

)e
− t
τσ`

)
H(t) ∗ ε̇33,

where σH = σ11 = σ22 is the horizontal stress component and σV = σ33 is the vertical
stress component. For the 2D case, taking the time derivative of equations 11 and 12 and
using ∂tεij = ∂xiui leads to

∂tσH =MR
11

(
1− 1

L

L∑
`=1

(1− τ ε`h
τσ`

)
∂xux

+MR
11

(
1− 1

L

L∑
`=1

1

τσ`
(1− τ ε`h

τσ`
)e−

t

τσ`

)
H(t) ∗ ∂xux

+MR
13

(
1− 1

L

L∑
`=1

(1− τ ε`n
τσ`

)
∂zuz

+MR
13

(
1− 1

L

L∑
`=1

1

τσ`
(1− τ ε`n

τσ`
)e−

t

τσ`

)
H(t) ∗ ∂zuz,

(13)
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∂tσV =MR
13

(
1− 1

L

L∑
`=1

(1− τ ε`n
τσ`

)
∂xux

+MR
13

(
1− 1

L

L∑
`=1

1

τσ`
(1− τ ε`n

τσ`
)e−

t

τσ`

)
H(t) ∗ ∂xux

+MR
33

(
1− 1

L

L∑
`=1

(1− τ ε`v
τσ`

)
∂zuz

+MR
33

(
1− 1

L

L∑
`=1

1

τσ`
(1− τ ε`v

τσ`
)e−

t

τσ`

)
H(t) ∗ ∂zuz,

(14)

where ux, and uz are components of the particle velocity vector. The convolution term in
these equations can be eliminated by introducing memory variables (Carcione et al., 1988).
Hence, equations 13 and 14 reduce to

∂tσH = MR
11

(
1− 1

L

L∑
`=1

(1− τ ε`h
τσ`

)
∂xux +MR

13

(
1− 1

L

L∑
`=1

(1− τ ε`n
τσ`

)
∂zuz

+
1

L

L∑
`=1

(MR
11rH +MR

13rN),

(15)

∂tσV = MR
13

(
1− 1

L

L∑
`=1

(1− τ ε`n
τσ`

)
∂xux +MR

33

(
1− 1

L

L∑
`=1

(1− τ ε`v
τσ`

)
∂zuz

+
1

L

L∑
`=1

(MR
13rN +MR

33rV ),

(16)

where rH`, rN`, and rV `, are memory variables of horizontal, normal and vertical stress
components

rH` =

(
1

τσ`
(1− τ ε`h

τσ`
)e−

t

τσ`

)
H(t) ∗ ∂xux, (17)

rN` =

(
1

τσ`
(1− τ ε`n

τσ`
)e−

t

τσ`

)
H(t) ∗ ∂x,zux,z, (18)
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rV ` =

(
1

τσ`
(1− τ ε`v

τσ`
)e−

t

τσ`

)
H(t) ∗ ∂zuz, 1 ≤ ` ≤ L. (19)

A set of first-order linear differential equations for the memory variables can be obtained
by taking the time derivative of equations 17-19. We obtain

ṙH` =− 1

τσ`

(
1

τσ`
(1− τ ε`h

τσ`
)e−

t

τσ`

)
H(t) ∗ ∂xux

+

(
1

τσ`
(1− τ ε`h

τσ`
)e−

t

τσ`

)
δ(t) ∗ ∂xux,

(20)

ṙN` =− 1

τσ`

(
1

τσ`
(1− τ ε`n

τσ`
)e−

t

τσ`

)
H(t) ∗ ∂x,zux,z

+

(
1

τσ`
(1− τ ε`n

τσ`
)e−

t

τσ`

)
δ(t) ∗ ∂x,zux,z,

(21)

ṙV ` =− 1

τσ`

(
1

τσ`
(1− τ ε`v

τσ`
)e−

t

τσ`

)
H(t) ∗ ∂zuz

+

(
1

τσ`
(1− τ ε`v

τσ`
)e−

t

τσ`

)
δ(t) ∗ ∂zuz,

(22)

Substituting equations 17-19 into equation 20-22, gives

ṙH` = − 1

τσ`
rH` +

(
1

τσ`
(1− τ ε`h

τσ`
)

)
∂xux, (23)

ṙN` = − 1

τσ`
rN` +

(
1

τσ`
(1− τ ε`n

τσ`
)

)
∂x,zux,z, (24)

ṙV ` = − 1

τσ`
rV ` +

(
1

τσ`
(1− τ ε`v

τσ`
)

)
∂zuz. (25)

A combination of the equations of motion and the stress-strain relationships leads to a
system of first-order differential equations that describe the wave propagation in the viscoa-
coustic medium. Hence, the viscoacoustic wave equation in anisotropic media for a series
of SLS can be written as

∂tux = (1/ρ)∂xσH , (26)

∂tuz = (1/ρ)∂zσV , (27)
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∂tσH =ρV 2
P

[
(1 + 2ε)

([
1−

L∑
`=1

(
1− τ ε`h

τσ`

)]
∂xux +

1

L

L∑
`=1

rH`

)]

+ ρV 2
P

√
1 + 2δ

[(
1−

L∑
`=1

(
1− τ ε`n

τσ`

))
∂zuz +

1

L

L∑
`=1

rN`

]
,

(28)

∂tσV =ρV 2
P

[
√

1 + 2δ

([
1−

L∑
`=1

(
1− τ ε`n

τσ`

)]
∂xux +

1

L

L∑
`=1

rN`

)]

+ ρV 2
P

[(
1−

L∑
`=1

(
1− τε`

τσ`

))
∂zuz +

1

L

L∑
`=1

rV `

]
.

(29)

The simplest and most practical approximations for anisotropic media is VTI medium,
while only valid for simple geologic formations. In anticline structures and thrust sheets
where sediments are steeply dipping, the VTI medium approximation is not useful because
of non-vertical symmetry axis of the medium. However, to avoid the image blurring and
mispositioning, we must consider the tilted symmetry. One way to calculate the TTI equa-
tions is to locally rotate the coordinate system of VTI medium. The rotation matrix as
function of the polar angle and azimuth angle is defined as

R =

cos θ cosϕ cos θ sinϕ − sin θ
− sinϕ cosϕ 0

sin θ cosϕ sin θ sinϕ cos θ

 , (30)

where θ represent the tilt angle and ϕ represent the azimuth of tilt for TTI symmetry axis.
The spatial derivative in a rotated coordinate system can be written as∂x′∂y′

∂z′

 = R

∂x∂y
∂z

 , (31)

where primed (′) refer to the rotated coordinate system. Substituting equation 31 into equa-
tions 26 to 29, the 2D viscoacoustic wave equation in anisotropic TTI media for a series of
SLS can be written as

∂tux = (1/ρ)∂x′σH , (32)

∂tuz = (1/ρ)∂z′σV , (33)
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FIG. 1. Comparison of the dissipation factors for different number of mechanisms (L) in the weak
and strong attenuating media.

∂tσH =ρV 2
P

[
(1 + 2ε)

([
1−

L∑
`=1

(
1− τ ε`h

τσ`

)]
∂x′ux +

1

L

L∑
`=1

rH`

)]

+ ρV 2
P

√
1 + 2δ

[(
1−

L∑
`=1

(
1− τ ε`n

τσ`

))
∂z′uz +

1

L

L∑
`=1

rN`

]
,

(34)

∂tσV =ρV 2
P

[
√

1 + 2δ

([
1−

L∑
`=1

(
1− τ ε`n

τσ`

)]
∂x′ux +

1

L

L∑
`=1

rN`

)]

+ ρV 2
P

[(
1−

L∑
`=1

(
1− τε`

τσ`

))
∂z′uz +

1

L

L∑
`=1

rV `

]
.

(35)

where ∂x′ and ∂z′ are the first order differential operators in the rotated coordinate system
aligned with the symmetry axis:

∂x′ = cos θ cosϕ∂x − sin θ∂z, (36)

∂z′ = cosϕ sin θ∂x + cos θ∂z. (37)
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ATTENUATION MODEL IN ANISOTROPIC MEDIA

There is physical evidence that attenuation is almost linear with frequency (therefore Q
is constant) in many frequency bands. Constant-Q models provide an efficient parameter-
ization of seismic attenuation in rocks and can improve the seismic inversion by reducing
the number of parameters. Kjartansson (1979) used a linear model for attenuation of the
wave with Q independent of frequency, without any cut-offs, which is mathematically sim-
ple and completely specified by phase velocity and Q. Kjartansson’s constant-Q model is
mathematically simpler than any model with nearly constant-Q as a spectrum of general
standard linear solid (GSLS) models (Carcione, 2007). A simple combination of SLSs re-
quires a relatively large number of solids to obtain a constant quality factor over a wide
frequency band. The selection of the number of relaxation mechanisms (L) is quite impor-
tant since the increase of required computational memory and time is proportional to the
used number of relaxation mechanisms.
Blanch et al. (1995) propose the τ -method that is based on the simple observation that the
level of attenuation caused by an SLS can be determined by a dimensionless (frequency
scale-independent) variable τ as

τ =
τ ει

τσι
− 1, (38)

where τ ει and τσι are the strain and stress relaxation parameters respectively (Robertsson
et al., 1994). τ is a function of quality factor (Q), and an optimal value of that is sufficient
to control a constant Q response over a frequency band of interest. In order to evaluate the
accuracy of a series of single standard linear solid mechanisms, the dissipation factor (Q−1)
of one, three and five SLS mechanisms compare with the theoretical model. Figure 1 shows
the dissipation factor in weak attenuation media (Q=1000 and Q=100) and the dissipation
factor in strong attenuation media (Q=20). The reference velocity is 2.5 km/s, and the
frequency band is 5 -125 Hz. in weak attenuation media, the three SLS mechanism fits the
theoretical model curves very well in the specified frequency band. Note, the one, three,
and five SLS have a good approximation to the phase velocity and dissipation factor around
the reference frequency. In strong attenuation media, like the weak attenuation case, we
found that the three SLS mechanism fits the theoretical model curves in the particularized
frequency band, and the single and five SLS mechanisms have a good approximation to the
phase velocity and dissipation factor around the reference frequency. In strong attenuation
media, the error of single SLS is more significant than the weak attenuation media, while
in the center frequency all SLS mechanisms are fit to the theoretical result.
We can use a similar approach for anisotropic attenuating media. The variable T can be
defined as

τm =
τ ειm
τσιm
− 1,m = h, n, v. (39)

where h, n, and v refer to the horizontal, normal, and vertical components respectively.
In anisotropic attenuating media, similar to the isotropic attenuating media approach, the
values of τm are computed for each Qm.
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FIG. 2. Illustrate a snapshot of wavefield in VTI media: (a) isotropic attenuation(δt = 1 ms), (b)
anisotropic attenuation (δt = 1 ms), and (c) the unstable wavefield at δt = 1.01 ms.

FIG. 3. Illustrate a snapshot of wavefield in TTI media with θ=45◦ and ϕ=0◦: (a) isotropic
attenuation(δt = 1.09 ms), (b) anisotropic attenuation (δt = 1.09 ms), and (c) the unstable wave-
field at δt = 1.1 ms.

FIG. 4. Illustrate a snapshot of wavefield in TTI media with θ=45◦ and ϕ=20◦: (a) isotropic
attenuation(δt = 1.13 ms), (b) anisotropic attenuation (δt = 1.13 ms), and (c) the unstable wave-
field at δt = 1.14 ms.
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FIG. 5. A portion of BP model: (a) velocity model, (b) Thomsen’s ε model, (c) Thomsen’s δ model,
and (d) tilt angle in degrees.

ANISOTROPIC VISCOACOUSTIC SYNTHETIC MODEL

To verify the anisotropic viscoacoustic wave equations(32-35), showing the dependence
of the attenuation with direction, we consider the homogenous model with velocity V=
2000 m/s, ε = 0.2, and δ = 0. We examine the numerical character of the solutions of the
wave equation as created using the unsplit-field PML boundary approach (Fathalian et al.,
2020). First, we consider a VTI medium (θ=0 and ϕ=0).
A snapshot of the wavefield computed with a time-step length of 1 ms, using the anisotropic
and isotropic models of attenuation, is shown in Figure 2. Our results show that the com-
putation of the wavefield remains stable, and the wavefront is elliptical. In the isotropic
attenuation model (Figure 2a), the level of attenuation along the entire wavefront is the
same, while in the anisotropic attenuation model (Figure 2b), the amplitude of the wave-
front is weaker for energy propagating along the horizontal direction than that propagating
along the vertical direction. Figure 2c shows a snapshot of the wavefield with a time step
of 1.01 ms. The result indicates that the computation becomes unstable at this time step.
In the second example, we investigate the TTI medium with a tilt angle, θ = 45◦ and an
azimuth angle, ϕ = 0◦. In the isotropic attenuation case (Figure 3a), the amplitude is the
same along the wavefront. When the model of attenuation is anisotropic, the amplitude of

CREWES Research Report — Volume 32 (2020) 11
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FIG. 6. (a-c) Quality factors of horizontal, vertical, and normal components. Shot gather computed
with (c) isotropic attenuation with Q=Qh, (d) isotropic model of attenuation with Q= Qv, and (c)
anisotropic model of attenuation.

the wavefront is different in different directions. Figure 3c shows the computation of the
wavefield with a time step of 1.1 ms is not stable. Finally, we consider the TTI medium
with a tilt angle, θ = 45◦ and an azimuth angle, ϕ = 20◦ (Figure 4). Similar to the above
results, in anisotropic attenuation media, the attenuation of the wavefield is not the same in
different directions (Figure 4b).

ANISOTROPIC VISCOACOUSTIC BP MODEL

To verify our code, we consider the more realistic 2D TTI BP model. Figure 5 presents
the velocity, tilt angle, and the associated Thomsen parameter models. The corresponding
horizontal, normal, and vertical components of the Q model are shown in Figure 7a, 7b
and 7c, respectively. As before, shear-wave artifacts are avoided by setting up small ta-
pered circular regions with ε = δ around the source positions (Du et al., 2008). The model
grid dimensions are 1176×1501, and the grid size is 4×4 m. Sources and receivers are
positioned along the surface at a depth of 30 m, and a zero-phase Ricker wavelet with a
15 Hz center frequency is adopted. Within this model, we generate viscoacoustic synthetic
data sets when attenuation is anisotropic and isotropic for a source placed at the leftmost
position. We consider three different cases for the model of attenuation including, (1) the
isotropic attenuation model (setting Qv and Qn equal to Qh (Figure 7a)), (2) the isotropic
attenuation model by setting Qh and Qn equal to Qv (Figure 7b), and (3) the anisotropic at-
tenuation model (Qh, Qv, and Qn components are given by the models illustrated in Figure
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FIG. 7. (a)Comparison of three traces extracted from the snapshot wavefield images in Figure 7.
(b) Magnified view of Figure 8a.

FIG. 8. Comparison of the amplitude spectrum for the traces for each one of the different models
of attenuation.
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7a-7c, respectively). For these attenuation models, we generate the shot gathers in Figure 7.
In the first case (Q=Qh), the amplitude of the waveform is not attenuated strongly because
the attenuation media is weak (Figure 7a). For the second (Figure 7b) and third (Figure
7c) attenuation model, we observe that there are no effects of attenuation in the energy
recorded at the shorter offsets, while at longer offsets and larger recording times, the effect
of attenuation is visible because the energy has propagated throughout the high attenuating
zones. To prove our results, we compare the traces for three models of attenuation. Our re-
sults show that there is no significant difference between phases and amplitudes at the short
offsets (Figure 8a). However, at the larger offsets, we observe the different phases and
amplitudes (Figure 8b). The traces of anisotropic attenuating medium (the dashed red line)
show that the phase delay and amplitude are located between the two isotropic attenuation
model results. Hence, the data generated by the anisotropic model can not be explained by
the isotropic models. Spectra computed from the shot records, plotted in Figure 9, illustrate
the effect of attenuation in the amplitude spectrum for each one of the traces in Figure 8.
We observe that the amplitude spectra are very similar at the near offset, while at the long
offset the spectrum becomes damped by increasing frequency. Also, the result indicates
that the amplitude spectrum for the anisotropic attenuating medium locates in between the
two isotropic attenuation model results that confirm the result of Figure 8.

CONCLUSIONS

We have presented an approach for modeling viscoacoustic waves with transverse isotropy
(TI) in velocity and attenuation. We derived partial differential equations in first-order in
time by eliminating the shear components based on the standard linear solid model. Our
modeling approach is demonstrating a good accuracy for modeling seismic waves in media
with anisotropy and attenuation. Also, this approach is stable in media with a rapid change
of tilt angle and strong contrast in the physical properties. The proposed approach is useful
for seismic modeling, imaging, and inversion.
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