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ABSTRACT

Full-wave inversion (FWI) based on deterministic optimization (DO) methods is an
appealing tool to detect the physical properties of the subsurface media, and increasing
successful examples have been reported. However, the DO FWI is highly model-dependent,
its success relies on a good starting model. To solve this problem, some researchers resort to
the stochastic global optimization (SGO) methods that have shown the potential to alleviate
the suffering of the model-dependent problem in FWI. Whereas, the SGO methods also
have their own drawback that it needs to solve a great number of forward problems This
is dramatically computationally expensive for the wave-equation-based FWI. In our study,
we use a heuristic SGO algorithm, the very fast simulated annealing (VFSA) algorithm, to
implement the constant-density acoustic FWI. To save computational time, we develop a
new parallelization VFSA, in which the serial structure of VFSA is changed to some degree.
Instead of updating the model parameter one by one in the same thread in a conventional
serial VFSA, the parallel VFSA updates the N model parameter separately on N threads,
in which the maximum efficient processor number is N . Since performing a 2D VFSA
FWI directly without using any parameterization to reduce parameter number (dimension)
is still prohibitive, we test the different FWIs (the DO FWI, the conventional serial VFSA
FWI, and the new parallel VFSA FWI) on a 1.5D model, and for both VSP (vertical seismic
profile) and surface seismic data. For each data, we use both an unbiased starting model
crossing the true model and a biased starting model far away from the true model with the
depth increase to investigate how the different FWIs rely on the starting model. The tests
show that all FWIs for VSP seismic data are not too model-dependent, but the DO FWI
for surface seismic data is mode-dependent and the VFSA FWIs can solve this problem
well. Furthermore, to further save the computational cost, the data used for VFSA FWIs
are multisource shot gathers. And all seismic data used are in time domain.

INTRODUCTION

Full-wave inversion (FWI) based on deterministic optimization (DO) methods (Lailly
et al., 1983; Tarantola, 1984) is an appealing tool to detect the physical properties of the
subsurface media, and increasing successful examples have been reported. However, the
DO FWI that is a local optimization method is highly model-dependent (Virieux and Op-
erto, 2009), its success relies too much on a good starting model. If the starting model is
not good enough, FWI will easily be stuck at a local minimum that is often caused by the
cycle skipping. Naturally, avoiding cycle skipping and building a good starting model for
FWI have been two important areas that researchers are going deep into.

To address cycle skipping, several approches are developed. The most common use
is the multiscale technique (Bunks et al., 1995; Sirgue and Pratt, 2004), in which the
low- and high-frequency components sequentially participate in the inversion. Since the
low-frequency component has a larger time period, it has less chance of cycle skipping.
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However, the presence of low-frequency components is still the premise of successful ap-
plications (Dessa et al., 2004; Brossier et al., 2009; Fichtner et al., 2013) of the multiscale
technique, and real field seismic data usually cannot meet this premise. Although Wu et al.
(2014) take the envelope of seismic data to recover the low-frequency components, it is
still physically mysterious. Warner and Guasch (2016) use Wiener filters that transform
the predicted seismic data into the observed data to avoid the cycle skipping in the case
of lacking the low-frequency component. And the analogous approaches can be found in
Van Leeuwen and Mulder (2010), Routh et al. (2011), and Luo and Sava (2011).

Traping into the local minimum is not only associated with cycle skipping, the other
causes including the strong nonlinearity of FWI should also take responsibility. So estab-
lishing a good starting model for FWI is still the main tune, which can not only avoid the
cycle skipping but also mitigate the other causes. A good starting model should contain
the low-wavenumber velocity structure. Many approaches have shown the talent for build-
ing the low-wavenumber model. Shin and Cha (2008) obtain low-wavenumber model in
the Laplace domain. Ma and Hale (2013) utilize the dynamic image warping to estimate
the time shifts between the observed data and synthetic data during the inversion to obtain
the low-wavenumber model, then back to the conventional FWI for the high-wavenumber
model. Wu et al. (2014) use the envelope fluctuation and decay of seismic data to estimate
the low-wavenumber velocity structure. Zhu and Fomel (2016) propose a misfit function
based on adaptive matching filtering in waveform inversion to generate a reasonable starting
model for FWI. Chen et al. (2016) build the starting model by interpolating the velocities
from well logs.

The researches mentioned above are based on the DO methods, recently, more and more
researchers resort to the stochastic global optimization methods to alleviate the suffering of
the model-dependent problem in FWI. Due to that a great number of time-consuming for-
ward modelings are needed in the global-optimization-based FWI, currently, using only the
global optimization method to obtain accurate models are mostly reported for 1D models
(Afanasiev et al., 2014; Aleardi and Mazzotti, 2016), and for 2D models, many researchers
use the global optimization method to produce a starting model for DO FWI. (Datta and
Sen, 2016; Sajeva et al., 2016; Mazzotti et al., 2016; da Silva et al., 2019; Visser et al.,
2019).

In our study, we will use a heuristic SGO algorithm, the very fast simulated annealing
(VFSA) algorithm, to implement the constant-density acoustic FWI. To save computational
time, we will develop a new parallelization VFSA, in which the serial structure of VFSA is
changed to some degree. Instead of updating the model parameter one by one in the same
thread in a conventional serial VFSA, the parallel VFSA updates the N model parameter
separately on N threads, in which the maximum efficient processor number is N . Since
performing a 2D VFSA FWI directly without using any parameterization to reduce param-
eter number (dimension) is still prohibitive, we will test the different FWIs (the DO FWI,
the conventional serial VFSA FWI, and the new parallel VFSA FWI) on a 1.5D model, and
for both VSP (vertical seismic profile) and surface seismic data. For each data, we will
use both an unbiased starting model crossing the true model and a biased starting model
far away from the true model with the depth increase to investigate how the different FWIs
rely on the starting model. Furthermore, to further save the computational cost, the data
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used for VFSA FWIs are multisource shot gathers. And all seismic data used are in time
domain.

DETERMINISTIC OPTIMIZATION FULL-WAVEFORM INVERSION

DO FWI starts from a given model m0 and uses a DO method to search a model m
that makes the synthetic data dsyn(m) match the observed data dobs best. Usually, this is
achieved by minimizing the L2 norm of data residual δd (dsyn(m)− dobs) given by

E(m) =
1

2
δdT δd, (1)

where T denotes the transpose of a matrix. For constant-desity acoustic FWI, the model m
in equation 1 represents the presure wave velocity model v(x) in which x is the coodinate
vector, and dsyn is the pressure field P (x, t) at receiver positions, which depends on x
and time t. In this paper, P (x, t) is obtained by soveling the time-domain constant-desity
acoustic wave equation given by

1

v2(x)

∂2P (x, t)

∂t2
−52P (x, t) = s(t)δ(x− xs), (2)

where 52 is the Laplace operator, s(t) is the source, and xx is the source position. A
finite-difference method (eighth order in space and second order in time) and a perfectly
matched layer (PML) boundary condition are used to solve the wave equation in our study
as a whole.

Many DO methods have been developed for FWI, including Newton-type optimiza-
tions (e.g., full Newton and Gauss-Newton methods), gradient-based optimizations(e.g.,
steepest-descent [SD] and non-linear conjugate-gradient [NCG] methods), Quasi-Newton
optimizations (e.g., BFGS and l-BFGS methods), truncated-Newton optimations, and so
on. In this work, we typically apply the SD FWI method. According to the adjoint method
(Tarantola, 1984; Bunks et al., 1995; Plessix, 2006) and the preconditioning of deconvo-
lution imaging condition which can compensate the geometric spread effect of wavefields
(Margrave et al., 2011; Pan et al., 2014; Fu et al., 2019), the model perturbation can be
expressed as

∆v(x) = −µ
ng∑
r=1

ns∑
i=1

2

v(x)3

∫ tmax

0
dt[P̈f (x, t;xs)Pb(x, t;xr)]∫ tmax

0
dt[Pf (x, t;xs)Pf (x, t;xs) + λImax]

, (3)

where µ is the step length obtained by linear search; ng, ns are the number of receivers and
shots, respectively; tmax is the maximum forward/backward propagating time t of wave-
fields; xr is receiver positions; Pf (x, t;xs) is the forward wavefield due to the source
at xs and P̈f (x, t;xs) is its the second derivative with respect to t; Pb(x, t;xr) is the
backward/time-reversal wavefield due to the data residual δu at position xr; Imax =
max
x,t

[Pf (x, t;xs)Pf (x, t;xs)] is the square of maximum absolute value in forward propa-

gation wavefield; λ is a damp factor.
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SIMULATED ANNEALING FULL-WAVEFORM INVERSION

Very fast simulated annealing

Very fast simulated annealing (VFSA) (Ingber and Rosen, 1992), also known as the
adaptive simulated annealing (ASA)(Ingber, 2000), is a popular method in the simulated
annealing (SA) family (Metropolis et al., 1953; Kirkpatrick et al., 1983; Geman and Ge-
man, 1984; Cerby, 1985; Pincus, 1970) which mimics the annealing process of a physical
crystallization. During the process, the temperature of the heated material is lowered grad-
ually, thus the system energy is reduced. Until the system reaches the equilibrium state,
namely the system energy becomes stable, this annealing process is finished. To crystal-
lize (i.e., reach the global minimum of the energy function) successfully and quickly, a
suitable annealing schedule is necessary. Too fast annealing could lead to crystallization
failure, while too slow annealing will increase the computational cost. Especially for the
wave-equation-based FWI, the computation cost may raise to an unacceptable level.

Different from DO methods, VFSA is a heuristic stochastic global optimization method.
A new candidate model m in the parameter i at temperature k is given by a Cauchy distri-
bution expressed as

mi
k+1 = mi

k + yi(mi
max −mi

min), (4)

where the superscript i is the model parameter or dimention index and the subscript k is
the iteration or time index, mi

k is the number i parameter of present model mk constrained
by mk ∈ [mmin,mmax], and yi is generated by

yi = sgn(ui − 0.5)Tk[(1 + 1/Tk)|2ui−1| − 1], (5)

ui is a random number from the uniform distribution U [0, 1], and Tk = αkT0 is the temper-
ature at iteration k, in which T0 is the starting temperature and α is a positive coefficient
to decay the temperature. Typically, α is less than 1, depends on the complexity of the
inverse problem, e.g., 0.9 for an easy problem and 0.99 for a tough one. yi depends on
the temperature, as the temperature decays, it has a bigger chance to generate a relatively
small perturbation. Equation 5 is also the feature that distinguishes VFSA from other SA
algorithms.

Next, using Metropolis criterion to accept or reject the new candidate model. It can be
expressed as

p =

1 if E(mk+1) < E(mk)

exp(−E(mk+1)− E(mk)

Tk
) if E(mk+1) ≥ E(mk),

(6)

where p is acceptance probability, E is an energy function that will be discussed in the
next subsection. When the new candidate model reduces the energy, it is unconditionally
accepted, but when the energy increases, it is accepted according to the probability p. With
the decaying of temperature, p decreases.
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Energy function

In FWI, the energy function is defined as the misfit between the observed shot gather
data dobs and synthetic data dsyn obtained by solving the wave equation. In our study, we
use the normalized L1 norm of data residual as the misfit, so the energy function is given
by

E(m) =
‖ dobs − dsyn(m) ‖1

‖ dobs ‖1
. (7)

Normalization can enhance the adaptability of the chosen annealing schedule. Since the
data residual can be impacted by many factors, for instance, the amplitude of the source,
the number of shots, the length of recording time, and so on. For a non-normalized en-
ergy function, even in the case of the same annealing schedule and candidate model, when
any of the above factors change, the acceptance probability could change. Whereas, the
normalized energy function can avoid or mitigate such a situation. As for the L1 norm,
we empirically use it. A deeper investigation may be requested outside of this paper, to
compare the pros and cons of different types (e.g., L2 norm type and crosscorrelation type)
of energy functions for VFSA FWI.

Multisource waveform inversion

The multisource method is an efficient way to release the computational burden in FWI.
In a DO FWI, multishot gathers can cause crosstalk artifacts in the final inverted results.
To solve this problem, an additional technique, such as the encoded multisource technique
(Krebs et al., 2009), must be used. Fortunately, for global optimization FWI, such as VFSA
FWI, we do not have the trouble of crosstalk artifacts involving multishot gathers. So we
can directly and safely use the multisource shot gather data.

Parallel scheme

SA is a single point stochastic search algorithm where a new candidate model is a
neighbor model of the present model, so the computational cost is directly and positively
associated with the model size. For FWI with long-computation-time forward modeling
and large model size, the computational cost of using SA will be very expensive, even for
a 1D or 1.5D model. Parallelization is a good way to alleviate the computation burden.
Parallel SA algorithms can be simply classified into two categories: single-chain parallel
SA and multi-chain parallel SA (Onbaşoğlu and Özdamar, 2001). However, the efficiency
of single-chain parallel SA is limited by the serial nature of SA. Multi-chain parallel SA
makes the SA algorithm better adapt to parallelization by changing the serial structure. It
runs different single-chain SAs in different processors and compares the results in different
chains at some times, depending on the method used, to find the best result and send it back
to each chain. Or different chains are completely independent, and finally, their results are
compared to choose the best model.

However, multi-chain parallel SA is not specifically designed for the problem of the
model size which is key to the effect of SA. And it often requests multi starting models
(each chain needs a starting model), which is not suitable for FWI. In FWI, we start from
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a reasonable initial, for instance, the model from the velocity analysis, rand than a true
random model. A good starting model can effectively improve the performance of the SA
algorithm, save computational cost. You can also start the multi chains from the same
starting model, but it could increase the chance of repeat search in model space that will
compromise the computational efficiency.

The performances of most present parallelism methods are highly problem-dependent,
thus design a suitable parallel SA for FWI (1.5D acoustic FWI in our work) is necessary.
In this paper, we design a new parallel scheme based on a single-chain VFSA, in which
each parameter is updated simultaneously rather than sequentially in a conventional VFSA
with no parallelization. Its pseudocode is given in Table 1. Instead of updating the model
parameter one by one in the same thread in a conventional serial SA, this parallel VFSA up-
dates theN model parameter separately onN threads. In this parallel VFSA, the maximum
effective number of processors is the same as that of model parameters.

Table 1. Pseudocode of the parallel VFSA

Notation: Mmax is the length of Markov chain, kmax is the maximum temperature iteration,
N is the parameter number.
Input: m0, mmin, mmax, E(m0), T0, kmax, Mmax, α
Output: m, E
Initialization: k = 0, j = 0, mk = m0

For k < kmax

1. For j < Mmax

1.1. Parallel for i = 1, 2, ..., N // only update parameter i in thread i
1.1.1. Generate candidate model mi

k = mi
0 + yi(mi

max −mi
min);

1.1.2. Constraint mi
k by mi

k ∈ [mi
min,m

i
max];

1.1.3. Calculate E(mk);
1.1.4. Accept or reject mi

k according to the Metroplois criterion;
End

1.2 Assemble the updated N parameters to obtain the new mk;
1.3 m0 = mk;
1.4 Calculate E(m0);
1.6 j = j + 1;

End
2. k = k + 1;
3. T0 = αT0;

End

1.5D ACOUSTIC MODEL EXAMPLE

To have a comparison between the deterministic FWI and VFSA FWIs (VFSA FWI
with no parallelization and VFSA FWI with parallelization) and illustrate the feasibility of
the new parallel VFSA, we use a 10-meter-spacing 60-by-30 1.5D acoustic model without
lateral variation to test them. The true model is displayed in Figure 1a. We not only test the
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surface data observed by the surface receivers in Figure 1a, but also test the VSP (vertical
seismic profile) data observed by the VSP receivers in 1a. Three shots (white asterisks
at the surface of Figure 1a) are excited separately for the deterministic FWI to avoid the
crosstalk noise and excited simultaneously for VFSA FWIs to save computing time. The
source used here is a 20Hz Ricker wavelet and the time sampling of the data is 2 ms. The
observed multisource data are displayed in Figure 1b and c. For both data, each is used with
two different starting models, unbiased and biased, displayed in Figure 1d. The unbiased
model crosses the whole true model, and the biased model gets further away from the true
model with depth increasing. These two models are used to investigate the dependence of
the inverted result of FWI on the starting model. During the inversion of VFSA FWI, the
velocity of each row of the model is treated as one parameter, and 60 parameters for the
model as a whole, thus there is no lateral variation for inverted results of the VFSA FWIs.
The annealing schedule for this model is: T0 = 0.001, kmax = 250, Mmax = 50, α = 0.98,
mmin = 0.8m0, mmax = 1.2m0, in which the constraint is a very loose one.
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FIG. 1. (a) The true 1.5D P-wave velocity model and acquisition geometries. (b) Observed multi-
source VSP data. (c) Observed multisource surface data. (d) The black solid line is a trace in FIG
1a, dash and dash-dot lines are unbiased and biased starting models, respectively.

VSP seismic data test

The inverted results of VSP data inversions from the three FWIs are displayed in Figure
2a-d and Figure 3a-d. Figure 2a and 3a are the results of deterministic FWI, the quality
becomes worse with the distance increasing. We extracted the traces of the best results
from the Figures 2a and 3a, and displayed them in the Figures 2b and 3b respectively. The
all inverted results of three FWIs using two different starting models are pretty good, and
the results of the VFSA FWIs are slightly better than that of the deterministic FWI. These
illustrate that VSP data inversion is not too model-dependent.

Surface seismic data test

The inverted results of surface data inversions from the three FWIs are displayed in
Figure 4a-d and Figure 5a-d. Figure 4a and 5a are the results of deterministic FWI, the
best results are at the center. We extracted the traces of the best results from the Figures 4a
and 5a, and displayed them in the Figures 4b and 5b respectively. The results of the VFSA
FWIs are better than that of the deterministic FWI. And the results of the VFSA FWI
with no parallelization is slightly better than that of the VFSA FWI with parallelization.
The results also show that the deterministic FWI can obtain a good result when starting
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FIG. 2. VSP data inversion with the unbiased starting model. (a) The inverted result of the deter-
ministic FWI. (b) The dash-dot line that overlaps the black solid line is the trace at the dash line in
FIG 2a. (c) The dash-dot line that cannot be distinguished with the black solid line is the inverted
result of VFSA FWI without parallelization. (d) The dash-dot line that cannot be distinguished with
the black solid line is the inverted result of VFSA FWI with parallelization. The black solid lines are
the true model, the dash lines are the starting model, and the gray solid lines are the constraints.
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FIG. 3. VSP data inversion with the biased starting model. The legends are the same as that in
FIG 2.

from an unbiased model but it cannot handle well when the starting model is biased. For
a biased starting model, the deterministic FWI can recover the relative variation of the
velocity model, but it cannot accurately recover the velocity values. Compared with the
deterministic FWI, the VFSA FWIs do not rely much on the starting model, and good
results can be obtained even if the starting model is biased.
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FIG. 4. Surface data inversion with the unbiased starting model. The legends are the same as that
in FIG 2.
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FIG. 5. Surface data inversion with the biased starting model. The legends are the same as that in
FIG 2.

Parallelization performance

In the VFSA FWI with parallelization, the number of total wave equation forward mod-
eling times is kmax ∗Mmax ∗ (N + 1) where the kmax ∗Mmax ∗ N times are parallelized.
For the VFSA FWI with no parallelization which is serial, the number of wave equation
forward modeling times is kmax ∗Mmax ∗N . If we do not consider the communication time
between processors, the computing time of VFSA FWI with no parallelization should be
(P ∗N)/(N +P ) times of the computing time of VFSA FWI with parallelization using P
processors. When P is much smaller than N , (P ∗ N)/(N + P ) approximates to P . The
maximum of (P ∗N)/(N+P ) is P/2 that appears when P equals toN . These calculations
are based on the assumption that each forward modeling time is fixed, but practically this
time will slightly float according to the state of the computer.

In our tests, all FWIs are performed on a desktop with Intel(R) Core(TM) i7-4770
CPU @ 3.4GHz 3.4GHz. We realize the parallelization by Parallel Computing Toolbox in
Matlab, in which 4 workers/processors are used. Parallelization effect is displayed in Figure
6a-d. From the 6a, c and e, we can see that the VFSA FWI with no parallelization has lower
energy than that with parallelization at the beginning, but they converge to a similar energy
level at the end. The average computing time of VFSA FWI with no parallelization is
about 3.5 times of the computing time of VFSA FWI with parallelization, which is a little
lower than the 3.75 according to (P ∗N)/(N + P ). A reason for the difference is that the
consuming time in the innermost loop in Table 1 depends on the longest time thread rather
than the average time of all threads.
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FIG. 6. The left figures display curves of energy versus temperature iteration, and the right figures
display curves of energy versus computing time. (a) and (b) corresponds to the results in FIG 2c
and d. (c) and (d) corresponds to the results in FIG 3c and d. (e) and (f) corresponds to the results
in FIG 4c and d. (g) and (h) corresponds to the results in FIG 5c and d.
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DISCUSSION

In our work we do not consider the lateral variation of the model, in the future work,
we will apply the new parallelization VFSA for 2D models by combining it with a proper
parameterization strategy.

CONCLUSIONS

To save computational time, we develop a new parallelization VFSA, in which the serial
structure of VFSA is changed to some degree. Instead of updating the model parameter
one by one in the same thread in a conventional serial VFSA, the parallelization VFSA
updates the N model parameter separately on N threads, in which the maximum efficient
processor number that can be used is N . Since performing a 2D VFSA FWI directly
without using any parameterization to reduce parameter number is still prohibitive, we
test the different FWIs (the DO FWI, the conventional serial VFSA FWI, and the new
parallelization VFSA FWI) on a 1.5 model, and for both VSP (vertical seismic profile)
and surface seismic data. For each data, we use both an unbiased starting model crossing
the true model and a biased starting model far away from the true model with the depth
increasing to investigate how the different FWIs rely on the starting model. The tests show
that all FWIs for VSP seismic data are not too model-dependent, but the DO FWI for
surface seismic data is mode-dependent and the VFSA FWIs can solve this problem well.
Furthermore, to further save the computational cost, the data used for VFSA FWIs are
multisource shot gathers.
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