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ABSTRACT

Full-wave inversion (FWI) based on the wave equation has been employed extensively
in geophysics. Time-lapse FWI that can detect time-lapse property changes of the subsur-
face with a high resolution has become an important tool. As a popular inversion time-lapse
strategy, double-difference FWI (DDFWI) contains twice inversions, the first inversion is
the baseline inversion, in which the input elements are the baseline data and a reasonable
initial model, in the second monitoring inversion, DDFWI uses the starting model of the
inverted baseline model and a composited data as an alternative of the monitoring data, that
is, the difference data (the difference between the monitoring data and the baseline data)
plus the synthetic data of the inverted baseline model. Since DDFWI is using the difference
data, which helps it to focus on the target time-lapse area, thus DDFWI has fewer coherent
errors in the inverted time-lapse model. But DDFWI also is of the shortcoming of requir-
ing good repeatability of baseline and monitoring surveys, especially, when the wavelets of
baseline data and monitoring data are different, the coherent errors are very heavy. To solve
this problem, Fu et al. (2020) have developed a double-wavelet DDFWI method and im-
plemented for the acoustic FWI. In this study, we will expand the double-wavelet method
to the elastic FWI.

INTRODUCTION

Full-wave inversion (FWI) (Lailly et al., 1983; Tarantola, 1984; Virieux and Operto,
2009) based on the wave equation has been employed extensively in geophysics. Time-
lapse FWI that can detect time-lapse property changes of the subsurface with a high reso-
lution has become an important tool. Conducting time-lapse FWI normally contains twice
inversions, a baseline inversion for the baseline model and a monitoring inversion for the
monitoring model, and the time-lapse model is produced by subtracting the baseline model
from the monitoring model. Only consider how data and starting models are used, inversion
strategies of the time-lapse FWI can be classified into three basic categories, including the
parallel difference FWI (using baseline data and monitoring data independently, using the
same starting model for twice inversions), the sequential difference FWI (using baseline
data and monitoring data independently, using the inverted baseline model for monitoring
inversion) (Oldenborger et al., 2007; Routh and Anno, 2008), and the double-difference
FWI (DDFWI) (Watanabe et al., 2004; Onishi et al., 2009; Denli and Huang, 2009; Zheng
et al., 2011; Asnaashari et al., 2011; Routh et al., 2012; Raknes et al., 2013; Maharramov
and Biondi, 2014; Raknes and Arntsen, 2014; Yang et al., 2016) adopted in this work.

In DDFWI, the first inversion is the baseline inversion that is the same as the other
strategies, in which the input elements are the baseline data and a reasonable starting model.
But in the second monitoring inversion, DDFWI uses a composited data as an alternative
of the monitoring data, which is the difference data (the difference between the monitoring
data and the baseline data) plus the synthetic data of the inverted baseline model. Since
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FWI is extremely easy to be trapped into a local minimum, it means the twice inversions in
both the parallel difference FWI and sequential difference FWI will yield different conver-
gences on inverted models, it causes coherent errors on the final inverted time-lapse model
(Asnaashari et al., 2014; Yang et al., 2015). Nevertheless, DDFWI is using the difference
data, which helps it to focus on the target time-lapse area, thus DDFWI has fewer coherent
errors in the inverted time-lapse model. Although DDFWI also is of the shortcoming of re-
quiring good repeatability of baseline and monitoring surveys (Yang et al., 2015), with the
efforts of researchers, some demerits have been improved, for instance, Hicks (2002) and
Yang et al. (2016) use the interpolation technique to resample baseline and monitoring data
to the same grids, Fu et al. (2020) develop a double-wavelet DDFWI method for acoustic
FWI to solve the case that the wavelets of baseline data and monitoring data are different.
In this study, we will expand the double-wavelet method to elastic FWI (EFWI).

THEORY

Elastic full-waveform inversion

EFWI starts from a given model m0 and uses an optimization method to search a model
m that makes the synthetic data dsyn(m) match the observed data dobs best. Usually, this
is achieved by minimizing the L2 norm of data residual ∆d (dsyn(m)− dobs) given by

E(m) =
1

2
∆dT∆d∗, (1)

where T denotes the transpose of a matrix and ∗ denotes the complex conjugate. For EFWI,
the model m in equation 1 represents the elastic parameters (e.g. P-wave velocity, S-wave
velocity, and density), and dsyn is the wave field at receiver positions. In this paper, the
wave field is obtained by soveling a frequency-domain 2D elastic wave equation given by
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where ω is the angular frequency; u = u(x, z, ω), v = v(x, z, ω), f = f(x, z, ω), and
g = g(x, z, ω) are, respectively, the horizontal displacement field, the vertical displacement
field, the horizontal component of source, and the vertical component of source, all depend
on the position (x, z) and ω; λ and µ are Lamé constants; Vp = Vp(x, z), Vs = Vs(x, z),
and ρ = ρ(x, z) are, respectively, P-wave velocity, S-wave velocity, and density, all depend
on the position. Equation 2 can be discretized and solved by the finite-difference method
(Pratt, 1990) under which it can be formulated as

Au = s, (3)

where A is the impedance matrix, u = [u, v]T is the displacement vector, and s = [f, g]T

is the source vector.
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The gradient of E(m) in equation 1 with respect to m can be expressed as

5mE = −<

{[
∂u

∂m

]T
∆d∗

}
, (4)

where < denotes the real part operator. Differentiating equation 3 with respect to m gives

A
∂u

∂m
= −∂A

∂m
u, (5)

which tells us that the partial derivative wavefield ∂u/∂m can be calculated by solving the
wave equation with a virtual source − (∂A/∂m)u. Putting equation 5 into equation 4, we
have

5mE = <
{
uT

[
∂A

∂m

]
A−1∆d∗

}
, (6)

from which, we can see that the adjoint wavefield A−1∆d∗ is obtained by solving the wave
equation with the source of the conjugate data residual. ∂A/∂m is referred to the radiation
that can be used to investigate the crosstalk situation between different parameters (Brossier
et al., 2009).

By minimizing the second-order Taylor expansion of the objective function, we can
obtain the equation satisfied by the update of the Newton method, which is given by

Hδm = −5m E, (7)

where H is the Hessian matrix, the second-order derivative of the misfit E(m) with respect
to m. The Hessian matrix can compensate for the sphere spreading energy loss and miti-
gate the parameter crosstalk. However, the explicit Hessian and its inverse matrix consume
huge computation and computer memory, it is unrealistic to find the exact Newton update
in large-scale FWI. The truncated Gauss-Newton optimization method can overcome this
difficulty. It uses a linear optimization method (the L-BFGS method in this work) to solve
equation 7 to obtain a relatively accurate approximate Newton update, and the linear opti-
mation method as a whole only needs to use the product of Hessian matrix and a known
vector. After using the truncated Gauss-Newton optimation method, the updated model m
is given by

m = m + αδm, (8)

where α is the step length.

Double-difference time-lapse FWI

Thus in this study, we use the DDFWI that can focus on the time-lapse target and re-
duce coherent errors. In DDFWI, the first inversion is a baseline inversion for the baseline
model, in which the input elements are the baseline data and a reasonable starting model.
And in the second monitoring inversion for the monitoring model, DDFWI uses the in-
verted baseline model as the starting model and a composited data as an alternative to the
monitoring data. The composited data is given by

d′obs2 = bsyn(m′1) + (dobs2 − dobs1), (9)
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where dsyn(m′1) is synthetic data of the inverted baseline model m′1, dobs2 and dobs1 are
observed monitoring data and baseline data, respectively. Then during the monitoring in-
version, the misfit function of DDFWI can be expressed as

EDDFWI(δm
′) =

1

2
||dsyn(m′1 + δm′)− d′obs2||2, (10)

where || ||2 denots L2 norm, δm′ is the model perturbation under the background model
m′1. Defining

δdsyn(δm′) = dsyn(m′1 + δm′)− dsyn(m′1), (11)

then
dsyn(m′1 + δm′) = δdsyn(δm′) + dsyn(m′1), (12)

where δdsyn(δm′) is the synthetic difference data. Putting equation 9 and 12 into equation
10, we have

EDDFWI(δm
′) =

1

2
||δdsyn(δm′)− δd||2, (13)

where δd = dobs2 − dobs1 is the observed difference data. Therefore, when we are min-
imizing equation 10, actually, we are minimizing the residual of two difference data, that
makes DDFWI focus on the target area. And finally, the inverted time-lapse model is δm′.

But we have to note that the inverted time-lapse model δm′ is different from the true
time-lapse model δm. δm′ corresponds to the difference wavefield δdsyn(δm′) under the
background wavefield dsyn(m′1), but δm corresponds to the difference wavefield δd under
the background wavefield dobs1. When dsyn(m′1) is close to dobs1, i.e., m′ is close to the
true baseline model, δm′ will be close to δm, and vice versa. Thus a good inverted baseline
model is important for DDFWI (Asnaashari et al., 2011).

Double-wavelet double-difference time-lapse waveform inversion

The reason why high repeatability is requested is that DDFWI needs the difference
between monitor and baseline data sets to generate the composed data. When the per-
fect repeatability is reached, the data difference only contains the seismic response related
to the change of underground parameters, which enables DDFWI to focus on the target.
Nevertheless, when the wavelets of baseline and monitor data are different, the difference
between the two data sets will come from both the wavelet contrast and the subsurface
change. Generally, the subsurface change is weak, the little difference between the wavelets
can easily submerge the effective information and cause heavy artifacts in the final inverted
time-lapse model (Yang et al., 2015). We will also display this phenomenon in the nu-
merical example section. For the case of the wavelets for the two data sets are different,
Fu et al. (2020) has developed a double-wavelet double-difference time-lapse waveform
inversion (DWDDFWI) and implemented to the acoustic FWI. To eliminate the data differ-
ence caused by the wavelet difference, DWDDFWI introduced below constructs a common
wavelet for the baseline and monitor data.

To intuitively show how the subsurface parameter change influences the data set, we
use Green’s function to express the composited data in equation 9. A seismic data can
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be expressed as the convolution between the source wavelet and Green’s function, then
equation 9 can be rewritten as

d
′

obs2 = dsyn(m
′

1) + (Wobs2 ∗Gobs2 −Wobs1 ∗Gobs1), (14)

where ∗ indicates the convolution operator; Wobs2 and Wobs1 are the source wavelets for
monitor and baseline observed data, respectively; Gobs2 and Gobs1 are Green’s functions for
monitor and baseline observed data, respectively; and dsyn(m

′
1) is synthetic data using the

baseline source wavelet Wobs1. When Wmonitor and Wbaseline are identical, the difference
is only from Gobs2 −Gobs1 which is irrelevant to the wavelets. But in the case that Wobs2

and Wobs1 are not identical, the difference is from Wobs2 ∗Gobs2 −Wobs1 ∗Gobs1 which
is relevant both to the wavelets and Green’s functions representing the property of the
subsurface.

For the case of baseline and monitor wavelets are different, we reconstruct monitor data
by performing the convolution between baseline wavelet and monitor data, and reconstruct
monitor data by performing the convolution between monitor wavelet and baseline data,
then the new composited data becomes:

d
′′

obs2 = d
′

syn(m
′

1) + (d′obs2 − d′obs1)

= d
′

syn(m
′

1) + (Wobs1 ∗ dobs2 −Wobs2 ∗ dobs1),
(15)

where d′obs2 = Wobs1∗dobs2 and d′obs1 = Wobs2∗dobs1 are the new observed monitoring data
and new baseline data, respectively. Equation 15 can be expressed with Green’s function
as:

d
′′

obs2 = d
′

syn(m
′

1) + (Wobs1 ∗Wobs2 ∗Gobs2 −Wobs2 ∗Wobs1 ∗Gobs1)

= d
′

syn(m
′

1) + (W ∗Gobs2 −W ∗Gobs1),
(16)

where W = Wobs1 ∗Wobs2 = Wobs2 ∗Wobs1 is the double wavelet which used to forward
modeling data d

′
syn(m

′
1) during the iterative wave inversion. After performing the recon-

structions to baseline and monitor data sets, the new data sets are of the same wavelet W ,
the data difference is from Gobs2 −Gobs1 related to the subsurface change only.

NUMERICAL EXAMPLES

To demonstrate the feasibility of the DDFWI method for EFWI, we show some numeri-
cal examples using 2D elastic models in this section. The models and acquisition geometry
are displayed in Figure1a-f. The model size is 50-by-50, model spacing is 10m, constant
time-lapse changes are centered in the time-lapse models (the monitoring models minus the
baseline models), 10 sources are spread on the surface, receivers are put on the surface, and
two sides. Figure 2 displays the initial baseline models and inverted baseline models that
are the starting models for the monitoring inversions in both DDFWI and DWDDFWI. Fig-
ure 3a-c display the inverted time-lapse models of DDFWI in the case of identical baseline
wavelet (an 8Hz Ricker wavelet) and monitoring wavelet (an 8Hz Ricker wavelet). Figure
3d-e display the inverted time-lapse models of DDFWI in the case of different baseline
wavelet (an 8Hz Ricker wavelet) and monitoring wavelet (a 10Hz Ricker wavelet). Figure
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3f-i display the inverted time-lapse models of DWDDFWI in the case of different base-
line wavelet (an 8Hz Ricker wavelet) and monitoring wavelet (a 10Hz Ricker wavelet). It
shows that the difference between the wavelets impacts the inverted model heavily, and the
DWDDFWI method for EFWI in the case of the baseline and monitoring data wavelets
are different can provide the results as good as that provided by DDFWI in the case of the
baseline and monitoring data wavelets are identical.
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FIG. 1. True models and acquisition geometry.The true baseline models, (a) P-wave velocity, (b) S-
wave velocity, and (c) density. The true time-lapse models, (d) P-wave velocity, (e) S-wave velocity,
and (f) density.
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FIG. 2. The initial baseline models, (a) P-wave velocity, (b) S-wave velocity, and (c) density. The
inverted baseline models, (d) P-wave velocity, (e) S-wave velocity, and (f) density.
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FIG. 3. The inverted time-lapse models of DDFWI in the case of baseline and monitoring wavelets
are identical, (a) P-wave velocity, (b) S-wave velocity, and (c) density. The inverted time-lapse
models of DDFWI in the case of baseline and monitoring wavelets are not identical, (d) P-wave
velocity, (e) S-wave velocity, and (f) density. The inverted time-lapse models of DWDDFWI in the
case of baseline and monitoring wavelets are not identical, (g) P-wave velocity, (h) S-wave velocity,
and (i) density.

CONCLUSIONS

The DDFWI method demands good repeatability between baseline and monitor sur-
veys, which is the most challenging for it. Especially, when source wavelets for base-
line and monitor data sets are different, the results of DDFWI are seriously impacted, but
DWDDFWI can handle this situation well. DWDDFWI works because the data differ-
ence caused by the wavelet difference is eliminated by the constructed common wavelet.
DWDDFWI is developed based on the convolution relationship between the shot gather
and Green’s function. Our work has shown that the DWDDFWI works well for EFWI. The
DWDDFWI for EFWI in the case of the baseline and monitoring data wavelets are different
can provide the results as good as that provided by DDFWI in the case of the baseline and
monitoring data wavelets are identical.
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